
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A EXTENDED LITERATURE REVIEW

In this section, we review practical strategies for post-training efficiency and discuss some scientific
investigations that provide motivation for, or insight into, our approach: in §A.1, we first review the
history of pruning and then discuss its modern application to LLMs; in §A.2, we contrast pruning
with distillation, an alternative strategy for reducing the parameter count of LLMs; then in §A.3,
we discuss the various practical methods for efficient finetuning and inference acceleration that
can be used in conjunction with our pruning strategy; finally in §A.4 we highlight some scientific
investigations into some depth-dependent statistical properties of LLMs that are complementary to
our results.

A.1 PRUNING

Pruning is a method for reducing the size of a trained machine-learning model by removing unneces-
sary parameters, either individually or together as a group. Pruning for neural networks has a long
history (LeCun et al., 1989; Hassibi and Stork, 1992), and, as originally conceived, unstructured
pruning techniques sparsify networks by removing individual parameters based on pre-defined criteria.
For instance, if a parameter of the model has a very small value, then removing it – i.e. by setting it to
exactly zero – will likely have minimal impact on performance. Inspired by this early work, modern
researchers began exploring different criteria for such unstructured pruning, focusing mostly on
computer vision models (Han et al., 2015; Chen et al., 2015; Srinivas and Babu, 2015). In particular,
Ref. Han et al. (2015) developed an iterative pruning method for alternatively pruning and finetuning
a network in order to reach better compression ratios and performance.

While these models were smaller, they were not necessarily more efficient: sparsifying networks
by removing individual parameters according to a criterion leads to irregular or pseudorandom
sparsification patterns that are difficult to accelerate without specialized hardware or libraries designed
for sparsity Li et al. (2016). To that end, structured pruning techniques were developed to remove
irrelevant groups of parameters together, such as particular channels or filters in convolutional
networks. As this increased their practical relevance, researchers then began exploring structured
pruning across computer vision (Li et al., 2016; Wen et al., 2016; Hu et al., 2016; He et al., 2017;
Huang et al., 2018) and pre-transformer NLP architectures (Murray and Chiang, 2015; See et al.,
2016; Kim and Rush, 2016).

Following unprecedented progress in language modeling, recent work has focused on applying
structured pruning methods to the Transformer Vaswani et al. (2017). These studies consider nearly
every possible component of the model architecture for elimination, with methods ranging from
dropping attention heads (Voita et al., 2019; Michel et al., 2019; Kim and Awadalla, 2020), to
dropping layers (Fan et al., 2019; Zhang and He, 2020; Fan et al., 2021; Jha et al., 2023; Sajjad et al.,
2023; Liu et al., 2023a), to pruning hidden states (Hou et al., 2020), to rank reducing large weight
matrices Sharma et al. (2023), replacing sparse weight matrices with smaller dense ones Ashkboos
et al. (2024), to many combinations of the aforementioned groups (Xia et al., 2022; Lagunas et al.,
2021).

Of the prior work that also considers transformer layer dropping, most Fan et al. (2019); Zhang and
He (2020); Fan et al. (2021); Sajjad et al. (2023); Xia et al. (2022) study BERT-style models Devlin
et al. (2018), while we consider decoder-only GPT-style models Radford et al. (2019) that are most
commonly used for large-scale language modeling and generation. BERT-style models are naturally
suited for understanding tasks due to their bidirectional masked language modeling (MLM) objective,
while GPT-style models are instead suited for generation, due to their autoregressive objective. While
this divide has been questioned in light of more powerful GPT-style models (Zhong et al., 2023),
previous work (Ethayarajh, 2019) has found significant qualitative differences between BERT and
GPT models in terms of the evolution of the layer-wise representation of words. Altogether, this
suggests that layer-dropping strategies will behave differently between the two families.

One study for BERT-style pre-trained models, Ref. Sajjad et al. (2023), concludes that the best
layer-pruning strategy is dropping the final layers; this partially resonates with our results, although
in contrast we find that (a) for some pruning sizes keeping the last few layers of the model is actually
beneficial, and that (b) for all pruning sizes keeping the very last layer is essential. Additionally,
while the authors also study similarity between representations in different layers – as in our approach

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

– they actually found a higher similarity between representations in the shallow layers compared to
the deeper ones – which very sharply disagrees with our results. Importantly, the models considered
in Ref. Sajjad et al. (2023) consist of a few hundred million parameters, which is much smaller than
the model scales we consider in our work. Perhaps as a consequence, the authors didn’t observe
the sharp transition in downstream accuracies that we report in §4.1, despite the fact that they also
finetuned their pruned models.

In contrast, while Ref. Jha et al. (2023) does consider GPT-style models, the methodology is quite
different from ours: (i) rather than pretraining first and then using a fixed layer-dropping strategy as
we do, instead the authors incrementally drop layers in a modified pretraining procedure; and (ii) the
authors study their own sub-1B parameter models, while we focus on the families of readily available,
open-weight, large-scale 2.7B-70B parameter models that are commonly used and/or finetuned for
practical applications.

More recently, Men et al. (2024) empirically study different layer-pruning strategies for GPT-style
models (Llama-2 7B and Baichuan2-7B-base) and the subsequent effects of benchmarks (MMLU,
CMMLU, and CMNLI). They investigate various layer-importance metrics (notably, their "Block
Influence" function is similar to our cosine similarity metric), and find that they are able to prune up
to 28% of layers of Llama-2 7B with minimal impact on benchmarks. The authors focus on only two
model families (Llama-2 and Baichuan2) and restrict their investigation to sub-7B models; on the
other hand, we study a wide range of open-weight families, ranging from 2.7B-70B, and find that
we can prune up to 50% of layers. Nonetheless, Men et al. (2024) provides independent evidence
supporting our main scientific takeaway that deeper layers may not be critical in storing knowledge
for QA benchmarks.

Finally, a systematic approach to layer dropping in transformers has also been studied in the context
of wav2vec models, which are encoder-only models that map speech to embeddings and are sized
in the hundred-million parameter regime Baevski et al. (2020). With these models, Ref. Liu et al.
(2023a) developed a layer-pruning algorithm based on the correlation between layers and downstream
metrics. Beyond the model architecture and domain, one significant difference between this and
our work is that Ref. Liu et al. (2023a) considered non-contiguous pruning proposals, e.g. dropping
alternate layers. Our intuition for layer pruning predicts that this shouldn’t work as well – at least for
decoder-only language models – as it creates multiple mismatches, one with each block of layers
removed.

A.2 MODEL DISTILLATION

A completely different method for reducing the size of a trained machine-learning model is model
distillation Hinton et al. (2015), in which knowledge is transferred from a large “teacher” model to
a smaller “student” model by training the student on the distribution predicted by the teacher. The
essential insight is that this can transform the very general knowledge and capabilities of the teacher
into more streamlined, compressed, and possibly skill-specific representations.

While a very general technique, in the setting of language models, distillation has been implemented
with (a) white-box approaches, in which the the student is trained to imitate the teacher’s logits Gu
et al. (2023) or hidden states Jiao et al. (2019); as well as with (b) black-box approaches, in which the
student only has access to the output tokens generated by the teacher. This latter approach broadly
covers cases where the student is trained on text that is augmented by the teacher in some way, such
as by adding synthetic labels Wang et al. (2021), generating high quality synthetic text Eldan and Li
(2023); Li et al. (2023a); Gunasekar et al. (2023) by providing chain of thought reasoning Fu et al.
(2023); Hsieh et al. (2023), which aims to enhance the student’s reasoning skills, or by annotating
instructions that enhance the student’s instruction-following capabilities Jiang et al. (2023b).

Compared to layer pruning, these distillation methods require considerable computational resources
due to the reliance on the large teacher to process a big corpus of data. Instead, our similarity-based
pruning strategy only requires computing the similarity between representations at different layers
on a small subset of a pretraining corpus, while our second simpler pruning strategy only uses the
reduced model post pruning.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 EFFICIENT FINETUNING AND INFERENCE ACCELERATION

Complementary to directly reducing size of a model, parameter-efficient finetuning (PEFT) focuses
on reducing the cost of specializing LLMs to certain tasks. In particular, Low Rank Adapters (LoRA)
reduce the memory and compute of fine tuning by freezing the pretrained model and introducing a
parametrically small number of additional trainable weights Hu et al. (2021). We use its quantized
cousin, QLoRA Dettmers et al. (2023), to keep our experiments cost efficient. Other PEFT methods
that can be combined with our work are Refs. Li et al. (2023b) and Zhang et al. (2023): in the first,
the initialization of the LoRA matrices is adjusted to a quantization scheme; in the second, LoRA
ranks for different LLM modules are chosen in an adaptive manner.

For additional efficiency gains we could combine our layer-pruned models with methods that further
accelerate inference: with speculative decoding Leviathan et al. (2023), tokens are rapidly generated
from a smaller draft model and then evaluated in parallel by the main model; with Medusa Cai et al.
(2024) the draft model is discarded for extra decoding heads, but ultimately achieves a similar effect.
In particular, it could be interesting to consider highly-compressed layer-pruned models as potential
draft models in a speculative decoding setup.

A.4 A BREADTH OF DEPTH-DEPENDENT STUDIES

Finally, let us highlight some scientific work that study the depth-dependent properties of LLMs.
One relevant direction considers how knowledge and linguistic properties are encoded in language
models. On the one hand, Refs. Meng et al. (2022); Dai et al. (2021) analyze the storage and recall
of factual associations: these works emphasize that knowledge localizes within the middle Meng et al.
(2022) or final Dai et al. (2021) layers, which has implications for directly editing or erasing part of
a model’s factual knowledge. On the other hand, attempts to perform such editing gives evidence
that information may be stored non-locally across layers Hase et al. (2023). Relatedly, Ref. Geva
et al. (2023) investigates the way facts are processed during inference, distinguishing between the
role of attention heads, for attribute extraction, and the MLP blocks, for subject enrichment: both are
delocalized across several layers.

Next, following the earlier “logic lens” nostalgebraist (2020), Ref. Belrose et al. (2023) invented a
technique they called “tuned lens” to study the trajectory of predictions by using a learnable affine
transformation to convert intermediate representations into a distributions over tokens (see also Din
et al. (2023)). By studying the layer-to-layer dynamics of this distribution, the authors noted that
it tended to converge. This convergence is very suggestive that that the deeper layers could be
prunable, while the fact that they had to train an affine probe is likely related to our observation that
the final layer cannot be pruned. Somewhat relatedly, Ref. Gurnee and Tegmark (2023) observed
that geographic features in the underlying text can be determined from linear probes trained on
intermediate activations, as long as the activations are deeper than halfway.

More abstractly, Refs. Voita et al. (2023); Liu et al. (2023b) found that the sparsity of activations
transitions at around halfway through a network’s forward pass, evolving from sparse to dense.
Perhaps relatedly, Ref. Panigrahi et al. (2023) investigated which model weights update the most
during finetuning, finding that it’s those in the mid-layers.

Altogether, these deep studies are complementary to our work, which, on the one hand, provides
evidence that removing the deepest layers of an LLM does not significantly alter the model’s perfor-
mance, and, on the other hand, demonstrates a sharp pruning transition after removing approximately
half of an LLM’s deepest layers.

B EXPERIMENTAL DETAILS

Here we explain various details of models and healing (§B.1) and of evaluations (§B.2). Note: each
model was trained and evaluated on a single A100 80GB GPUs, and no model’s training required
greater than 72 GPU hours.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.1 MODEL AND HEALING DETAILS

All models in this paper were fine-tuned using the Hugging Face Trainer API (Wolf et al., 2020).
A list of models, their paths on Hugging Face, and their respective licenses are as follows:

Model Repository Path License

Llama-2 7B meta-llama/Llama-2-7b-hf Llama 2 Community License Agreement
Llama-2 13B meta-llama/Llama-2-13b-hf Llama 2 Community License Agreement
Llama-2 70B meta-llama/Llama-2-70b-hf Llama 2 Community License Agreement
Mistral 7B mistralai/Mistral-7B-v0.1 Apache 2.0 License
Phi-2 (2.7B) microsoft/phi-2 MIT License
Qwen 7B Qwen/Qwen-7B Tongyi Qianwen License Agreement
Qwen 14B Qwen/Qwen-14B Tongyi Qianwen License Agreement

For healing, we used the version of the Colossal Clean Crawled Corpus (C4) (Raffel et al., 2019)
from Hugging Face: data = load_dataset("c4", ’en’).12 We truncated long examples
as described later in the paragraph and added special tokens when available.13 Models were finetuned
for 5000 steps with a global batch size of 16: this corresponds to total finetuning tokens of 16 →
5000 → [max_seq_length] for each model. We used a cosine-annealed learning rate schedule,
with a warmup of 100 steps. When possible, the peak learning rate was set to the peak learning rate
from the model’s pretraining; in practice, this means all models were trained with a peak LR of 3e-4,
with the exceptions of Phi-2 Javaheripi and Bubeck (2023), which was trained with a peak LR of 2e-4
during pre-training, Llama-2-70B, which was trained with a peak LR of 3e-5 (a value that resulted
from a sweep), and Mistral-7B which was trained with a peak LR of 3e-6 (also a value that resulted
from a sweep). All models 7B parameters or smaller were trained with a max sequence length of
2048 tokens, while all models 13B parameters or greater were trained with a max sequence length of
4096 tokens. While we realize that some models may have been pretrained on longer sequences, e.g.
Qwen-the-outlier (Bai et al., 2023), we decided to the max sequence length consistent across models
of similar size to allow fairer comparisons across model families.

On top of the Hugging Face Trainer API, we used quantization and Low-Rank Adapters (LoRA) (Hu
et al., 2021) for all of our finetuning:

• For quantization, we used the bitsandbytes library for QLoRA Dettmers et al. (2023)
to quantize our models to 4 bits.

• For LoRA, we used the Hugging Face peft library (Mangrulkar et al., 2022). We set the
LoRA dropout to 0.05 and kept the LoRA ω equivalent to the LoRA rank, following (Lee
et al., 2023). Aside from two exceptions, discussed below, models are trained with LoRA
rank 64.

• Also following Ref. (Lee et al., 2023), we only applied LoRA to FFN modules:
["gate_proj", "down_proj", "up_proj"] for Llama-2 and Mistral models,
["fc1", "fc2"] for Phi-2, and ["w1", "w2", "c_proj"] for Qwen models.

The large majority of these hyperparameter choices are standard and found in previous works, e.g.
Refs. (Lee et al., 2023; Dettmers et al., 2022). For absolute clarity, we list display all the model
specific architecture and healing details below:

12This dataset is released with an Open Data Commons Attribution License (ODC-By).
13N.B. the Qwen tokenizer from Hugging Face does not include any special tokens; in this case, it was

essential to add a default padding token.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Model # Layers Vocab Size Max Seq. Len. FT Tokens Peak LR LoRA Rank

Llama-2 7B 32 32,000 2048 164M 3e-4 2
Llama-2 13B 40 32,000 4096 328M 3e-4 64
Llama-2 70B 80 32,000 4096 328M 3e-5 8
Qwen 7B 32 151,936 2048 164M 3e-4 64
Qwen 14B 40 151,936 4096 328M 3e-4 64
Mistral 7B 32 32,000 2048 164M 3e-6 4
Phi-2 2.7B 32 51,200 2048 164M 2e-4 64

We also have the following hyperparameters common between all models:

Config Value

Finetuning dataset C4
Batch size 16
LoRA ω LoRA rank
LoRA dropout 0.05
LoRA targets FFN modules
LR scheduler Cosine
Warmup steps 100
Total steps 5000

B.2 EVALUATION DETAILS

We performed three principal evaluations: accuracy on MMLU, accuracy on BoolQ, and loss on C4.14

For MMLU accuracy:

• We use the cais/mmlu version of the dataset from Hugging Face.
• We follow the formatting suggested in the original reference Hendrycks et al. (2020) without

further prompt engineering.
• For constructing few-shot examples, we use the dev set from cais/mmlu.
• For our experiments, we use 0 few-shot examples; our results and analysis are robust to this

choice, cf. Figure 8.
• We report average accuracy across all subjects.

For BoolQ accuracy:

• We used the hassansh/boolq_n_shot version from Hugging Face.
• For our experiments, we use 0 few-shot examples.
• The complete BoolQ results – truncated from the main text – are shown here in Figure 7:

in the left panel we present the Llama-2 family, in the middle panel we present models
from the Qwen family, and in the right panel we should Mistral-7B and Phi-2; we also
make the experiments without healing semi-transparent in order to better display the results
from the complete similarity-informed pruning method. Importantly, while we see here that
healing plays a more important role than it did for MMLU in Figure 2, after healing we still
have a characteristic flat region of robust performance; as before, the capabilities required
to achieve a model’s top score isn’t removed by significant layer pruning until a critical
model-dependent threshold.

For C4 Validation Loss:

• We used the c4 version from Hugging Face (soon be deprecated in favor of allenai/c4).
• We evaluated using the validation split as we healed with the train split.

14MMLU and BoolQ are released with an MIT license, while C4 is provided with an ODC-By license.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 7: BoolQ accuracy (0-shot) vs. fraction of layers dropped for different model families.
(Left: Llama-2 family; Middle: Qwen family; Right: Mistral-7B and Phi-2.) The solid lines
represent performance after dropping layers and healing, and the (semi-transparent) dotted lines
show performance after dropping layers only (no healing), and the dashed gray line is the score for
guessing randomly. For BoolQ, healing leads to important improvements such that performances;
then, across all models, performances are quite robust until 20%-55% pruning fractions, depending
on model family and size, at which point they transitions to random guessing.

• Given its size, we randomly sampled 60k sequences and held them fixed across all models.

• In Figure 3 we normalized the loss to facilitate fair comparison across model families that
employ different vocab sizes: to normalize, we divided by log V , where V is the per-model
vocab size (listed in a table in §B.1). This, log V , corresponds to the loss of sampling tokens
uniformly, which naturally sets the scale for a given model.

C ABLATIONS

Here we detail ablations of various hyperparameters: prompting (§C.1), finetuning seed (§C.2), LoRA
rank (§C.3). Qualitatively, the results of the paper are quite robust to the variation of any of these.

C.1 PROMPTING

It’s common knowledge that altering the prompt on QA evaluations can significantly impact results.
To control for prompting, we ablate the MMLU accuracy for our principal similarity-informed
pruning described in §3.2 when applied to Llama-2-13B: in the left panel of Figure 8, we show results
for changing the ordering of the few-shot examples in the prompt, and in the right panel the same
figure, we show results for changing the number of few-shot examples. Broadly we see that the
layer-pruning method is robust to these changes.

C.2 FINETUNING SEED

Here we vary the finetuning seed. For all of our experiments, we use the following code snippet to
ensure reproducibility:

SEED_VAL = 0
transformers.enable_full_determinism(SEED_VAL)

Since we begin with a pretrained model, the finetuning seed doesn’t affect initialization, but it will
impact the stochastic aspects of further training such as data order. To control for this, we ablate
the finetuning seed for our principal similarity-informed pruning described in §3.2 when applied to
Llama-2-13B: in Figure 9 we observe that the layer-pruning method is robust to the choice of seed.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 8: Effect of prompt ablations on MMLU accuracy vs. fraction of layers dropped for Llama-2-
13B. Left: We vary the ordering of the few-shot examples and see it does not have any impact. Right:
We very the number n of few-shot examples; while careful study of the flat region suggests increasing
the number of few-shot examples marginally improves performance, regardless, the layer-pruning
strategy is robust to this kind of variation.

Figure 9: Effect of varying the finetuning seed on MMLU accuracy vs. fraction of layers dropped for
Llama-2-13B: there is no meaningful effect.

C.3 LORA RANK

Here we vary the LoRA rank used for healing. Unfortunately, our compute budget did not allow us to
make an exhaustive sweep across all of our experimental configurations. In lieu of that, we employed
the following protocol for our main experiments:

• Begin with rank 64, following the QLoRA setup (see, e.g. Appendix B.2 of Ref. (Dettmers
et al., 2023)).

• If healing with that rank significantly harms the performance compared to no healing, then
sweep LoRA ranks for that model and, for the other evaluations, pick the best performing
LoRA rank according to its MMLU accuracy.

This protocol is designed to maximize the chance that healing will improve performance across all of
our evaluations. For simplicity, we ran this rank-picking protocol using the simple pruning heuristic,
with the exception of Llama-2-70B.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

In practice, this led to us using rank 64 for every model with the exceptions of Mistral-7B, with rank
4, Llama-2-7B, with rank 2, and Llama-2-70B, with rank 8. (To review this same information in
tabular form, see the second Table in §B.1.) Figure 10 displays the sweeps over MMLU accuracy
supporting these choices for Mistral-7B (bottom left panel), Llama-2-7B (bottom middle panel), and
Llama-2-70B (top right panel): overall, while the LoRA rank does not have a significant impact
on the qualitative behavior of the healed model, decreasing the LoRA rank generally improves
performance. In the top left and middle panels of Figure 10, we show corresponding sweeps for
Mistral-7B (top) and Llama-2-7B (middle) using the similarity-informed pruning strategy: we see that
for this pruning method both models are much more robust, though rank 2 is still the top performing
rank for Llama-2-7B.

Figure 10: Effect of varying the LoRA rank. Top: 5-shot MMLU accuracy vs. fraction of layers
dropped using the similarity-informed pruning strategy on Mistral-7B (left), Llama-2-7B (middle),
and Llama-2-70B (right). Across all ranks we observe similar behavior, though there’s a small
effect of decreasing rank improving overall performance. Bottom, left and middle: 5-shot MMLU
accuracy vs. fraction of layers dropped using the simple pruning heuristic on Mistral-7B (left) and
Llama-2-7B (middle). As before, qualitative behavior is similar across ranks, though in this case
it’s much clearer that decreasing rank improves performance. Bottom, right: C4 validation loss vs.
fraction of layers dropped using the similarity-informed pruning strategy on Mistral-7B. In contrast
to MMLU, decreasing rank harms performance; together, these results suggest that larger ranks may
be overfitting.

The characteristic improvement of MMLU accuracy with decreasing LoRA rank – even for extremely
low ranks(!) – deserves an explanation. One possibility is that lowering the LoRA rank can better
regularize finetuning against overfitting. In particular, astute readers may have been surprised at
the discussion of peak learning rates in §B.1: models were finetuned with the same peak used in
pretraining; a “large” LoRA rank of 64 introduces a number of additional parameters that may overfit
to C4. This overfitting would certainly be harmful, since the actual pretraining datasets for the models
we consider are (a) unknown to us, and (b), likely to be of significantly higher quality than C4.

We investigate this directly for Mistral-7B. In the bottom right panel of Figure 10 we plot the C4
validation loss across different LoRA ranks: we see that while decreasing the LoRA rank generally
improves MMLU accuracy (cf. left-most panels), at the same time it harms the C4 validation loss.
This supports our overfitting hypothesis. In a greater-resourced future, it would be interesting to
improve the healing process by considering other forms of regularization and learning rate tuning.

C.4 COMPARISON TO OTHER PRUNING METHODS

In this section, we investigate how the cosine-similarity based layer dropping method introduced
in Section 3.2 compares to similar layer dropping baselines: specifically, we compare to random
layer dropping and pruning shallow layers in the network. In Figure 11, we observe that our
cosine-similarity based cutting method outperforms both random layer dropping and pruning shallow
layers.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 11: Comparison of our cosine-similarity based pruning method (blue) to random layer
dropping (orange) and pruning shallow layers (green) on MMLU accuracy. All lines use Llama-2 7B
model with LoRA rank 64.

C.5 CHANGING EVALUATION TASK

As briefly mentioned in Section 4.5, we evaluate pruned models on a wider suite of tasks in order to
understand what deeper layers are doing. In this section, we provide more details on this evaluation
setup. We choose one evaluation from popular evaluation subcategories (see Section 2.3 of Touvron
et al. (2023a)). Specifically:

• Commonsense Reasoning: HellaSwag Zellers et al. (2019), measuring accuracy
• Reading Comprehension: BoolQ Clark et al. (2019), measuring accuracy
• MATH: GSM8K Cobbe et al. (2021), measuring exact match with 1 generation (EM@1)
• Summarization: QMSum Zhong et al. (2021) from the Scrolls benchmark Shaham et al.

(2022), measuring ROUGE-2

Along with this, we include an evaluation of chain-of-thought MMLU (CoT-MMLU): a version
of MMLU evaluation, where the model is allowed to produce chain-of-thought outputs and the
answer is extracted from the model generation. By comparing to normal MMLU, we can understand
whether simply allowing multiple-token generation degrades performance post-pruning. Results for
Llama-2-7B are shown in Figure 6 and results for Llama-2-70B are shown in Figure 12.

Focusing on CoT-MMLU results, we notice that allowing multiple token generation does not change
the qualitative behavior of pruning, in that there is still a relatively flat region up until some fraction
of layers dropped, after which there is a sharp drop off. Moreover, we observe that tasks that may
require higher-level reasoning (GSM 8K or HellaSwag) show immediate drop in performance, as
opposed to other tasks like reading comprehension (BoolQ) or world knowledge (MMLU). Together,
this suggests that layer laters may be important for completing higher-level reasoning tasks.

D BROADER IMPACTS

This work studies methods for efficiently pruning open-weight LLMs. Positive societal impacts
include an increased understanding of how LLMs process information across layers as well as
the demonstration of potential practically useful techniques for improving the efficiency of LLM
inference. Negative societal impacts are minimal; however, there may be possible second-order
negative effects given that LLM systems are tools that can be used both positively and negatively,
given different downstream use cases.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 12: Evaluation of Llama-2 70B using the cosine-similarity cutting method (blue) across
different evaluation tasks. Left to Right: CoT-MMLU, BoolQ, GSM8k, HellaSwag. We observe that
tasks involving some form of reasoning (GSM8k and HellaSwag) experience immediate performance
degradation while tasks like CoT-MMLU and BoolQ show similar qualitative behavior to MMLU.

26


