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A APPENDIX

BROADER IMPACT

Our work has the potential of gaining end users’ trust in deep neural networks and making it possible
to answer “why” by creating human-like explanations. Future implications could include sensitive
fields where practitioners are desperate to understand how black-box models decide on a specific
prediction before their deployment. A prominent example is medical imaging where it is sine qua
non to see how DNNs make decisions. Our technique could help domain experts trust the automated
system they get help from. This is achieved differently from currently available techniques that can
only highlight the part of an image that DNNs seem to rely on. We argue that self-explainable DNNs
are the future of machine learning applications. As DNNs are now currently the most preferred
techniques and their most apparent limitation is the complicated decision process, we bring about a
novel and cheap technique that, to the best of our knowledge, has never been proposed before.

B APPENDIX

All the experiments were implemented on a personal laptop with the following specifications:

• i7-8750H CPU
• GeForce GTX 1060 GPU
• 16GB RAM

Training of MLPL takes around 15 minutes. Training of X-MLP and X-CNN takes around 30
minutes and 80 minutes, respectively. The pre-trained feature extraction models (i.e.,  ) ResNet101
and VGG16 are downloaded from Keras’ website2.

B.1 GENERATION OF THE TRAINING DATASET T FOR MLPL

Recall that we have the attribute-class matrix A 2 RC⇥K , where C and K represent the number of
classes and the number of attributes per class, respectively. Table 4 shows the full matrix A for the
AwA2 dataset. The original matrix A can directly form a dataset, i.e.,

T0 =
n
(ỹk, yk) | ỹk 2 Ỹ, yk 2 Y, k = 1, 2, . . . , C

o
, (4)

which is too small to train MLPL; note that ỹk = (ỹ1k, · · · , ỹKk ) is the k-th row of A for class k, and
ỹ
i
k is the i-th attribute of ỹk.

We augment T0 by upsampling each sample (ỹk, yk) 2 T0 to Ĉ number of samples by randomly
manipulating K̂ number of attributes of ỹk among the total K, with the aim of perturbing the
original samples. The values of the selected attributes for manipulation can be conducted randomly.
In our setting, we use two values �0 > 0 and �1 < 0, and change the positive values of the
selected attributes to �1, otherwise, to �0. Note that this setting is an arbitrary choice (here we use
�0 = 1.5 and �1 = �0.5), which can be replaced by other ways appropriate. We finally generate a
training dataset T with CĈ number of samples. In our experiments, Ĉ and K̂ are set to 100 and 8,
respectively.

The way of generating dataset T finally used to train MLPL is summarised in Algorithm 1 below.

B.2 CLASSIFICATION ACCURACY PERFORMANCE OF MLPL

Although our main focus in this article is XAI rather than the classification accuracy of MLPL, it
is worth evaluating the classification accuracy performance of MLPL under the training dataset T
generated using Algorithm 1, which will demonstrate Algorithm 1’s effectiveness. To do so, we first
generate different training datasets T using the upsampling rate Ĉ fixed to 100 and different values

2Pre-trained ResNet101 and VGG16: https://keras.io/api/applications/
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Algorithm 1 Generation of the training dataset T for MLPL

1: Input: Dataset T0, empty dataset T , upsampling rate Ĉ 2 N, the number of attributes manipu-
lated K̂, �0 > 0 and �1 < 0.

2: Output: Training dataset T . Generated training dataset to train MLPL

3: Get the values of C and K from the dataset T0
4: for i = 1 to Ĉ do

5: for k = 1 to C do

6: Get the current sample (ỹk, yk) 2 T0
7: Set ỹk,i = ỹk

8: for j = 1 to K̂ do

9: Generate a random number t 2 {1, · · · ,K} . Attribute value to change
10: if ỹ

t
k,i  0 then

11: ỹ
t
k,i = �0

12: else

13: ỹ
t
k,i = �1

14: end if

15: end for

16: Add (ỹk,i, yk) into T
17: end for

18: end for

19: return Dataset T

of K̂ (i.e., the number of attributes whose values are manipulated) ranging from 0 to 28 (i.e., up
to a third of the total 85 attributes per class in the AwA2 dataset). Then we train MLPL using the
generated training datasets individually. In detail, after the upsampling process in Algorithm 1, the
obtained T is the size of 5, 000 (cf. the original given number of samples is 50 in the AwA2 dataset).
To evaluate the accuracy performance of MLPL, we split each dataset T into two parts with the ratio
of 70/30 for training and validation, respectively. The original dataset T0 is used for test.

Table 3: Classification accuracy of MLPL using the generated training datasets T by Algorithm 1
with different K̂ on the AwA2 dataset. Note again that K̂ represents the number of attributes whose
values are manipulated per class against the ground-truth attribute-class matrix.

K̂ Training Validation Test
0 100% 100% 100%
4 99% 99% 100%
8 97% 97% 98%
...

...
...

...
20 95% 93% 95%
28 93% 91% 90%

Table 3 shows the classification accuracy of MLPL corresponding to different K̂ in terms of training,
validation and test. We see that the accuracy decreases when K̂ becomes larger, which is quite
reasonable, since the larger the K̂, the higher the perturbation of the ground-truth attribute-class
samples. Overall, satisfying accuracy (above 90%) is obtained by all different K̂  28. It is worth
mentioning that 100% accuracy is achieved for K̂ = 0, which is because in this case the samples in
the training set are the same as the ones in the test, i.e., the original dataset T0.

In our XAI experiments, K̂ is fixed to 8.
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Table 4: Full attribute-class matrix A for the AwA2 dataset.

0.0

+
10.0

+
20.0

+
30.0

+
40.0

+
50.0

+
60.0

+
70.0

+
80.0

+
90.0

+
100.0

A

d
olp

h
in

cow
raccoon
w
alru

s
collie
p
olar

b
ear

m
ou

se
lion
p
ig

b
ob

cat
d
eer

giant
p
an

d
a

zeb
ra

b
u
↵
alo

otter
w
easel

rat
ch
ihu

ahu
a

w
olf

gira↵
e

b
at

rab
b
it

rh
in
oceros

squ
irrel

h
am

ster
ch
im

p
an

zee
seal
sh
eep

fox
ox gorilla
elep

h
ant

hu
m
p
b
ack

w
h
ale

sp
id
er

m
on

key
m
oose

leop
ard

h
ip
p
op

otam
u
s

tiger
m
ole

sku
n
k

siam
ese

cat
b
lu
e
w
h
ale

germ
an

sh
ep
h
erd

h
orse

p
ersian

cat
d
alm

atian
b
eaver

killer
w
h
ale

grizzly
b
ear

antelop
e

black
white
blue
brown
gray
orange
red
yellow
patches
spots
stripes
furry
hairless
toughskin
big
small
bulbous
lean
flippers
hands
hooves
pads
paws
longleg
longneck
tail
chewteeth
meatteeth
buckteeth
strainteeth
horns
claws
tusks
smelly
flys
hops
swims
tunnels
walks
fast
slow
strong
weak
muscle
bipedal
quadrapedal
active
inactive
nocturnal
hibernate
agility
fish
meat
plankton
vegetation
insects
forager
grazer
hunter
scavenger
skimmer
stalker
newworld
oldworld
arctic
coastal
desert
bush
plains
forest
fields
jungle
mountains
ocean
ground
water
tree
cave
fierce
timid
smart
group
solitary
nestspot
domestic

C
la
ss A

ttrib
u
te

15



Under review as a conference paper at ICLR 2023

C APPENDIX

C.1 FURTHER EXAMPLES FOR LEARNT ATTRIBUTES

As discussed in Section 4, some attributes can be well captured by DNNs with examples shown in
Figures 1, 3 and 5 in the main text. To further demonstrate this property, we below present more
images from a variety of classes, showing that the presented attributes are indeed learnt rather than
special to the given images or classes.

For example, the attribute-wise saliency maps in Figure 7 show that the attribute horns is clearly
learnt for the Ox, Antelope and Buffalo classes; for more results see Figures 8 and 9.

Ox Horns

Ox Horns

Ox Horns

Buffalo Horns

Buffalo Horns

Buffalo Horns

Antelope Horns

Antelope Horns

Antelope Horns

Ox Horns

Ox Horns

Ox Horns

Buffalo Horns

Buffalo Horns

Buffalo Horns

Antelope Horns

Antelope Horns

Antelope Horns

Figure 7: Images from different classes in the AwA2 dataset with their obtained attribute-wise
saliency maps by our approach. Examples from Ox, Buffalo and Antelope classes show that the
attribute horns is well captured by X-CNN.
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Least Auklet Rufous bill

Least Auklet Rufous bill

Least Auklet Rufous bill

Artic Tern Rufous bill

Artic Tern Rufous bill

Artic Tern Rufous bill

Kingfisher Rufous bill

Kingfisher Rufous bill

Kingfisher Rufous bill

Figure 8: Images from different classes in the CUB dataset with their obtained attribute-wise
saliency maps by our approach. Examples from Least Auklet, Artic Tern and Kingfisher classes
show that the attribute rufous bill is well captured by X-CNN.

Kittwake Rufous leg

Kittwake Rufous leg

Kittwake Rufous leg

Artic Tern Rufous leg

Artic Tern Rufous leg

Artic Tern Rufous leg

Figure 9: Images from different classes in the CUB dataset with their obtained attribute-wise
saliency maps by our approach. Examples from Kittiwake and Artic Tern classes show that the
attribute rufous leg is well captured by X-CNN.
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C.2 EXPLAINABILITY FOR CORRECT CLASS PREDICTION

Further examples for correct class prediction with the multilevel explainability by our approach are
shown in Figures 10 and 11. For abstract attributes, their saliency maps could give us an idea of
what part of the image activates that specific attributes, e.g. active or weak. Moreover, the attribute
values given by experts in Table 4 for the predicted classes indicate whether experts think these
attributes are helpful to discriminate one class from the others. After checking, we can see these
salient attributes obtained by our approach for the predicted classes are indeed meaningful.

Walrus Tusks Fierce Fish

Mouse White Weak Timid

Squirrel Hibernate Forager Active

Giraffe Spots Longneck Yellow

Figure 10: Explainability of the proposed approach for correct class prediction. Left: randomly
selected test images in the AwA2 dataset. Right: the top three most salient attributes helping the
neural network make the correct classification, and the corresponding attribute-wise saliency maps.

Blue Grosbeak Blue crown Grey bill Pointed wing

Golden winged Warlber Black bill Grey upperpart Bill size: about
the same as head

Figure 11: Explainability of the proposed approach for correct class prediction. Left: randomly
selected test images in the CUB dataset. Right: the top three most salient attributes helping the
neural network make the correct classification, and the corresponding attribute-wise saliency maps.
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C.3 EXPLAINABILITY FOR INCORRECT CLASS PREDICTION

Further examples for incorrect class prediction with the multilevel explainability by our approach
are shown in Figures 12 and 13. Grizlly bear classified as polar bear and whale classified as dolphin
are some of the most frequent misclassification cases detected. After checking the attribute values in
Table 4 given by the experts for the predicted classes and the ground-truth classes, we can see these
salient attributes obtained by our approach are indeed consistent with the ones given by experts for
the predicted classes; see also more discussion in Section 4 for the challenges in e.g. the linguistic
alignment and the nature of explainability.

Polar Bear (Grizzly Bear) White Coastal Pads

Dolphin (Killer Whale) Hairless Smart Ocean

German Shepherd (Dalmatian) Meatteeth Pads Fierce

Horse (Antelope) Brown Domestic Chewteeth

Figure 12: Explainability of the proposed approach for incorrect class prediction. Left: randomly
selected test images in dataset AwA2; e.g., Polar Bear (Grizzly Bear) means the Grizzly Bear class is
incorrectly predicted to be Polar Bear. Right: the top three most salient attributes helping the neural
network make the incorrect classification, and the corresponding attribute-wise saliency maps.

Pileated Woodpecker
(Yellow headed Blackbird)

Tree-clinging-shape Pointed wings Grey breast

Brown Thrasher
(Northern Fulmar)

Pink leg Bill size: about
the same as head

Shape: sandpiper-like

Figure 13: Explainability of the proposed approach for incorrect class prediction. Left: randomly
selected test images in dataset CUB. Right: the top three most salient attributes helping the neural
network make the incorrect classification, and the corresponding attribute-wise saliency maps.
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C.4 INFORMATION OF LINGUISTIC ATTRIBUTES

Xi 2 V

Xi

Pre-trained
CNN

Z

X-CNN

Ỹ

MLPL

Y

Figure 14: A simplified version of the proposed multilevel XAI architecture. An image Xi with
a class label in Y is drawn from the dataset V ✓ X . It is then passed to a pre-trained CNN.
After passing through the last CNN layer, Z, it is passed to X-CNN, which produces a linguistic
representation in Ỹ . Finally, it is passed to the MLPL with a softmax output, giving a predicted
label in Y for Xi.

We now study the information of linguistic attributes, which will give us some guidance about the
relationship between each class and its attributes.

For a set of classes Y (in our case the 50 species in the dataset AwA2), let Y be a random variable
describing our classes, and define the probability of a class having class label y 2 Y as P[Y = y].
Then the entropy (or uncertainty) in the class label is

HY = �
X

y2Y
P[Y = y] log(P[Y = y]). (5)

To compute the mutual information for a linguistic attribute, ỹk, we need to know P
⇥
Y | ỹk

⇤
, which

can be estimated from a proper image set V ✓ X . If we choose an image Xi 2 V , we can feed
it in our network (i.e., see Figure 14) to find its attribute value, ỹkXi

, 1  k  K. To simplify the
calculation, let us set a threshold on the attribute value so that if it is above the threshold we treat
ỹ
k
Xi

= 1, otherwise ỹ
k
Xi

= 0. For each y 2 Y and each ↵ 2 {0, 1}, we can estimate various
probabilities, e.g.,

P
⇥
Y = y, ỹ

k = ↵
⇤
⇡
P

Xi2V
q
Xi is from class y

y q
ỹ
k
Xi

= ↵
y

|V| ,

P
⇥
ỹ
k = ↵

⇤
⇡
P

Xi2V
q
ỹ
k
Xi

= ↵
y

|V| ,

(6)

where
q
predicate

y
is an indicator function (equal to 1 if the predicate is true and 0 otherwise). We

can then compute

P
⇥
Y = y | ỹk = ↵

⇤
=

P
⇥
Y = y, ỹ

k = ↵
⇤

P [ỹk = ↵]
. (7)

The conditional entropy of the classes given the (binarised) linguistic attribute is given by

HY |ỹk = �
X

ỹk2{0,1}

X

y2Y
P
⇥
Y = y, ỹ

k = ↵
⇤
log

�
P
⇥
Y = y | ỹk = ↵

⇤�
. (8)

The mutual information on the classes due to the linguistic attributes is given by

I
�
Y ; ỹk

�
= HY �HY |ỹk . (9)

Calculating the mutual information by attributes ỹk predicted by our approach and Eqn (9) gives us
how important each attribute is in differentiating the classes, see Table 5. Some of them seem useless
by themselves as seen in Table 5; however, they could be important in combination with others.
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An alternative way to calculate the mutual information is by following the same steps above but
obtaining ỹ

k values from the attribute-class matrix given in Table 4 instead of dataset V . These
alternative mutual information values represent the importance of each attribute for human experts
who created Table 4. The calculated alternative mutual information is also presented in Table 5.

We now have two mutual information values per attribute, i.e., one is by using the dataset V (here
we use the test set) and the other is by using the prior knowledge given in Table 4, see Table 5.
Comparison between these two values for each attribute is helpful to see the discrepancy between
what attributes people think are important and the ones that our trained DNNs learn. To give an
example, “small” reduces the uncertainty by 0.98 bits when using the table values given by experts.
However, it takes the value of 0.13 when using images, which suggests that “small” is not one of the
best attributes for the trained DNN to differentiate the given classes, although people think it is.

Table 5: Mutual information of attributes calculated by using test images and the prior knowledge
given by experts in Table 4, respectively. Symbol *** indicates the value is less than 0.01.

Attributes

Info.
via Test images Experts

Attributes

Info.
via Test images Experts

Black 0.38 0.95 Muscle 0.31 0.98
White 0.10 0.99 Bipedal *** 0.63
Blue 0.33 0.40 Quadrupedal 0.08 0.58

Brown 0.49 0.92 Active *** 0.82
Gray 0.02 0.99 Inactive 0.49 0.99

Orange 0.09 0.40 Nocturnal 0.43 0.88
Red 0.52 0.14 Hibernate 0.49 0.82

Yellow 0.40 0.40 Agility 0.42 0.92
Patches 0.14 0.88 Fish 0.09 0.92
Spots *** 0.79 Meat 0.46 0.97

Stripes 0.53 0.40 Plankton 0.35 0.32
Furry *** 0.76 Vegetation 0.23 0.99

Hairless 0.54 0.82 Insects 0.36 0.40
Toughskin *** 0.99 Forager 0.30 0.99

Big 0.34 0.95 Grazer 0.38 0.92
Small 0.13 0.98 Hunter *** 0.92

Bulbous 0.21 0.99 Scavenger 0.53 0.52
Lean 0.50 1 Skimmer 0.69 0.24

Flippers 0.15 0.58 Stalker *** 0.72
Hands 0.15 0.32 Newworld 0.30 0.68
Hooves 0.16 0.79 Oldworld 0.45 0.52

Pads 0.19 0.88 Arctic 0.07 0.68
Paws 0.51 0.99 Coastal 0.08 0.63

Longleg 0.50 0.85 Desert 0.59 0.14
Longneck 0.29 0.46 Bush 0.48 0.76

Tail 0.17 0.76 Plains 0.21 0.97
Chewteeth *** 0.76 Forest 0.04 0.98
Meatteeth 0.60 0.99 Fields 0.37 0.95
Buckteeth *** 0.79 Jungle 0.52 0.76
Strainteeth 0.38 0.52 Mountains 0.35 0.79

Horns 0.14 0.63 Ocean 0.39 0.63
Claws 0.15 0.98 Ground *** 0.68
Tusks 0.18 0.32 Water 0.14 0.72
Smelly *** 0.99 Tree 0.29 0.68
Flys 0.35 0.14 Cave 0.27 0.40
Hops 0.36 0.32 Fierce 0.25 0.98
Swims 0.32 0.72 Timid *** 0.92

Tunnels 0.14 0.46 Smart 0.51 0.90
Walks 0.57 0.72 Group 0.29 0.97
Fast 0.06 0.63 Solitary 0.31 0.98
Slow 0.55 0.97 Nestspot 0.20 0.97

Strong 0.24 0.90 Domestic *** 0.94
Weak 0.14 0.72
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