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1 DERIVATIONS OF GAUSSIAN MUTUAL
INFORMATION

The formal derivation relies on the following lemma, which can also

be found in standard linear algebra textbooks and is not regarded

as our contributions.

Lemma 1.1. For matrices A ∈ R𝑁×𝐾 and B ∈ R𝐾×𝑁 ,

tr(AB) = tr(BA), (1)

where tr(·) denotes the trace of a matrix.

Proof.

tr(AB) =
𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝐴𝑖 𝑗 · 𝐵 𝑗𝑖 =
𝐾∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝐵 𝑗𝑖 · 𝐴𝑖 𝑗 = tr(BA) .

□

The mutual information 𝐼𝐺 (𝑋 ;𝑌 ) can be expanded as follows:

𝐼𝐺 (𝑋 ;𝑌 ) =
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln

𝑝𝑥,𝑦 (𝑋,𝑌 )
𝑝𝑥 (𝑋 ) · 𝑝𝑦 (𝑌 )

𝑑𝑋𝑑𝑌

=

∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln𝑝𝑥,𝑦 (𝑋,𝑌 )𝑑𝑋𝑑𝑌

−
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln𝑝𝑥 (𝑋 )𝑑𝑋𝑑𝑌

−
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln𝑝𝑦 (𝑌 )𝑑𝑋𝑑𝑌 .

(2)

In order to obtain the desired result, we will perform integration

on the three terms in Eq. (2), respectively.

For a Gaussian variable 𝑋 with mean 𝝁𝑋 and covariance matrix

Σ𝑋 , its probability density function can be expressed as

𝑝𝑥 (𝑋 ) = 1√︁
(2𝜋)𝑑 det(Σ𝑋 )

exp

(
−1

2

(𝑋 − 𝝁𝑋 )𝑇Σ−1

𝑋 (𝑋 − 𝝁𝑋 )
)
.

(3)

Thus, it can be known that

−
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln𝑝𝑥 (𝑋 )𝑑𝑋𝑑𝑌

= −
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 )𝑑𝑌 ln𝑝𝑥 (𝑋 )𝑑𝑋

= −
∫
X
𝑝𝑥 (𝑋 ) ln𝑝𝑥 (𝑋 )𝑑𝑋

= −
∫
X
𝑝𝑥 (𝑋 )

(
ln

1√︁
(2𝜋)𝑑 det(Σ𝑋 )

− 1

2

(𝑋 − 𝝁𝑋 )𝑇Σ−1

𝑋 (𝑋 − 𝝁𝑋 )
)
𝑑𝑋

=
1

2

∫
X
𝑝𝑥 (𝑋 ) ln

(
(2𝜋)𝑑 det(Σ𝑋 )

)
𝑑𝑋

+ 1

2

∫
X
𝑝𝑥 (𝑋 ) (𝑋 − 𝝁𝑋 )𝑇Σ−1

𝑋 (𝑋 − 𝝁𝑋 )𝑑𝑋

=
ln

(
(2𝜋)𝑑 det(Σ𝑋 )

)
2

∫
X
𝑝𝑥 (𝑋 )𝑑𝑋

+ 1

2

∫
X
𝑝𝑥 (𝑋 ) (𝑋 − 𝝁𝑋 )𝑇Σ−1

𝑋 (𝑋 − 𝝁𝑋 )𝑑𝑋

=
1

2

ln det(Σ𝑋 ) +
𝑑

2

ln(2𝜋) + 1

2

∫
X
𝑝𝑥 (𝑋 ) (𝑋 − 𝝁𝑋 )𝑇Σ−1

𝑋 (𝑋 − 𝝁𝑋 )𝑑𝑋 .

(4)

We will deal specially with

∫
X 𝑝𝑥 (𝑋 ) (𝑋 −𝝁𝑋 )𝑇Σ−1

𝑋
(𝑋 −𝝁𝑋 )𝑑𝑋 .

Actually, 𝑋 − 𝝁𝑋 is vector ∈ R𝑑 and (𝑋 − 𝝁𝑋 )𝑇Σ−1

𝑋
(𝑋 − 𝝁𝑋 )

is a scalar value. If we regard 𝑋 − 𝝁𝑋 as a matrix ∈ R𝑑×1
, (𝑋 −

𝝁𝑋 )𝑇Σ−1

𝑋
(𝑋 −𝝁𝑋 ) will be a matrix ∈ R1×1

. The original expression

can be rephrased as 𝑡𝑟
(
(𝑋 −𝝁𝑋 )𝑇Σ−1

𝑋
(𝑋 −𝝁𝑋 )

)
. Taking (𝑋 −𝝁𝑋 )𝑇

as A in Eq. (1) and Σ−1

𝑋
(𝑋 − 𝝁𝑋 ) as B, respectively, we can know

that ∫
X
𝑝𝑥 (𝑋 )𝑡𝑟

(
(𝑋 − 𝝁𝑋 )𝑇Σ−1

𝑋 (𝑋 − 𝝁𝑋 )
)
𝑑𝑋

=

∫
X
𝑝𝑥 (𝑋 )𝑡𝑟

(
Σ−1

𝑋 (𝑋 − 𝝁𝑋 ) (𝑋 − 𝝁𝑋 )𝑇
)
𝑑𝑋

=𝑡𝑟

(
Σ−1

𝑋

∫
X
𝑝𝑥 (𝑋 ) (𝑋 − 𝝁𝑋 ) (𝑋 − 𝝁𝑋 )𝑇𝑑𝑋

)
=𝑡𝑟

(
Σ−1

𝑋 Σ𝑋
)

=𝑑.

(5)

Plugging the result of Eq. (5) into Eq. (4), it can be concluded that

−
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln𝑝𝑥 (𝑋 )𝑑𝑋𝑑𝑌

=
1

2

ln det(Σ𝑋 ) +
𝑑

2

ln(2𝜋) + 𝑑

2

=
1

2

ln det(Σ𝑋 ) +
𝑑

2

ln(2𝜋𝑒).

(6)
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Symmetrically, it can be obtained that

−
∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln𝑝𝑦 (𝑌 )𝑑𝑋𝑑𝑌 =

1

2

ln det(Σ𝑌 ) +
𝑑

2

ln(2𝜋𝑒) .
(7)

Similarly, ∫
X

∫
Y
𝑝𝑥,𝑦 (𝑋,𝑌 ) ln𝑝𝑥,𝑦 (𝑋,𝑌 )𝑑𝑋𝑑𝑌

= − 1

2

ln det(Σ𝑋,𝑌 ) −
𝑑 + 𝑑

2

ln(2𝜋𝑒).
(8)

Plugging Eq. (6), (7), and (8) into 𝐼𝐺 (𝑋 ;𝑌 ) in Eq. (2), it results in

the following closed-form of Gaussian mutual information:

𝐼𝐺 (𝑋 ;𝑌 ) = 1

2

ln

det(Σ𝑋 ) · det(Σ𝑌 )
det(Σ𝑋,𝑌 )

. (9)

Some contents about KL divergence and entropy of Gaussian

variables can be referenced from other literature [3, 5, 28]. However,

few studies have provided a complete derivation process of Gauss-

ian mutual information. Moreover, many individuals in the commu-

nity may be unfamiliar with the derivation and even the concept

of Gaussian mutual information. Thus, for the self-completeness of

this paper, we give the complete derivation here, which can also

serve as a contribution of this paper.

2 DERIVATION AND ANALYSIS ABOUT
GMIM-IC

According to Property 1 of the main text, the Gaussian mutual

information 𝐼𝐺 (𝑋 ;𝑌 ) = 1

2
ln

det(Σ𝑋 ) ·det(Σ𝑌 )
det(Σ𝑋,𝑌 ) can be restated as

𝐼𝐺 (𝑋 ;𝑌 ) = 𝐻𝐺 (𝑋 ) − 𝐻𝐺 (𝑋 |𝑌 ), (10)

where 𝐻𝐺 (𝑋 ) = −
∫
X 𝑝𝑥 (𝑋 ) ln𝑝𝑥 (𝑋 )𝑑𝑋 is the entropy of 𝑋 and

𝐻𝐺 (𝑋 |𝑌 ) is its conditional entropy given𝑌 . Based on Eq. (4) and (6),
𝐻𝐺 (𝑋 ) = 1

2
ln det(Σ𝑋 ) + 𝑑

2
ln(2𝜋𝑒), that is, 𝐻𝐺 (𝑋 ) ∝ ln det(Σ𝑋 ).

As mentioned in the main text, directly optimizing ln det(Σ𝑋 ) can
lead to numerical instability. After adjusting the eigenvalues by

applying shifting and scaling operations, we can obtain a feasible

substitution ln det(I+𝜂 ·Σ𝑋 ). Therefore, maximizing ln det(I+𝜂 ·Σ𝑋 )
can be equivalent to increasing the entropy 𝐻𝐺 (𝑋 ).

As discussed in the main text, the conditional entropy 𝐻𝐺 (𝑋 |𝑌 )
is minimized when the relationship between 𝑋 and 𝑌 can be de-

termined by a function. Considering the prior of network design,

which has two shared branches, we expect that this function is an

identity mapping. Concretely, this is realized by imposing identity

constraint to Eq. (10). In our practice, the node representations from

view 𝐴 can be regarded as 𝑁 empirical samples of 𝑋 while those

from view 𝐵 are related to 𝑌 .

Taking all the above factors into consideration, we can derive

an objective based on Eq. (10):

LA
GMIM-IC =

1

𝑁

∑︁
𝑣∈V

∥h𝐴𝑣 − h𝐵𝑣 ∥2

2
− 𝛾 · ln det(I + 𝜂 · 𝚺𝐴), (11)

where 𝛾 indicates a balancing factor. Symmetrically, we can obtain

an objective LB
GMIM-IC corresponding to view 𝐵. Combining the two

terms, it results in

LGMIM-IC =
1

𝑁

∑︁
𝑣∈V

∥h𝐴𝑣 −h𝐵𝑣 ∥2

2
−

∑︁
∗∈{𝐴,𝐵}

𝛽 · ln det(I+𝜂 ·𝚺∗) . (12)

Minimizing the objective LGMIM-IC is equivalent to maximizing

Gaussian mutual information while imposing identity constraint

across various views.

3 PROOFS AND DERIVATIONS IN SECTION 4
AND 5 OF THE MAIN TEXT

3.1 Proof of Lemma 4.1
For convenience, we restate Lemma 4.1:

Lemma 4.1. For a square matrix M, det(exp(M)) = exp(tr(M)).
Replace M with ln(I + 𝜂 · Σ∗) :

ln det(I + 𝜂 · Σ∗) = tr(ln(I + 𝜂 · Σ∗)), (13)

where ∗ ∈ {𝐴, 𝐵}. Applying Taylor expression to the logarithmic
function in tr(ln(I + 𝜂 · Σ∗)), it can be known that

ln det(I + 𝜂 · Σ∗) = 𝑡𝑟

(+∞∑︁
𝑘=1

(−1)𝑘+1

𝑘
(𝜂 · Σ∗)𝑘

)
. (14)

Proof. Assuming {𝜆′
1
, 𝜆′

2
, . . . , 𝜆′

𝑑
} are 𝑑 eigenvalues of the ma-

trix M, {𝑒𝜆′1 , 𝑒𝜆′2 , . . . , 𝑒𝜆
′
𝑑 } are 𝑑 eigenvalues of the matrix exp(M)

accordingly. Thus, det(exp(M)) =
∏𝑑
𝑖=1

𝑒𝜆
′
𝑖 = exp(∑𝑑𝑖=1

𝜆′
𝑖
) =

exp(tr(M)) . TakingM = ln(I + 𝜂 · Σ∗), we can obtain det(I + 𝜂 · Σ∗) =
exp(tr(ln(I + 𝜂 · Σ∗))), that is, ln det(I + 𝜂 · Σ∗) = tr(ln(I + 𝜂 · Σ∗)).

Applying the Taylor expression ln(1 + 𝑥) = ∑∞
𝑘=1

(−1)𝑘+1 ·𝑥𝑘
𝑘

, we

have

ln det(I + 𝜂 · Σ∗)
=tr(ln(I + 𝜂 · Σ∗))

=𝑡𝑟

(+∞∑︁
𝑘=1

(−1)𝑘+1

𝑘
(𝜂 · Σ∗)𝑘

)
.

(15)

□

Furthermore, we can obtain a second-order Taylor approxima-

tion:

− ln det(I + 𝜂 · Σ∗)

≈ − 𝑡𝑟

(
2∑︁
𝑘=1

(−1)𝑘+1

𝑘
(𝜂 · Σ∗)𝑘

)
=
𝜂2

2

· 𝑡𝑟
(
(Σ∗)2

)
− 𝜂 · tr(Σ∗)

=
𝜂2

2

· ∥Σ∗∥2

𝐹 − 𝜂 · 𝑑

=
𝜂2

2

·
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1, 𝑗≠𝑖

(Σ𝑖 𝑗∗ )2 + 𝜂2

2

· 𝑑 − 𝜂 · 𝑑.

(16)

Ignoring constant terms,

∑𝑑
𝑖=1

∑𝑑
𝑗=1, 𝑗≠𝑖 (Σ

𝑖 𝑗
∗ )2

is equivalent to

a second-order Taylor expansion of − ln det(I + 𝜂 · Σ∗). Therefore,
minimizing

∑𝑑
𝑖=1

∑𝑑
𝑗=1, 𝑗≠𝑖 (Σ

𝑖 𝑗
∗ )2

has a similar effect to reducing

− ln det(I + 𝜂 · Σ∗).
We have completed the entire deviation.

3.2 Proof of Proposition 4.2
The formal proof of Proposition 4.2 relies on the following lemma:

Lemma 3.1. For a real symmetric matrix A whose eigenvalues are
all 1, it must be the identity matrix.
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Proof. For a real symmetric matrix A, it can be diagonalized

by an orthogonal matrix, that is, A = UDU⊤
with the orthogonal

matrix U and the diagonal matrix D. Since the eigenvalues of A are

all 1, D is equal to an identity matrix I. Thus, A = UIU⊤ = I. □

For convenience, we restate Proposition 4.2 here.

Proposition 4.2.When ln det(I+𝜂 ·Σ∗) or ln det(Σ∗) is maximized,
the empirical covariance matrix Σ∗ will converge to an identity matrix.

Proof. Assuming {𝜆1, 𝜆2, . . . , 𝜆𝑑 } are 𝑑 eigenvalues of the co-

variance matrix Σ∗, det(I + 𝜂 · Σ∗) =
∏𝑑
𝑖=1

(1 + 𝜂 · 𝜆𝑖 ). Besides,∑𝑑
𝑖=1

(1+𝜂 ·𝜆𝑖 ) = tr(I + 𝜂 · Σ∗) = 𝑑 +𝜂 ·𝑑 . According to the AM-GM

Inequality [9], it can be known that

det(I + 𝜂 · Σ∗)

=

𝑑∏
𝑖=1

(1 + 𝜂 · 𝜆𝑖 )

≤
(

1 + 𝜂 · 𝜆1 + 1 + 𝜂 · 𝜆2 + · · · + 1 + 𝜂 · 𝜆𝑑
𝑑

)𝑑
=(1 + 𝜂)𝑑 .

(17)

det(I + 𝜂 · Σ∗) achieves the upper bound of (1 + 𝜂)𝑑 when the

eigenvalues {𝜆1, . . . , 𝜆𝑑 } of Σ∗ are all equal to 1. Similarly, applying

the above derivation to det(Σ∗), we can easily conclude that det(Σ∗)
reaches a maximum value of 1 when all eigenvalues are equal to 1.

𝚺∗ = 1

𝑁
H⊤
∗ H∗ is a real symmetric matrix. According to Lemma

3.1, 𝚺∗ will converge to the identity matrix when its eigenvalues

are all equal to 1. Thus, we conclude the proof. □

3.3 Proof of Property 2
Property 2. For empirical covariance matrix Σ = 1

𝑁
H⊤H ∈R𝑑×𝑑

with batch-normalized representations H = [h1, ..., h𝑁 ]⊤ ∈ R𝑁×𝑑 ,
which has 𝑑 eigenvalues [𝜆1, 𝜆2, . . . , 𝜆𝑑 ] corresponding to 𝑑 eigenvec-
tors [q1, q2, . . . , q𝑑 ], the variance of data H along the 𝑘-th principal
direction (that is, the direction of q𝑘 ) is numerically equal to 𝜆𝑘 .

Proof. For 𝑁 𝑑-dimensional data points H = [h1, . . . , h𝑁 ]⊤ ∈
R𝑁×𝑑

, which has been normalized to 0-mean and 1-standard-deviation

along sample direction (i.e., 1

𝑁

∑𝑁
𝑖=1

h𝑖 = 0), its covariance matrix

is Σ = 1

𝑁
H⊤H. After eigendecomposition for Σ, we can obtain 𝑑

unit orthogonal eigenvectors [q1, . . . , q𝑑 ] associated to eigenvalues
[𝜆1, . . . , 𝜆𝑑 ], respectively. According to 1

𝑁
H⊤Hq𝑘 = 𝜆𝑘q𝑘 , it can be

known that

1

𝑁
q⊤
𝑘

H⊤Hq𝑘 = 𝜆𝑘q⊤
𝑘

q𝑘 = 𝜆𝑘 . (18)

Taking a principal direction q𝑘 as explanation, the projection of

a sample h𝑖 onto this direction is 𝑧𝑖 = q⊤
𝑘

h𝑖 , and the mean of all

projections is

𝑧 =
1

𝑁

𝑁∑︁
𝑖=1

𝑧𝑖 =
1

𝑁

𝑁∑︁
𝑖=1

q⊤
𝑘

h𝑖 = 0. (19)

Thus, along the principal direction q𝑘 , the variance is

1

𝑁

𝑁∑︁
𝑖=1

(𝑧𝑖 − 𝑧)2

=
1

𝑁

𝑁∑︁
𝑖=1

q⊤
𝑘

h𝑖h⊤𝑖 q𝑘

=
1

𝑁
q⊤
𝑘
(
𝑁∑︁
𝑖=1

h𝑖h⊤𝑖 )q𝑘

=
1

𝑁
q⊤
𝑘

H⊤Hq𝑘

=𝜆𝑘 .

(20)

The above equation demonstrates that the variance of data H along

the direction q𝑘 is equal to 𝜆𝑘 . Thus, the proof is concluded. □

In classical machine learning or pattern recognition literature,

similar descriptions akin to Property 2 can also be found. For the

completeness of this paper, we present it here as well.

3.4 Proof of Proposition 5.1
For convenience, we restate Proposition 5.1 here.

Proposition 5.1. When the representations scatter over the unit
hypersphere S𝑑−1 uniformly (that is, they obey a complete uniform
distribution), their entropy will reach the maximum value.

Proof. Assuming that the representations follow a distribution

𝑝 (𝑋 ) on the unit hypersphere S𝑑−1
, proving Proposition 5.1 is

equivalent to demonstrate that when 𝑝 (𝑋 ) is a uniform distribu-

tion, the entropy of variable 𝑋 is maximized. The corresponding

mathematical expression can be stated as follows:

max −
∫
S𝑑−1

𝑝 (𝑋 ) ln𝑝 (𝑋 )𝑑𝑋

𝑠.𝑡 .

∫
S𝑑−1

𝑝 (𝑋 )𝑑𝑋 = 1

. (21)

To find the optimal form of 𝑝 (𝑋 ) subject to the constraint
∫
S𝑑−1

𝑝 (𝑋 )𝑑𝑋 =

1, we construct the following Lagrangian function:

𝐿(𝑝 (𝑋 ), 𝜆) = −
∫
S𝑑−1

𝑝 (𝑋 ) ln𝑝 (𝑋 )𝑑𝑋 + 𝜆 ·
(∫

S𝑑−1

𝑝 (𝑋 )𝑑𝑋 − 1

)
,

(22)

where 𝜆 denotes Lagrange multiplier.

Taking the derivative of the Lagrangian function 𝐿(𝑝 (𝑋 ), 𝜆) with
respect to 𝑝 (𝑋 ) and setting it equal to zero, we know that

𝜕𝐿(𝑝 (𝑋 ), 𝜆)
𝜕𝑝 (𝑋 ) = − ln𝑝 (𝑋 ) − 1 + 𝜆 = 0. (23)

Hence, the optimal form of the probability density function is

𝑝 (𝑋 ) = 𝑒𝜆−1 . (24)

To satisfy the constraint

∫
S𝑑−1

𝑝 (𝑋 )𝑑𝑋 = 1, we have∫
S𝑑−1

𝑝 (𝑋 )𝑑𝑋 =

∫
S𝑑−1

𝑒𝜆−1𝑑𝑋 = 𝑒𝜆−1

∫
S𝑑−1

𝑑𝑋 = 1. (25)

Letting 𝑆 =
∫
S𝑑−1

𝑑𝑋 represent the surface area of the unit hyper-

sphere S𝑑−1
, we can know that

𝜆 = 1 − ln 𝑆. (26)
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Figure 1: Eigenvalues of covariance matrices of node repre-
sentations from the randomly initial representation encoder.

According to [19], we can obtain that 𝑆 = 2𝜋𝑑/2

Γ (𝑑/2) , where Γ(·) de-
notes the gamma function. Taking Eq. (26) into Eq. (24), it can be

known that

𝑝 (𝑋 ) = 1

𝑆
=

Γ(𝑑/2)
2𝜋𝑑/2

, (27)

which is a uniform distribution on the unit hypersphere. Thus,

it can be known that the entropy of representations on the unit

hypersphere reach the maximum value when they obey a uniform

distribution. We conclude the proof. □

4 VISUALIZATIONS OF INITIAL EIGENVALUES
In the main text, we have pointed out that it is inappropriate to di-

rectly construct an objective function (that is,L𝐺 = ln
det(Σ𝐴,𝐵 )

det(Σ𝐴 ) ·det(Σ𝐵 ) )

based on 𝐼𝐺 (𝑋 ;𝑌 ) = 1

2
ln

det(Σ𝑋 ) ·det(Σ𝑌 )
det(Σ𝑋,𝑌 ) , as it would result in nu-

merical instability.

Figure 1 visualizes the eigenvalues of covariance matrices of

node representations in the initial epoch of the pretraining phase.

It can be observed that a significant portion of the eigenvalues are

close to or equal to zero. This phenomenon leads to the determi-

nant of the covariance matrix, which is numerically equivalent to

the product of all eigenvalues, being zero. Therefore, including the

determinant of the original covariance matrix in the objective func-

tion will potentially lead to computational instability. Our empirical

experiments suggest that when representation dimension is greater

than 64, the determinant of the original covariance matrix becomes

zero for nearly all datasets.

5 RELATION BETWEEN OVERALL
PERFORMANCE AND DEVIATION FROM
NORMALITY

To further validate the performance of our method in non-Gaussian

scenarios, we explicitly enforce representations to deviate from

normality during training. To this end, we impose probability con-

straints to drive node representations towards other distributions,

such as the Cauchy distribution. For the representation matrix H𝐴
from view𝐴, its 𝑗-th channel can be regarded as 𝑁 empirical points

of a single-dimensional variable. We can calculate their mean 𝜇
𝑗

𝐴

and standard deviation 𝜎
𝑗

𝐴
and further construct a Cauchy distribu-

tion 𝑝𝑐𝑎𝑢 (𝑥 |𝜇 𝑗𝐴, 𝜎
𝑗

𝐴
). It is worth noting that the mean and standard

deviation correspond to the location and scale of the Cauchy dis-

tribution, respectively. The similar operations can be expanded to

other channels and views. Therefore, we can constrain node rep-

resentations to approach the Cauchy distribution by minimizing

negative log-likelihood of all channels:

L𝑐𝑎𝑢 =
1

𝑁 · 𝑑

𝑑∑︁
𝑗=1

𝑁∑︁
𝑖=1

− log𝑝𝑐𝑎𝑢

(
𝐻
𝑖 𝑗

𝐴
|𝜇 𝑗
𝐴
, 𝜎
𝑗

𝐴

)
+ 1

𝑁 · 𝑑

𝑑∑︁
𝑗=1

𝑁∑︁
𝑖=1

− log𝑝𝑐𝑎𝑢

(
𝐻
𝑖 𝑗

𝐵
|𝜇 𝑗
𝐵
, 𝜎
𝑗

𝐵

)
.

(28)

Taking GMIM as an example, L𝑐𝑎𝑢 can be appended to LGMIM-IC

to jointly supervise the training process. The ultimate objective

function can be formulated as

LGMIM-IC + 𝛼 · L𝑐𝑎𝑢 , (29)

where the weighted coefficient 𝛼 is utilized to regulate the de-

gree of deviation from normality (that is, the proximity to the

Cauchy distribution). Apart from the Cauchy distribution, we can

also formulate other analogous objective functions to drive repre-

sentations towards alternative distributions, including the Student’s

t-distribution and the Laplace distribution. With various probability

constraints, Figure 2 shows classification performance under dis-

tinct degrees of deviation of node representations from the Gaussian

distribution. Overall, as the degree of deviation from the normal

distribution increases, our method can maintain its performance,

which grants the method higher robustness and broader applica-

tion scenarios. In summary, although our method is derived and

proposed under the Gaussian assumption, it remains effective even

when the representations deviate from the Gaussian distribution.

6 RELATIONWITH DISENTANGLED
REPRESENTATION LEARNING AND
COMPARISONWITH PEERWORKS

6.1 Relation with Disentangled Representation
Learning

Our method expects to enforce the representations to achieve an

isotropic Gaussian distribution with the aim of decoupling various

dimensions and learning diverse representations, which is closely

linked to a branch of deep learning called Disentangled Represen-

tation Learning (DRL) [2, 18, 22]. The objective of disentangled

representation learning is to achieve a clear separation of the dis-

tinct, independent, and informative generative factors inherent in

the data [2]. DRL emphasizes the statistical independence among la-

tent variables, which can be traced back to Independent Component

Analysis (ICA) [23].

Independent Component Analysis, a computationally efficient

Blind Source Separation (BSS) [16] technique, thinks that the ob-

served mixed signals are obtained through a linear combination

of source signals and aims to recover latent variables from ob-

servations. The traditional ICA assumes that the source signals

follow non-Gaussian distributions and are statistically independent.

The assumption of statistical independence among latent variables

is, in fact, a disentangled or independence constraint. Non-linear
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(c) Towards Student’s t-distribution.

Figure 2: Classification performance under different degrees of deviation of node representations from the Gaussian distribution.
A larger value of 𝛼 indicates a greater degree of deviation from the Gaussian distribution.

ICA [11] posits that the observed signals are obtained through a

nonlinear transformation of the source signals.

The variational autoencoder (VAE) [13] is a modification of the

autoencoder that incorporates the concept of variational inference,

which can realize dimension-wise disentanglement. In VAEs, there

is a term used to minimize the KL divergence between the varia-

tional posterior and the prior distribution. The chosen prior distri-

bution is typically selected to satisfy certain independent properties,

such as an isotropic Gaussian distribution. As a result, the KL di-

vergence term potentially imposes a independent constraint on the

latent variables. The 𝛽-VAE [8] multiplies the KL divergence term

by a penalty factor 𝛽 to enhance the disentangling effect on the

latent variables. The KL divergence term shares a similar under-

lying principle with the entropy maximization term in our paper.

[4] demonstrate that the penalty term in 𝛽-VAE tends to enhance

the dimension-wise independence of the latent variable, but it also

diminishes the capacity of the latent variables to preserve informa-

tion from the input. Similar to decorrelation-based self-supervised

learning methods such as CCA-SSG, DIP-VAE [14] directly regu-

larizes the elements in the covariance matrix of the posterior dis-

tribution, making it approach the identity matrix. FactorVAE [12]

introduces a term known as Total Correlation to quantify the level

of dimension-wise independence.

6.2 Comparison with CorInfoMax
Towards the conclusion of our work, we observed that a peer

study [17], called CorInfoMax, shares certain similarities with our

method, especially in terms of the objective function. Despite the

similarities, the two works still exhibit significant distinctions as

follows:

Motivation. As described in the main text, our research starts

from the Gaussian assumption with the expectation of enabling

direct computation of mutual information, thereby eliminating

mutual information neural estimators and simplifying existing con-

trastive learning methods. The core motivation of CorInfoMax is

to leverage information entropy maximization to overcome the

collapse issues and learn informative representations, as can be

reflected in the title, abstract, and introduction of their paper.

Network Architecture. Our method does not utilize additional

projection heads. Our loss function directly operates on the output

representations of the encoder 𝑓𝜃 (·), while CorInfoMax first em-

ploys a projector of 3-layer MLP to map the outputs of the encoder

to a new embedding space and then calculate loss function in the

new space. Our approach reduces model complexity and enhances

efficiency by directly optimizing the output space of the encoder.

This distinction is not only reflected in the variations in network

architecture but, more importantly, it actually indicates the dis-

parities in motivations and underlying concepts between the two

works. The purpose of our research is to enable the direct calcula-

tion of mutual information under the Gaussian assumption without

relying on estimators and extra designs. The projectors introduced

in CorInfoMax completely deviate from our initial motivation.

Numerical Stability During Training. An important issue we ad-

dressed in our research is that directly incorporating the logarithm

of the determinant of the covariance matrix in the objective func-

tion can lead to numerical instability, which is detailedly analyzed

and discussed in Subsection 3.2 of the main text and Section 4 of

this supplement. To cope with this issue, we adopt the strategy

of offsetting and scaling eigenvalues to be around 1. CorInfoMax

turns to adding a disturbance in their objective. The comparisons

between the two strategies are placed in Figure 3. When dimen-

sions are higher than 128, the training process under the strategy

of adding disturbance is terminated due to numerical instability,

because it cannot change the fact that many eigenvalues remain

very close to 0.

Explanations of Relationship Between Various SSL Methods. We

establish connections between contrastive and decorrelation-based

methods, providing an explanation for decorrelation-based meth-

ods from the perspective of MI maximization. These contributions
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Figure 3: Performance of two strategies under various dimen-
sions. 𝑂&𝑆 : offsetting and scaling eigenvalues in our work;
disturbance: the strategy of adding a disturbance in CorIn-
foMax. For “disturbance”, when dimension is set to higher
than 128, the training process is terminated due to numerical
instability, and the results are not obtainable.

are of significant importance in establishing a unified theoretical

framework for self-supervised learning methods. The work [17]

does not involve these aspects.

Research on Dimensional Collapse. In Section 5.1 of the main

paper, we theoretically demonstrate from the perspective of eigen

spectrum that the entropy maximization term can prevent dimen-

sional collapse. In Section 5.2 of the main paper, we show that

InfoNCE potentially maximizes information entropy. The work [17]

does not involve these contents, which primarily provides empir-

ical evidence for the effectiveness of their method in preventing

dimension collapse.

Finally, we express our gratitude to the authors of CorInfoMax

for their outstanding contributions to the self-supervised learning

community.

6.3 Discussion and Comparison with M-ILBO
Here, we discuss a work called M-ILBO [15], which also performs

graph self-supervised learning by enhancing consistency between

representations from various views and maximizing information

entropy.

General framework and universal principles ofmulti-view
self-supervised learning.Multi-view self-supervised learning, in-

cluding contrastive learning, can be divided into two basic modules.

The first module is for extracting cross-view invariant informa-

tion, which can be achieved by minimizing the Mean Squared Error

(MSE) between representations of two views or maximizing their

cosine similarity. The second module is for preventing model col-

lapse, including dimension collapse and complete collapse. Existing

strategies include using negative samples [25], decorrelation strate-

gies [1] and asymmetric architectures [6]. BothM-ILBO and our

paper can be encompassed within this framework, and they have

implemented the two basic modules using different strategies.

Discussion about our identity constraint and the cross-
view consistency inM-ILBO.Multi-view self-supervised learn-

ing aims to extract invariant information across different aug-

mented views. Both the identity constraint in our paper and the

cross-view consistency in M-ILBO align representations from two

views using Mean Squared Error (MSE), thereby extracting com-

mon information across views. Due to its effectiveness in aligning

views, Mean Squared Error is commonly used in self-supervised

learning [1, 25, 27].

Discussion about L𝑐𝑙 in M-ILBO and our entropy max-
imization term. Generally speaking, both L𝑐𝑙 in M-ILBO and

entropy maximization term of our paper achieve the same pur-

pose through various strategies, namely, avoiding model collapse

and learning diverse representations by maximizing the entropy

of representations. M-ILBO provides a strategy of achieving an

estimation of entropy through neural estimation of mutual infor-

mation based on Jenson-Shannon estimator. Our approach takes

a different approach, which assumes a Gaussian distribution for

node representations and directly obtains the exact value of entropy

without relying on neural estimators.

7 MORE EXPERIMENTS AND STATISTICS OF
DATASETS

7.1 Visualization of Correlation Matrix
Figure 4 provides visualizations of correlation matrices of node

representations under various settings on Cora and Pubmed. Specif-

ically, for a representation matrix H ∈ R𝑁×𝑑
which has been nor-

malized to 0-mean and 1-standard deviation, the correlation matrix

is
1

𝑁
H⊤H. In other words, each element of correlation matrix de-

notes the Pearson correlation coefficient of two variables (i.e., two
channels). As shown in Figure 4(a,d), the off-diagonal elements of

correlation matrices are large without considering entropy max-

imization term in GMIM-IC, indicating that various channels of

representation matrix coupled together. That is to say, the issue

of dimensional collapse has occurred. Moreover, the two proposed

variants, GMIM and GMIM-IC, can effectively decorrelate various

representation channels and mitigate dimensional collapse issue.

7.2 Synergistic Evolution Between GMI and that
with Shifted and Scaled Eigenvalues

In the main context, considering that directly designing the objec-

tive function based on Gaussian mutual information 𝐼𝐺 (𝑋 ;𝑌 ) =
1

2
ln

det(Σ𝑋 ) ·det(Σ𝑌 )
det(Σ𝑋,𝑌 ) will lead numerical instability, we proposed a

feasible alternative by shifting and scaling the eigenvalues of the co-

variance matrix, denoted as 𝐼 ′
𝐺
(𝑋 ;𝑌 ) = ln

det(I+𝜂 ·Σ𝑋 ) ·det(I+𝜂 ·Σ𝑌 )
det(I+𝜂 ·Σ𝑋,𝑌 ) .

We visualize the synergistic evolution between 𝐼𝐺 and 𝐼 ′
𝐺
dur-

ing the training phase in Figure 5. It is worth mentioning that all

experiments are conducted under low-dimensional settings, where

the original GMI 𝐼𝐺 remains normal and valid values. It can be

observed that the two lines exhibit consistent patterns of variation

in each subfigure. This phenomenon provides evidence supporting

the rationality of obtaining a viable objective function through

shifting and scaling the eigenvalues.

7.3 Effect of Augmentation Intensity
We conduct a sensitivity analysis on the augmentation intensity by

examining the effects of various combinations of the edge removal

ratio 𝑝𝑒 and the feature masking ratio 𝑝 𝑓 . The results, presented
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Figure 4: Visualizations of the correlation matrices (absolute value) of representations under various settings on Cora and
Pubmed.
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Figure 5: Synergistic evolution between GMI and that with shifted and scaled eigenvalues. Specifically, the original GMI (solid
line) is adopted as the optimization objective while the corresponding values (dashed line) of GMI with shifted and scaled
eigenvalues are recorded.

in Figure 6, indicate that our method is more sensitive to augmen-

tation in features (𝑝 𝑓 ) compared to that in graph structure (𝑝𝑒 ).

Overall, within an appropriate range of 𝑝𝑒 and 𝑝 𝑓 , our approach

consistently achieves competitive results. Even when subjected to

strong augmentation (e.g., 𝑝𝑒 = 0.6 and 𝑝 𝑓 = 0.6), our method still

maintains a satisfactory performance level.

7.4 t-SNE Visualizations.
To achieve a more profound understanding of our approach and

conduct a comprehensive comparison with different methods, a

series of t-SNE plots [24] is employed to visualize the raw features

and learned representations under various methods and distinct

configurations in Figure 7. In Figure 7(a), the 2-dimensional t-SNE

embeddings of the raw features present a chaotic distribution and

can not show discriminative clusters. The visualization in Figure

7(b), characterized by a complex elliptical shape, highlights that the
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Figure 6: The classification accuracy under various combinations of feature masking ratio 𝑝 𝑓 and edge removal ratio 𝑝𝑒 .

method lacking the identity constraint term can not capture seman-

tically meaningful information. in Figure 7(c), the two dimensions

of the t-SNE embeddings show a certain correlation, potentially

indicating dimensional collapse issue in high-dimensional represen-

tation space. This phenomenon illustrates the effect of the entropy

maximization term in learning diverse representations and avoid-

ing dimensional collapse. In Figure 7(d), the t-SNE results form

discernible and interpretable clusters based on their true categories,

indicating that our method can learn meaningful and diverse repre-

sentations. The second row in Figure 7 shows t-SNE embeddings of

the other four methods, and the visual results of various methods

do not exhibit significantly distinct appearance. However, upon

closer inspection, our method demonstrates better inter-class dis-

criminability, especially concerning the clusters in purple, green,

and blue.

7.5 Experiments on Ogbn-Arxiv
To further evaluate the effectiveness and efficiency of our method,

we conduct experiments on a large-scale graph Ogbn-Arxiv [10].

Table 1 reports the validation and test accuracy of various graph self-

supervised methods, where our method obtains good performance.

It is worth mentioning that GRACE and GCA do not operate on a

full graph manner but a subset of nodes are sampled as negative

samples to avoid memory issues. Moreover, Figure 8 simultaneously

presents the test accuracy and training time, indicating that our

method can effectively balance performance and efficiency.

Table 1: Validation and test accuracy on Ogbn-Arxiv. “OOM”
indicates out-of-memory on a GPU with 24GB memory.

Validation Test

DGI 71.19 ± 0.24 70.28 ± 0.23

MVGRL OOM OOM

GMI OOM OOM

CCA-SSG 72.35 ± 0.17 71.33 ± 0.21

BGRL 72.58 ± 0.14 71.52 ± 0.14

GRACE 71.82 ± 0.18 70.91 ± 0.21

GCA 71.63 ± 0.20 70.77 ± 0.22

GMIM (ours) 72.26 ± 0.16 71.27 ± 0.21

GMIM-IC (ours) 72.48 ± 0.18 71.42 ± 0.19

7.6 Effect of Backbones
We employ various graph neural networks including GCN, GAT,

SGC [26], and GraphSAGE [7] as representation learners and inves-

tigate the performance of our method under their guidance. The

experimental results are illustrated in Table 2, where GMIM-IC

serves as the objective function. The expressive capacities of differ-

ent networks vary, resulting in distinct performance across various

datasets. Overall, our method achieves highly competitive results

across different backbone networks, demonstrating the effective-

ness, generalization, and flexibility of our approach.
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Figure 7: t-SNE visualizations of the raw features and learned representations of various methods on Cora. "w/o" stands for
"without". Best viewed in colors.
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Figure 8: Classification accuracy in test set and training time
on Ogbn-Arxiv.

Table 2: Classification accuracy under various backbones.

Backbone Cora Citeseer Computers Photo

GCN 84.5 73.6 89.04 93.17

GAT 83.9 73.7 89.05 92.96

SGC 83.5 73.6 89.02 93.08

GraphSAGE 83.5 72.4 88.91 92.69

7.7 Details of Hyperparameter Configuration
The details of hyperparameter configuration for GMIM and GMIM-

IC are placed in Table 3 and 4, respectively.

Table 3: Hyperparameter configuration of the experiments
for GMIM. “lr” indicates learning rate while “wd” denotes
weight decay.

Dataset

GMIM

Layers Rep. dim lr wd 𝑝𝑓 𝑝𝑒

Cora 2 512 1e-3 0 0.4 0.5

Citeseer 1 512 1e-3 0 0.4 0.5

Pubmed 2 128 1e-3 0 0.3 0.5

Computers 2 512 1e-3 0 0.1 0.3

Photo 2 512 1e-3 0 0.2 0.3

Coauthor-CS 2 512 1e-3 0 0.2 1.0

Table 4: Hyperparameter configuration of the experiments
for GMIM-IC. “lr” indicates learning rate while “wd” denotes
weight decay.

Dataset

GMIM-IC

Layers Rep. dim 𝛽 lr wd 𝑝𝑓 𝑝𝑒

Cora 2 512 1.0 1e-3 0 0.1 0.5

Citeseer 1 512 0.5 1e-3 0 0.0 0.6

Pubmed 2 64 3.0 1e-3 0 0.3 0.5

Computers 2 1024 4.0 1e-3 0 0.1 0.3

Photo 2 2048 5.0 1e-3 0 0.2 0.3

Coauthor-CS 2 1024 1.0 1e-3 0 0.2 1.0

7.8 Details of the Experimental Datasets
The statistics of the experimental datasets are summarized in Table

5. The details of the datasets are as follows:
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Table 5: Statistics of the experimental datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Pubmed 19,717 44,338 500 3

Amazon-Computers 13,752 245,861 767 10

Amazon-Photo 7,650 119,081 745 8

Coauthor-CS 18,333 81,894 6,805 15

Ogbn-Arxiv 169,343 2,332,386 128 40

• Cora, Citeseer, and Pubmed [20] are citation networks

where nodes represent documents and edges denote citation

relationships. Each document is assigned a class label that

indicates its subject category, and it is characterized by a

bag-of-words feature vector.

• Amazon-Computers and Amazon-Photo [21] are two

graphs derived from theAmazon dataset, capturing co-purchase

relationships. The nodes in these graphs represent products,

and an edge exists between two nodes if they are frequently

purchased together. Each node is associated with a sparse

bag-of-words feature vector based on product reviews. The

category of each node is indicated by its label.

• Coauthor-CS [21] is an academic network in the field of

computer science, where nodes represent authors and edges

indicate co-authorship relationships. Two authors are con-

nected by an edge if they have collaborated on a research

paper.

• Ogbn-Arxiv [10] is a directed citation network among some

computer science arXiv papers. Each node on the graph cor-

responds to an arXiv paper, while directed edges indicate the

citing relationships between papers. Each paper is associated

with a 128-dimensional feature vector.

8 ALGORITHM
The overall algorithm flows for GMIM and GMIM-IC in the

form of PyTorch-style pseudocode are placed in Algorithm 1 and 2,

respectively.
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Algorithm 1 PyTorch-style Code for GMIM.

# f: shared neural encoder
# d: representation dimension
# adj: original graph topology
# feat: original node features
# eta: scaling factor
# epochs: total training epochs
# N: number of nodes

Id, I2d = torch.eye(d), torch.eye(2 * d)
for _ in range(epochs):

# generate two randomly augmented views of original graph
adj_A, feat_A = augment(adj, feat)
adj_B, feat_B = augment(adj, feat)

# get output representations of encoder
H_tilde_A = f(adj_A, feat_A)
H_tilde_B = f(adj_B, feat_B)

# normalize representations along sample direction
H_A = (H_tilde_A - H_tilde_A.mean(0)) / H_tilde_A.std(0)
H_B = (H_tilde_B - H_tilde_B.mean(0)) / H_tilde_B.std(0)

# compute covarance matrix
Cov_A = torch.mm(H_A.T, H_A) / N
Cov_B = torch.mm(H_B.T, H_B) / N
CrossCov = torch.mm(H_A.T, H_B) / N
JointCov = torch.cat([torch.cat([Cov_A, CrossCov], dim=1),

torch.cat([CrossCov.T, Cov_B], dim=1)], dim=0)

# calculate loss function
loss = torch.log(torch.det(I2d + eta * JointCov) / torch.det(Id + eta * Cov_A) / torch.det(Id + eta * Cov_B))

# update parameters
loss.backward()
optimizer.step()

Algorithm 2 PyTorch-style Code for GMIM-IC.

# f: shared neural encoder
# d: representation dimension
# adj: original graph topology
# feat: original node features
# eta: scaling factor
# beta: balancing factor
# epochs: total training epochs
# N: number of nodes

Id = torch.eye(d)
for _ in range(epochs):

# generate two randomly augmented views of original graph
adj_A, feat_A = augment(adj, feat)
adj_B, feat_B = augment(adj, feat)

# get output representations of encoder
H_tilde_A = f(adj_A, feat_A)
H_tilde_B = f(adj_B, feat_B)

# normalize representations along sample direction
H_A = (H_tilde_A - H_tilde_A.mean(0)) / H_tilde_A.std(0)
H_B = (H_tilde_B - H_tilde_B.mean(0)) / H_tilde_B.std(0)

# compute covarance matrix
Cov_A = torch.mm(H_A.T, H_A) / N
Cov_B = torch.mm(H_B.T, H_B) / N

# calculate loss function
loss_ic = (H_A - H_B).pow(2).sum() / N
loss_em = - torch.log(torch.det(Id + eta * Cov_A) * torch.det(Id + eta * Cov_B))
loss = loss_ic + beta * loss_em

# update parameters
loss.backward()
optimizer.step()
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