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1 DERIVATIONS OF GAUSSIAN MUTUAL
INFORMATION

The formal derivation relies on the following lemma, which can also
be found in standard linear algebra textbooks and is not regarded
as our contributions.

Lemma 1.1. For matrices A € RN*K gnd B € REXN|
tr(AB) = tr(BA), )

where tr(-) denotes the trace of a matrix.

Proor.

N K K N
tr(AB)=ZZAij-Bﬁ=ZZB]l A,j—tr(BA)

The mutual information I (X;Y) can be expanded as follows:

o Pr,y(X,Y)
IG(X,Y)—/X/ypx,y(X,Y)lnp—x(X).py(Y)dXdY

= /X /y Py (X, Y) In py (X, Y)dXdY )
- /X [y Px,y(X, V) In pyx (X)dXdY

_‘/‘/Px,y(X,Y)lnPy(Y)dXdY,
XJY

In order to obtain the desired result, we will perform integration
on the three terms in Eq. (2), respectively.

For a Gaussian variable X with mean py and covariance matrix
Xx, its probability density function can be expressed as

p —%(X - ) X - py) ).
(3)

Px(X) =

1
V(2r)d det(Zx) .

Thus, it can be known that

—‘//px,y(X,Y)lnpx(X)dXdY

XJYy

—//px,y(X,Y)lenpx(X)dX
XJY

- / P (X) In py (X)X

(X -
/p( )( V(Zﬂ)ddet(Ex) 2

_= d
= /{;’px(X) ln((27r) det(ZX))dX
+ % /X Px (O (X = ) TERH (X = px)aX

_In((27)? det(3x))
- [ ecoax

#5 [ PO = ) B! (X = )

L ndetmy) + Gz + 1 / P () (X — i) TEZH (X = pry)dX.
2 2 2 Jx

4)
We will deal specially with fX Px(X)(X - pX)TZ;(I (X —py)dX.
Actually, X — py is vector € R? and (X — pX)TZ;(l (X — py)
is a scalar value. If we regard X — py as a matrix € RAXT (X —
pX)TZ;(I (X — py) will be a matrix € R1*!. The original expression
can be rephrased as tr((X—[,lX)TZZ;(1 (X —py)). Taking (X - [,lX)T
as A in Eq. (1) and 2)’(1 (X — px) as B, respectively, we can know
that

/pr(X)tr((X - T (X - yX))dX
:/XPx(X)”(Z)?(X —px)(X - ux)T)dX
(st [ 00— moex-motax)

=tr(z5' x|
=d.
Plugging the result of Eq. (5) into Eq. (4), it can be concluded that
- / / Pxy(X,Y) Inpy (X)dXdY
XJY
d ln(27r) + 5’ (6)

1
=3 —Indet(Zx) + =

1 d
=5 Indet(Zx) + 3 In(2re).

1 _
S(X =) T2 (X = py) | dX
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Symmetrically, it can be obtained that

1
—/ / Pxy(X, Y) Inpy(Y)dXdY = -~ Indet(Zy) + gl In(27e).
xJy 2 2
()
Similarly,

/X /y Pry(X,Y) In py y (X, Y)dXdY .

1 d+d
- 5 Indet(Sxy) - % In(27e).

Plugging Eq. (6), (7), and (8) into I (X;Y) in Eq. (2), it results in
the following closed-form of Gaussian mutual information:
det(Zx) - det(Zy)

det(ZXsy) ’

Some contents about KL divergence and entropy of Gaussian
variables can be referenced from other literature [3, 5, 28]. However,
few studies have provided a complete derivation process of Gauss-
ian mutual information. Moreover, many individuals in the commu-
nity may be unfamiliar with the derivation and even the concept
of Gaussian mutual information. Thus, for the self-completeness of
this paper, we give the complete derivation here, which can also
serve as a contribution of this paper.

I6(X;Y) = %In ©)

2 DERIVATION AND ANALYSIS ABOUT
GMIM-IC

According to Property 1 of the main text, the Gaussian mutual
1 1 det(Ex)-det(Zy)
det(Xx,y)

Ig(X;Y) = Hg(X) — Hg(X]Y), (10)

where Hg(X) = — /X Px (X) In px(X)dX is the entropy of X and
Hg (X]Y) is its conditional entropy given Y. Based on Eq. (4) and (6),
Hg(X) = LIndet(Zx) + € In(2re), that is, Hg(X) o Indet(Zx).
As mentioned in the main text, directly optimizing In det(Xx) can
lead to numerical instability. After adjusting the eigenvalues by
applying shifting and scaling operations, we can obtain a feasible
substitution In det(I+7-Xx ). Therefore, maximizing In det(I+7n-Xx)
can be equivalent to increasing the entropy Hg (X).

As discussed in the main text, the conditional entropy Hg (X|Y)
is minimized when the relationship between X and Y can be de-
termined by a function. Considering the prior of network design,
which has two shared branches, we expect that this function is an
identity mapping. Concretely, this is realized by imposing identity
constraint to Eq. (10). In our practice, the node representations from
view A can be regarded as N empirical samples of X while those
from view B are related to Y.

Taking all the above factors into consideration, we can derive
an objective based on Eq. (10):

1
Loywrc = 5 D, IS —bJl3 —y - Indet(T+n - Za), (1)
veV

information I (X;Y) = can be restated as

where y indicates a balancing factor. Symmetrically, we can obtain
an objective LgMIM_IC corresponding to view B. Combining the two
terms, it results in

1
~ Z [hZ —hB)2 - Z B-Indet(I+7-%,). (12)

veV x€{A,B}

Lemv-1c =

Anonymous Authors

Minimizing the objective Lguiu-1¢ is equivalent to maximizing
Gaussian mutual information while imposing identity constraint
across various views.

3 PROOFS AND DERIVATIONS IN SECTION 4
AND 5 OF THE MAIN TEXT
3.1 Proof of Lemma 4.1

For convenience, we restate Lemma 4.1:
Lemma 4.1. For a square matrix M, det(exp(M)) = exp(tr(M)).
Replace M withIn(I+n-X,) :

Indet(I+n-2,) =tr(In(I+7n-X,)), (13)

where * € {A, B}. Applying Taylor expression to the logarithmic
function intr(In(I+n - X,)), it can be known that

(-1 )k+l

Indet(I+7-%,) = tr (Z (n -2*)"). (14)

3 ’ ’
ProoF. Assuming {1}, A,
trix M, {eﬂl, eAZ,

e, /1(’1} are d eigenvalues of the ma-

eta } are d eigenvalues of the matrix exp(M)
accordingly. Thus, det(exp(M)) = H;izl eM = exp(zl 1 1)
exp(tr(M)) . TakingM = In(I+ 7 - X,), we can obtaindet(I+ 7 - X,)
exp(tr(In(I+7n-X,))), thatis,Indet(I+ 7 -X,) = tr(In(I+7 - X,)).
k+1 .k
Applying the Taylor expression In(1+x) = ZZ’II %, we

have
Indet(I+7n-X,)

=tr(ln(I+7-X,))

400 (_ 1 k+1 x (15)
=tr Z 7 (n-z)F|.
k=1
m}
Furthermore, we can obtain a second-order Taylor approxima-

tion:
—Indet(I+7-X%,)

-39

“tr ((2*)2) =7 tr(Zy) (16)

(_ )k+1

(n- &)")

AZlf—n-d

d d 2

Sy (zf;f')h% d—n-d.
i=1 j=1,j#i

Ignoring constant terms, Zl 1 Z] 1J;&l(Zfﬁj)z is equivalent to
a second-order Taylor expansion of —Indet(I+ 7 - X,). Therefore,
minimizing Zl 1 >d (Zij )2 has a similar effect to reducing
—Indet(I+n-X,).

We have completed the entire deviation.

Jj=1,j#i

3.2 Proof of Proposition 4.2

The formal proof of Proposition 4.2 relies on the following lemma:

Lemma 3.1. For a real symmetric matrix A whose eigenvalues are
all 1, it must be the identity matrix.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Supplementary Materials: Gaussian Mutual Information Maximization for Efficient Graph Self-Supervised Learning

Proor. For a real symmetric matrix A, it can be diagonalized
by an orthogonal matrix, that is, A = UDUT with the orthogonal
matrix U and the diagonal matrix D. Since the eigenvalues of A are
all 1, D is equal to an identity matrix L. Thus, A=UIUT =1. O

For convenience, we restate Proposition 4.2 here.
Proposition 4.2. When Indet(I+1-X:) orlndet(X.) is maximized,
the empirical covariance matrix X, will converge to an identity matrix.

Proor. Assuming {11, Az, ..., A4} are d eigenvalues of the co-
variance matrix X, det(I+n-X,) = Hld:l(l + 1 - ;). Besides,
Zl’?lzl (1+n-A) =tr(I+n-X,) =d+n-d. According to the AM-GM
Inequality [9], it can be known that

det(I+7n-X,)

d
=[Ja+n-2
i=1

<(1+r7~/11+1+r7~/12+-~-+1+17~)td d
- d

17)

=1+

det(I + n - ) achieves the upper bound of (1 + ry)d when the
eigenvalues {11, ...,A4} of X, are all equal to 1. Similarly, applying
the above derivation to det(X), we can easily conclude that det(Z,)
reaches a maximum value of 1 when all eigenvalues are equal to 1.

Y= %HIH* is a real symmetric matrix. According to Lemma
3.1, X, will converge to the identity matrix when its eigenvalues
are all equal to 1. Thus, we conclude the proof. O

3.3 Proof of Property 2

Property 2. For empirical covariance matrix X = ﬁHTH e Rdxd
with batch-normalized representations H = [hy, ..., hy]T € RNXd,
which has d eigenvalues [A1, A2, ..., Aq] corresponding to d eigenvec-
tors [q1,q2, - - ., qq], the variance of data H along the k-th principal
direction (that is, the direction of qi.) is numerically equal to A.

Proor. For N d-dimensional data points H = [hy,...,hy]T €

RNXd
along sample direction (i.e., % le.i 1 h; = 0), its covariance matrix
isY = %HTH. After eigendecomposition for X, we can obtain d
unit orthogonal eigenvectors [qy, .. ., qq] associated to eigenvalues
[A1, ..., Aq], respectively. According to %HTqu = Akqg, it can be
known that

1
NQZHTH% = Akqy qk = Ak (18)

Taking a principal direction q; as explanation, the projection of
a sample h; onto this direction is z; = q;:hi, and the mean of all
projections is

ISP

- T

zZ=— zZi= — qkhi =0. (19)
N i=1 N i=1

,which has been normalized to 0-mean and 1-standard-deviation
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Thus, along the principal direction q, the variance is
0
= ) (zi—2)
N
1 N
=5 O 9ihib] g
i=1

1 N
——arl hT
=5 % (Zl hih/)q
=~q/H'Hg
Nk k
=g
The above equation demonstrates that the variance of data H along
the direction qy. is equal to Ag. Thus, the proof is concluded. O

In classical machine learning or pattern recognition literature,
similar descriptions akin to Property 2 can also be found. For the
completeness of this paper, we present it here as well.

3.4 Proof of Proposition 5.1

For convenience, we restate Proposition 5.1 here.

Proposition 5.1. When the representations scatter over the unit
hypersphere S4=1 uniformly (that is, they obey a complete uniform
distribution), their entropy will reach the maximum value.

ProoF. Assuming that the representations follow a distribution
p(X) on the unit hypersphere S¢~1, proving Proposition 5.1 is
equivalent to demonstrate that when p(X) is a uniform distribu-
tion, the entropy of variable X is maximized. The corresponding
mathematical expression can be stated as follows:

max —/ p(X) Inp(X)dX
Sd-1
(21)
s.t. / p(X)dX =1
Sd-1
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To find the optimal form of p(X) subject to the constraint f Ga1 P (X)dX =,

1, we construct the following Lagrangian function:

L(p(X), 1) = —/ p(X) Inp(X)dX + 1 - (/ p(X)dxX -1),
§d-1 Sd-1
(22)
where A denotes Lagrange multiplier.
Taking the derivative of the Lagrangian function L(p(X), 1) with
respect to p(X) and setting it equal to zero, we know that

oL(p(X), )
—————=-Inp(X)-1+A=0. 23
o) P(X) (23)
Hence, the optimal form of the probability density function is
p(X) =€ (24)

To satisfy the constraint /Sd-l p(X)dX =1, we have

/Sd_lp(X)dXz /SH A X = el—l/sd_1 dX=1. (25)

Letting S = / ga-1 dX represent the surface area of the unit hyper-

sphere S4~1, we can know that

A=1-InS. (26)
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Figure 1: Eigenvalues of covariance matrices of node repre-
sentations from the randomly initial representation encoder.

rz(ﬂd_(j/zz)’ where T'(-) de-

notes the gamma function. Taking Eq. (26) into Eq. (24), it can be
known that

According to [19], we can obtain that S =

1 TI(d/2)
X)=-= s
P =5=""1
which is a uniform distribution on the unit hypersphere. Thus,
it can be known that the entropy of representations on the unit
hypersphere reach the maximum value when they obey a uniform

distribution. We conclude the proof. O

27)

4 VISUALIZATIONS OF INITIAL EIGENVALUES

In the main text, we have pointed out that it is inappropriate to di-
det(Xa )

rectly construct an objective function (thatis, L5 =1
based on I5(X;Y) = % In %ﬁi?ﬂ
merical instability.

Figure 1 visualizes the eigenvalues of covariance matrices of
node representations in the initial epoch of the pretraining phase.
It can be observed that a significant portion of the eigenvalues are
close to or equal to zero. This phenomenon leads to the determi-
nant of the covariance matrix, which is numerically equivalent to
the product of all eigenvalues, being zero. Therefore, including the
determinant of the original covariance matrix in the objective func-
tion will potentially lead to computational instability. Our empirical
experiments suggest that when representation dimension is greater
than 64, the determinant of the original covariance matrix becomes
zero for nearly all datasets.

, as it would result in nu-

5 RELATION BETWEEN OVERALL
PERFORMANCE AND DEVIATION FROM
NORMALITY

To further validate the performance of our method in non-Gaussian

scenarios, we explicitly enforce representations to deviate from

normality during training. To this end, we impose probability con-
straints to drive node representations towards other distributions,
such as the Cauchy distribution. For the representation matrix Hy
from view A, its j-th channel can be regarded as N empirical points

of a single-dimensional variable. We can calculate their mean y[j4
and standard deviation 0';‘ and further construct a Cauchy distribu-

tion peau (x| yi‘, oi‘). It is worth noting that the mean and standard

D Jet(TA) det(zp)

Anonymous Authors

deviation correspond to the location and scale of the Cauchy dis-
tribution, respectively. The similar operations can be expanded to
other channels and views. Therefore, we can constrain node rep-
resentations to approach the Cauchy distribution by minimizing
negative log-likelihood of all channels:

N
Leau =ﬁ Z Z —log peau (HX“JIJL‘, 0—114)
"~ ;le (28)
+ ﬁ Z Z —log peau (H;BJWE, Jé)
7=11=1

Taking GMIM as an example, L4y can be appended to Lgmiu-1c¢
to jointly supervise the training process. The ultimate objective
function can be formulated as

Levm-1c + o - Leaus (29)

where the weighted coeflicient « is utilized to regulate the de-
gree of deviation from normality (that is, the proximity to the
Cauchy distribution). Apart from the Cauchy distribution, we can
also formulate other analogous objective functions to drive repre-
sentations towards alternative distributions, including the Student’s
t-distribution and the Laplace distribution. With various probability
constraints, Figure 2 shows classification performance under dis-
tinct degrees of deviation of node representations from the Gaussian
distribution. Overall, as the degree of deviation from the normal
distribution increases, our method can maintain its performance,
which grants the method higher robustness and broader applica-
tion scenarios. In summary, although our method is derived and
proposed under the Gaussian assumption, it remains effective even
when the representations deviate from the Gaussian distribution.

6 RELATION WITH DISENTANGLED
REPRESENTATION LEARNING AND
COMPARISON WITH PEER WORKS

6.1 Relation with Disentangled Representation
Learning

Our method expects to enforce the representations to achieve an
isotropic Gaussian distribution with the aim of decoupling various
dimensions and learning diverse representations, which is closely
linked to a branch of deep learning called Disentangled Represen-
tation Learning (DRL) [2, 18, 22]. The objective of disentangled
representation learning is to achieve a clear separation of the dis-
tinct, independent, and informative generative factors inherent in
the data [2]. DRL emphasizes the statistical independence among la-
tent variables, which can be traced back to Independent Component
Analysis (ICA) [23].

Independent Component Analysis, a computationally efficient
Blind Source Separation (BSS) [16] technique, thinks that the ob-
served mixed signals are obtained through a linear combination
of source signals and aims to recover latent variables from ob-
servations. The traditional ICA assumes that the source signals
follow non-Gaussian distributions and are statistically independent.
The assumption of statistical independence among latent variables
is, in fact, a disentangled or independence constraint. Non-linear
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Figure 2: Classification performance under different degrees of deviation of node representations from the Gaussian distribution.
A larger value of « indicates a greater degree of deviation from the Gaussian distribution.

ICA [11] posits that the observed signals are obtained through a
nonlinear transformation of the source signals.

The variational autoencoder (VAE) [13] is a modification of the
autoencoder that incorporates the concept of variational inference,
which can realize dimension-wise disentanglement. In VAEs, there
is a term used to minimize the KL divergence between the varia-
tional posterior and the prior distribution. The chosen prior distri-
bution is typically selected to satisfy certain independent properties,
such as an isotropic Gaussian distribution. As a result, the KL di-
vergence term potentially imposes a independent constraint on the
latent variables. The -VAE [8] multiplies the KL divergence term
by a penalty factor f to enhance the disentangling effect on the
latent variables. The KL divergence term shares a similar under-
lying principle with the entropy maximization term in our paper.
[4] demonstrate that the penalty term in f-VAE tends to enhance
the dimension-wise independence of the latent variable, but it also
diminishes the capacity of the latent variables to preserve informa-
tion from the input. Similar to decorrelation-based self-supervised
learning methods such as CCA-SSG, DIP-VAE [14] directly regu-
larizes the elements in the covariance matrix of the posterior dis-
tribution, making it approach the identity matrix. FactorVAE [12]
introduces a term known as Total Correlation to quantify the level
of dimension-wise independence.

6.2 Comparison with CorInfoMax

Towards the conclusion of our work, we observed that a peer
study [17], called CorInfoMax, shares certain similarities with our
method, especially in terms of the objective function. Despite the
similarities, the two works still exhibit significant distinctions as
follows:

Motivation. As described in the main text, our research starts
from the Gaussian assumption with the expectation of enabling
direct computation of mutual information, thereby eliminating
mutual information neural estimators and simplifying existing con-
trastive learning methods. The core motivation of CorInfoMax is

to leverage information entropy maximization to overcome the
collapse issues and learn informative representations, as can be
reflected in the title, abstract, and introduction of their paper.

Network Architecture. Our method does not utilize additional
projection heads. Our loss function directly operates on the output
representations of the encoder fy(-), while CorInfoMax first em-
ploys a projector of 3-layer MLP to map the outputs of the encoder
to a new embedding space and then calculate loss function in the
new space. Our approach reduces model complexity and enhances
efficiency by directly optimizing the output space of the encoder.
This distinction is not only reflected in the variations in network
architecture but, more importantly, it actually indicates the dis-
parities in motivations and underlying concepts between the two
works. The purpose of our research is to enable the direct calcula-
tion of mutual information under the Gaussian assumption without
relying on estimators and extra designs. The projectors introduced
in CorInfoMax completely deviate from our initial motivation.

Numerical Stability During Training. An important issue we ad-
dressed in our research is that directly incorporating the logarithm
of the determinant of the covariance matrix in the objective func-
tion can lead to numerical instability, which is detailedly analyzed
and discussed in Subsection 3.2 of the main text and Section 4 of
this supplement. To cope with this issue, we adopt the strategy
of offsetting and scaling eigenvalues to be around 1. CorInfoMax
turns to adding a disturbance in their objective. The comparisons
between the two strategies are placed in Figure 3. When dimen-
sions are higher than 128, the training process under the strategy
of adding disturbance is terminated due to numerical instability,
because it cannot change the fact that many eigenvalues remain
very close to 0.

Explanations of Relationship Between Various SSL Methods. We
establish connections between contrastive and decorrelation-based
methods, providing an explanation for decorrelation-based meth-
ods from the perspective of MI maximization. These contributions
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Figure 3: Performance of two strategies under various dimen-
sions. O&S: offsetting and scaling eigenvalues in our work;
disturbance: the strategy of adding a disturbance in CorIn-
foMax. For “disturbance”, when dimension is set to higher
than 128, the training process is terminated due to numerical
instability, and the results are not obtainable.

are of significant importance in establishing a unified theoretical
framework for self-supervised learning methods. The work [17]
does not involve these aspects.

Research on Dimensional Collapse. In Section 5.1 of the main
paper, we theoretically demonstrate from the perspective of eigen
spectrum that the entropy maximization term can prevent dimen-
sional collapse. In Section 5.2 of the main paper, we show that
InfoNCE potentially maximizes information entropy. The work [17]
does not involve these contents, which primarily provides empir-
ical evidence for the effectiveness of their method in preventing
dimension collapse.

Finally, we express our gratitude to the authors of CorInfoMax
for their outstanding contributions to the self-supervised learning
community.

6.3 Discussion and Comparison with M-ILBO

Here, we discuss a work called M-ILBO [15], which also performs
graph self-supervised learning by enhancing consistency between
representations from various views and maximizing information
entropy.

General framework and universal principles of multi-view
self-supervised learning. Multi-view self-supervised learning, in-
cluding contrastive learning, can be divided into two basic modules.
The first module is for extracting cross-view invariant informa-
tion, which can be achieved by minimizing the Mean Squared Error
(MSE) between representations of two views or maximizing their
cosine similarity. The second module is for preventing model col-
lapse, including dimension collapse and complete collapse. Existing
strategies include using negative samples [25], decorrelation strate-
gies [1] and asymmetric architectures [6]. Both M-ILBO and our
paper can be encompassed within this framework, and they have
implemented the two basic modules using different strategies.

Discussion about our identity constraint and the cross-
view consistency in M-ILBO. Multi-view self-supervised learn-
ing aims to extract invariant information across different aug-
mented views. Both the identity constraint in our paper and the

Anonymous Authors

cross-view consistency in M-ILBO align representations from two
views using Mean Squared Error (MSE), thereby extracting com-
mon information across views. Due to its effectiveness in aligning
views, Mean Squared Error is commonly used in self-supervised
learning [1, 25, 27].

Discussion about £ in M-ILBO and our entropy max-
imization term. Generally speaking, both £.; in M-ILBO and
entropy maximization term of our paper achieve the same pur-
pose through various strategies, namely, avoiding model collapse
and learning diverse representations by maximizing the entropy
of representations. M-ILBO provides a strategy of achieving an
estimation of entropy through neural estimation of mutual infor-
mation based on Jenson-Shannon estimator. Our approach takes
a different approach, which assumes a Gaussian distribution for
node representations and directly obtains the exact value of entropy
without relying on neural estimators.

7 MORE EXPERIMENTS AND STATISTICS OF
DATASETS

7.1 Visualization of Correlation Matrix

Figure 4 provides visualizations of correlation matrices of node
representations under various settings on Cora and Pubmed. Specif-
ically, for a representation matrix H € RN *d \which has been nor-
malized to 0-mean and 1-standard deviation, the correlation matrix
is ﬁHTH. In other words, each element of correlation matrix de-
notes the Pearson correlation coefficient of two variables (i.e., two
channels). As shown in Figure 4(a,d), the off-diagonal elements of
correlation matrices are large without considering entropy max-
imization term in GMIM-IC, indicating that various channels of
representation matrix coupled together. That is to say, the issue
of dimensional collapse has occurred. Moreover, the two proposed
variants, GMIM and GMIM-IC, can effectively decorrelate various
representation channels and mitigate dimensional collapse issue.

7.2 Synergistic Evolution Between GMI and that
with Shifted and Scaled Eigenvalues

In the main context, considering that directly designing the objec-
tive function based on Gaussian mutual information I (X;Y) =
det(Sx )-det(Sy)

det(zX,y)
feasible alternative by shifting and scaling the eigenvalues of the co-
det(I+n-Ex ) -det(I+n-Xy)

det(I+n-Zxy) :

We visualize the synergistic evolution between I and I/, dur-
ing the training phase in Figure 5. It is worth mentioning that all
experiments are conducted under low-dimensional settings, where
the original GMI I remains normal and valid values. It can be
observed that the two lines exhibit consistent patterns of variation
in each subfigure. This phenomenon provides evidence supporting
the rationality of obtaining a viable objective function through
shifting and scaling the eigenvalues.

% In will lead numerical instability, we proposed a

variance matrix, denoted as I/;(X;Y) = In

7.3 Effect of Augmentation Intensity

We conduct a sensitivity analysis on the augmentation intensity by
examining the effects of various combinations of the edge removal
ratio p. and the feature masking ratio ps. The results, presented
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(d) Pubmed: GMIM-IC w/o entropy maximization.

(b) Cora: GMIM-IC.

(e) Pubmed: GMIM-IC.
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Figure 4: Visualizations of the correlation matrices (absolute value) of representations under various settings on Cora and

Pubmed.
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Figure 5: Synergistic evolution between GMI and that with shifted and scaled eigenvalues. Specifically, the original GMI (solid
line) is adopted as the optimization objective while the corresponding values (dashed line) of GMI with shifted and scaled

eigenvalues are recorded.

in Figure 6, indicate that our method is more sensitive to augmen-
tation in features (py) compared to that in graph structure (pe).
Overall, within an appropriate range of p, and py, our approach
consistently achieves competitive results. Even when subjected to
strong augmentation (e.g., pe = 0.6 and p¢ = 0.6), our method still
maintains a satisfactory performance level.

7.4 t-SNE Visualizations.

To achieve a more profound understanding of our approach and
conduct a comprehensive comparison with different methods, a
series of t-SNE plots [24] is employed to visualize the raw features
and learned representations under various methods and distinct
configurations in Figure 7. In Figure 7(a), the 2-dimensional t-SNE
embeddings of the raw features present a chaotic distribution and
can not show discriminative clusters. The visualization in Figure
7(b), characterized by a complex elliptical shape, highlights that the
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Figure 6: The classification accuracy under various combinations of feature masking ratio p and edge removal ratio pe.

method lacking the identity constraint term can not capture seman-
tically meaningful information. in Figure 7(c), the two dimensions
of the t-SNE embeddings show a certain correlation, potentially
indicating dimensional collapse issue in high-dimensional represen-
tation space. This phenomenon illustrates the effect of the entropy
maximization term in learning diverse representations and avoid-
ing dimensional collapse. In Figure 7(d), the t-SNE results form
discernible and interpretable clusters based on their true categories,
indicating that our method can learn meaningful and diverse repre-
sentations. The second row in Figure 7 shows t-SNE embeddings of
the other four methods, and the visual results of various methods
do not exhibit significantly distinct appearance. However, upon
closer inspection, our method demonstrates better inter-class dis-
criminability, especially concerning the clusters in purple, green,
and blue.

7.5 Experiments on Ogbn-Arxiv

To further evaluate the effectiveness and efficiency of our method,
we conduct experiments on a large-scale graph Ogbn-Arxiv [10].
Table 1 reports the validation and test accuracy of various graph self-
supervised methods, where our method obtains good performance.
It is worth mentioning that GRACE and GCA do not operate on a
full graph manner but a subset of nodes are sampled as negative
samples to avoid memory issues. Moreover, Figure 8 simultaneously
presents the test accuracy and training time, indicating that our
method can effectively balance performance and efficiency.

Table 1: Validation and test accuracy on Ogbn-Arxiv. “OOM”
indicates out-of-memory on a GPU with 24GB memory.

Validation Test

DGI 71.19 £ 0.24 70.28 £ 0.23
MVGRL OOM OOM

GMI OOM OOM

CCA-SSG 72.35+0.17 71.33 £0.21
BGRL 72.58 £ 0.14 71.52 +0.14
GRACE 71.82 +£0.18 70.91 +0.21
GCA 71.63 £0.20 70.77 £ 0.22
GMIM (ours) 72.26 £ 0.16 71.27 +0.21

GMIM-IC (ours) 72.48 +0.18 71.42 +0.19

7.6 Effect of Backbones

We employ various graph neural networks including GCN, GAT,
SGC [26], and GraphSAGE [7] as representation learners and inves-
tigate the performance of our method under their guidance. The
experimental results are illustrated in Table 2, where GMIM-IC
serves as the objective function. The expressive capacities of differ-
ent networks vary, resulting in distinct performance across various
datasets. Overall, our method achieves highly competitive results
across different backbone networks, demonstrating the effective-
ness, generalization, and flexibility of our approach.
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Table 5: Statistics of the experimental datasets.

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
Ogbn-ArXiV 169,343 2,332,386 128 40

e Cora, Citeseer, and Pubmed [20] are citation networks
where nodes represent documents and edges denote citation
relationships. Each document is assigned a class label that
indicates its subject category, and it is characterized by a
bag-of-words feature vector.

e Amazon-Computers and Amazon-Photo [21] are two
graphs derived from the Amazon dataset, capturing co-purchase
relationships. The nodes in these graphs represent products,
and an edge exists between two nodes if they are frequently
purchased together. Each node is associated with a sparse
bag-of-words feature vector based on product reviews. The
category of each node is indicated by its label.

e Coauthor-CS [21] is an academic network in the field of
computer science, where nodes represent authors and edges
indicate co-authorship relationships. Two authors are con-
nected by an edge if they have collaborated on a research
paper.

e Ogbn-Arxiv [10] is a directed citation network among some
computer science arXiv papers. Each node on the graph cor-
responds to an arXiv paper, while directed edges indicate the
citing relationships between papers. Each paper is associated
with a 128-dimensional feature vector.

8 ALGORITHM

The overall algorithm flows for GMIM and GMIM-IC in the
form of PyTorch-style pseudocode are placed in Algorithm 1 and 2,
respectively.

REFERENCES

[1] Adrien Bardes, Jean Ponce, and Yann LeCun. 2022. VICReg: Variance-Invariance-
Covariance Regularization for Self-Supervised Learning. In International Confer-
ence on Learning Representations.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell.

(2013), 1798-1828.

[3] Nizar Bouhlel and Ali Dziri. 2019. Kullback-Leibler Divergence Between Multi-
variate Generalized Gaussian Distributions. IEEE Signal Processing Letters 26, 7
(2019), 1021-1025.

[4] Ricky T. Q. Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. 2018.
Isolating Sources of Disentanglement in Variational Autoencoders. In Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc.

] Thomas M Cover. 1999. Elements of information theory. John Wiley & Sons.

[6] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan

Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos,

and Michal Valko. 2020. Bootstrap Your Own Latent - A New Approach to

Self-Supervised Learning. In Advances in Neural Information Processing Systems.

Curran Associates, Inc., 21271-21284.

2

—_

—

Anonymous Authors

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
Curran Associates Inc., 1025-1035.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. beta-VAE:
Learning Basic Visual Concepts with a Constrained Variational Framework. In
International Conference on Learning Representations.

Michael D Hirschhorn. 2007. The am-gm inequality. Mathematical Intelligencer
(2007).

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In Advances in Neural Information Processing
Systems, Vol. 33. Curran Associates, Inc., 22118-22133.

Juha Karhunen. 2001. Nonlinear independent component analysis. ICA: Principles
and Practice (2001), 113-134.

Hyunjik Kim and Andriy Mnih. 2018. Disentangling by Factorising. In Proceedings
of the 35th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 80). PMLR, 2649-2658.

Diederik P Kingma and Max Welling. 2022. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML]

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. 2018. Variational
Inference of Disentangled Latent Concepts from Unlabeled Observations. In
International Conference on Learning Representations.

Yixuan Ma, Xiaolin Zhang, Peng Zhang, and Kun Zhan. 2023. Entropy Neu-
ral Estimation for Graph Contrastive Learning. In Proceedings of the 31st ACM
International Conference on Multimedia (MM ’23). Association for Computing
Machinery, 435-443.

Ganesh R Naik, Wenwu Wang, et al. 2014. Blind source separation. Berlin:
Springer 10 (2014), 978-3.

Serdar Ozsoy, Shadi Hamdan, Sercan Arik, Deniz Yuret, and Alper Erdogan.
2022. Self-Supervised Learning with an Information Maximization Criterion.
In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
35240-35253.

Abbavaram Gowtham Reddy, Benin Godfrey L, and Vineeth N Balasubramanian.
2022. On Causally Disentangled Representations. Proceedings of the AAAI
Conference on Artificial Intelligence 36, 7 (2022), 8089-8097.

Jason DM Rennie. 2005. Volume of the n-sphere. (2005).

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93-93.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and
Stephan Gunnemann. 2019. Pitfalls of Graph Neural Network Evaluation.
arXiv:1811.05868 [cs.LG]

Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang.
2022. Weakly Supervised Disentangled Generative Causal Representation Learn-
ing. J. Mach. Learn. Res. 23 (2022).

James V Stone. 2004. Independent component analysis: a tutorial introduction.
(2004).

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, 86 (2008), 2579-2605.

Tongzhou Wang and Phillip Isola. 2020. Understanding Contrastive Represen-
tation Learning through Alignment and Uniformity on the Hypersphere. In
Proceedings of the 37th International Conference on Machine Learning (Proceedings
of Machine Learning Research). PMLR, 9929-9939.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In Proceedings of
the 36th International Conference on Machine Learning, Vol. 97. PMLR, 6861-6871.
Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. 2021. From
Canonical Correlation Analysis to Self-supervised Graph Neural Networks. In
Advances in Neural Information Processing Systems. Curran Associates, Inc., 76—
89.

Yufeng Zhang, Wanwei Liu, Zhenbang Chen, Ji Wang, and Kenli Li. 2023. On
the Properties of Kullback-Leibler Divergence Between Multivariate Gaussian
Distributions. arXiv:2102.05485 [cs.IT]

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160


https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/2102.05485

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Supplementary Materials: Gaussian Mutual Information Maximization for Efficient Graph Self-Supervised Learning

ACM MM, 2024, Melbourne, Australia

Algorithm 1 PyTorch-style Code for GMIM.

HOHE HE H R

f: shared neural encoder

d: representation dimension
adj: original graph topology
feat: original node features
eta: scaling factor

epochs: total training epochs
N: number of nodes

Id, I2d = torch.eye(d), torch.eye(2 * d)
for _ in range(epochs):

# generate two randomly augmented views of original graph
adj_A, feat_A = augment(adj, feat)
adj_B, feat_B = augment(adj, feat)

# get output representations of encoder
H_tilde_A = f(adj_A, feat_A)
H_tilde_B = f(adj_B, feat_B)

ormalize representations along sample direction
(H_tilde_A - H_tilde_A.mean(@)) / H_tilde_A.std(Q)

#n
H_A
H_B = (H_tilde_B - H_tilde_B.mean(@)) / H_tilde_B.std(0)

# compute covarance matrix

Cov_A = torch.mm(H_A.T, H_A) / N

Cov_B = torch.mm(H_B.T, H_.B) / N

CrossCov = torch.mm(H_A.T, H_B) / N

JointCov = torch.cat([torch.cat([Cov_A, CrossCov], dim=1),
torch.cat([CrossCov.T, Cov_Bl, dim=1)], dim=0)

# calculate loss function

loss = torch.log(torch.det(I2d + eta * JointCov) / torch.det(Id + eta * Cov_A) / torch.det(Id + eta * Cov_B))

# update parameters
loss.backward()
optimizer.step()

Algorithm 2 PyTorch-style Code for GMIM-IC.

H OH HE H R

f: shared neural encoder

d: representation dimension
adj: original graph topology
feat: original node features
eta: scaling factor

beta: balancing factor
epochs: total training epochs
N: number of nodes

Id = torch.eye(d)
for _ in range(epochs):

# generate two randomly augmented views of original graph
adj_A, feat_A = augment(adj, feat)
adj_B, feat_B = augment(adj, feat)

# get output representations of encoder
H_tilde_A = f(adj_A, feat_A)
H_tilde_B = f(adj_B, feat_B)

# normalize representations along sample direction
H_A = (H_tilde_A - H_tilde_A.mean(@)) / H_tilde_A.std(0)
H_B = (H_tilde_B - H_tilde_B.mean(@)) / H_tilde_B.std(0)

# compute covarance matrix
Cov_A = torch.mm(H_A.T, H_A) / N
Cov_B = torch.mm(H_B.T, H_.B) / N

# calculate loss function

loss_ic = (H_A - H_B).pow(2).sum() / N

loss_em = - torch.log(torch.det(Id + eta * Cov_A) * torch.det(Id + eta * Cov_B))
loss = loss_ic + beta * loss_em

# update parameters
loss.backward()
optimizer.step()
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