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A SKETCH OF THE PROOF IDEAS

We use a similar proof idea for every main theorem, which we explain as follows. To obtain the phase
diagram, the key is deriving the rate of convergence of the expected Hamming error E[H (3, 3)]. Let

P

P
FP, =Y P(8;=0,8#0), and FN, =Y P(B; =1,53 =0). (1

Jj=1 j=1
By definition,
E[H(B,8)] = FPy + FN,.

Suppose j is in the diagonal block {j, 7 + 1} of the Gram matrix G. For most methods (except for
forward selection and forward backward selection, which we discuss separately), it is easy to see that

Bj does not depend on any other 3; with ¢ ¢ {3, j + 1}. It follows that
P(8; = 0,55 # 0) = P(8; = 0,8j11 = 0,85 # 0) + P(8; = 0, 41 = 7, B # 0)
= (1—¢)"P(B; #0]8; =0, 8541 = 0)
+ (1 —e€p)ep - P(Bj # 0|Bj =0,8j41 = Tp)
= L, Poo(B; # 0) + Lpp~? Po1 (B; # 0),

where Py is the conditional probability conditioning on (5, 8;+1) = (0, 0) and Py, is the conditional
probability conditioning on (5, 5;+1) = (0, 7,). Similarly, we can derive

P(8; = Tp7Bj =0)=Lyp "’ Pm(B]‘ =0)+Lyp %’ Pll(Bj =0),

where PPy is the conditional probability conditioning on (5;, 3j+1) = (7,0) and IP1; is the condi-
tional probability conditioning on (8}, 8j4+1) = (7p, 7). When p is even, by symmetry in this design,
the above expressions do not change with 5. When p is odd, this is true except for 5 = p; however,
this single j has a negligible effect on the expected Hamming error. We thus have

E[H(3,8)] = Lyp-Poo(B; #0) + Lyp' =" - Por(B; # 0)
+Lypp' ™" - Pio(B = 0) + Lyp' ™" - P11(B; = 0). @)

It remains to study the probabilities in (). Let g; = x’y/+/2log(p) and §; 11 = 2, 1y/+/2log(p).
For most methods considered in this paper, Bj is determined by (g, ;+1) only. Define

R = {(h1,ha) €R?: (§,3;11) = (h1, ho) implies that 3; # 0}. (3)
Write § = (1, 9=2)’. Then, we can re-write (2)) as
E[H(3,8)] = Lyp-Poo(§ € R)+ Lyp' ™" Poi(j € R)
+Lp " Pro(f € R)+ Lpp' ™ - Pru(j ¢ R). €))
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In the settings of interest in this paper, conditioning on each realization of (8}, 8;41), it can be shown
that

1
g ~ N (u, 72), for some fixed 1 € R? and & € R?*2.
2log(p)

For any x € R? and S C R?, define
d%(x,S) = igg{(a:—v)’ifl(x—v)}. 3)

We apply Lemma 6.1 in |Ke et al.|(2020) to get that, as p — oo, (L, denotes a multi-log(p) term; see
Section 3] or the notations below)

P(j € R) = Lyp ®=0R) P ¢ R) = Lyp~ =R, ©6)

Combining (6) with (@), we can get the rate of convergence of the expected Hamming error, if we
calculate the following quantities:

» The set R (we call it “rejection region”). The rejection region depends on the definition of
the method and the choice of tuning parameters.

* The distances dx (¢, R) and dx(p, R¢). Note that (¢, ) depend on the realization of
(Bj, Bj+1)- Therefore, we need to calculate (1, ¥) for each of the four possible realizations.

In the remaining of this supplemental material, we prove Theorems [2}{6]and Proposition[I}f2] For each
theorem, the proof can be divided into three parts:

(a) Derive the rejection region R.

(b) Apply @)-(B) to calculate the rate of convergence of E[H (3, 3)].
(c) Calculate the phase diagram based on the result from (b).

Throughout the proof, we use L,, to denote a generic multi-log(p) term, which satisfies that L,p° —
oo and L,p~¢ — 0 for any € > 0. We also frequently use the notation:

Definition A.1. For p € (—1,1) and u,v € R?, define d,(u,v) > 0 by d2(u,v) = (u1 —v1)* +

(ug — v2)? — 2p(uy — v1)(uz — v2).

In our proofs, we also frequently calculate the infimum of di(u7 v), for v a line in R2. The following

lemma is very useful. Its proof is elementary and thus omitted.

Lemma A.l. Fix p € (—1,1). Given real numbers A, B,C such that AB # 0, consider a

constrained optimization over x = (11, 2) that minimizes d2(z, (0,0)) = a3 + 23 — 2px 29 subject
; _ ..« —C(A+pB) —C(B+pA)

to the constraint Az, + Bxo + C = 0. The solution is ©§ = ATTB19,A8 AT BT A"

and the objective function evaluated at x* = (x5, %) is

C%(1—p?)
9, % A
d,(z*,(0,0)") = A2 + B2 + 2pAB’

* __
and T35 =

B PROOF OF THEOREM [2] (ELASTIC NET)

As described in Section [A] our proof has three parts: (a) deriving the rejection region, (b) obtaining
the rate of convergence of E[H (3, 8)], and (c) calculating the phase diagram.

Part 1: Deriving the rejection region. Recall that the rejection region R is as defined in (3). Write

hi = x%y/\/21log(p), ha = ¥ 1y/+/2log(p), and A = /2qlog(p). Consider a bivariate Elastic

net problem, where (51, (;2) minimizes
1 1 1
L) = 30|, §] b vhe Vbl -+ gulolP )

It is seen that (Bj, Bj+1) = /21og(p) (b, by). Hence, R consists of all values of h such that by # 0.

Fix p > 0. The next lemma gives the explicit solution to (7)) in the case of hy > |hs|. It is proved in

Section[B.1l
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Lemma B.1 (Solution path of Elastic net). Consider the optimization in (7). Suppose hy > |ha| > 0.
Writen = p/(1+ p).

* When \/q > h1, we have 31 = 32 = 0.

e Ifhy > nhy, when hﬁ%z;“ < /4 < hi1, we have by = hlllf, and by = 0;

When /q < h"‘%’%}“ we have

hi—va  ha—q ha—va  hi—yq
b, — tn 1T A TR A T
1 — 1 2 ) 2 — B )
- 1—n
* if hg < nhy, when M < /q < hy, we have by = H\f and by = 0;
When /q < %fTJrghl we have
hi—va  hat+Vq ho+vaq  hi—Vq
I;l = Ltp il I+p 62 = Ltp " 14p
1— 772 ’ 1— 772

We now use Lemmato derive R. Partition R? into 4 non-overlapping regions:

M1 = {(hl,hz) : hl > |h2|}7 M2 = {(hl,hz) : hl < —|h2|},
M3 = {(hl,hg) 2 hy > |h1|}7 M,y = {(hl,hg) thy < —|h1|}

First, we derive R N M;. By Lemma as ,/q decreases from oo to 0, 131 is initially zero and then
becomes positive when /g hits 11 (second bullet point of this lemma). Then, if we further decrease

/4 the value of by is always increasing (third bullet point of this lemma) and remains positive.
Therefore, /q < h; is the sufficient and necessary condition for 131 to be nonzero. It follows that

RN M, = M; ﬂ{(hl,hg) chy > \/6}

Second, we consider R N Ms. Note that (hq, he) € R N My if and only if (—hy, —hs) € R N M.
Additionally, if we simultaneously flip the sign of (h1, he, b1, b2), the objective in (7) is unchanged.
It follows that

RN MQ = {(hl, hg) . (7h,1, 7h2) ERN Ml}

Next, we derive R N M3. Note that (hy, hy) € Mj if and only if (he, hy) € M;. Moreover, if we
swap (h1,b1) with (hg, b2), the objective in (7) is unchanged. Hence, we can obtain R N M3 as

follows: We first find the collection of (h1, he) € R N M such that 132 = 0, and then switch the two

coordinates hj and hg to get R N M3. To this end, by Lemma for (hy, ha) € RN My, 132 # 0if
either ho — nhy > \/q(1 —n) or hg —nhy < —/q(1 + 7). It follows that, for (h1, ho) € R N M3,

by # 0if either hy — nha > /g(1 — 1) or by — nha < —/g(1 + n). It implies that
RN Ms = MsN ({(h1,h2) : by —nhe > /(1 = n)} U{(h1, h2) : by — nha < —\/q(1+n)}).
Last, we obtain R N My by
RNMy = {(h1,ha): (—h1,—h2) € RN Ms}.
Combining the above results gives
R = {(h1,h2) : hi —nha > /q(1 —n), h1 > /q}

U{(h1,h2) s hy = nhe > /q(1 +n)} U{(h1, h2) : hy —nha < —/q(1 +n)}

U{(h1,h2) : h1 —nha < —/q(1 — 1), h1 < —/q}. )
See Figure ! 1| for a visualization of the rejection region (recall that n = p/(1 + u)).

Flgurelonly depicts the rejection region for p > 0. For p < 0, we can similarly draw the rejection
region, but it is not necessary for the proof of this theorem. In Part 2, we will see that, by carefully
utilizing the symmetry in our problem, we can derive the rate of convergence of the Hamming error
for p < 0 without deriving the rejection region directly.
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p=05,A=1.5, u=0.5 n=p/(1+ W)

h hy=hy
? h1 = ph;

1=nh2+A(1—-n)

hy = phy
by=nhy +A(1—n)

ha=nhy

hy =nh; —A(1+n)
‘71

h, = nhy +A(1+n)

hy=—hy

Figure 1: The rejection region of Elastic net for p > 0.

Part 2. Analyzing the Hamming error. We aim to use (4)-(6) to derive the rate of convergence

of E[H (3, B)]. Recall that §; = ziy/+/2log(p) and go = 2’ 1y/+/21og(p). Itis easy to see that

g ~ Na(u, ﬁg(mﬁl), where the covariance matrix ¥ is the 2 x 2 matrix with 1 in the diagonal and
p in the off-diagonal, and the vector y is equal to

_ {0 _ VT _ | VT _ T+ p)vr
Hoo ol Ho1 \/; ,  H10 ,0\/? y  M11 (1+p)\/77’
when (8;, B;11) takes the value of (0,0), (0,7,), (7,0). and (7, 7). respectively. By @)-(6).
E[H (3, B)] = FP, + FN,, where
FP, = Lpplfd‘é(uoo,R) Jerplfﬁfdf:(pm,R),
FNp — Lpplfﬁfd%(,u.lo,']zc) +Lpp17219*d§;(l4411,726). (9)
It suffices to calculate ds;(uoo, R), ds (o1, R), ds(p10, R€), and ds(p11, R€).

First, consider the case of p > 0. The expression of R is given explicitly in (8). By the definition in
(B) and Definition|A.1} for any S C R* and pu ¢ S,

inf d2 (1, €). (10)

1
dy(p, 8) = 1=

If S can be expressed as the interaction and union of finitely many half-planes, then the point £* that
attains the infimum must be on the boundary line of one of these half-planes. We thus only need to
calculate:

(i) infeep di(u, €) for the boundary line £ of each half-plane in the definition of S (with
verification that the tangent point on £ is achievable on the boundary);

(i1) dﬁ(u, () for each point  that is a vertex of S (i.e., the intersection of two boundary lines).

For (i), we apply the formula given in Lemmal[A.T] For (ii), we apply Definition[A.T|directly. These
calculations give a finite collection of values. In (i), the £* that attains the infimum may not belong to
S if that happens, we delete it from the collection. Finally, inf¢e s d,%(,u7 €) is the minimum of the
values in this collection.
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Since R and R¢ can be expressed via the interaction and union of finitely many half-planes, we
follow the above routine to calculate the desired quantities. Take dx (g1, R) for example. Recall that
por = (py/7,+/7). By (I0), it suffices to calculate infeer d? (o1, £). The region R has 6 boundary
lines, but since p > 0, the infimum can only be attained in either of three cases:

* onthe line £y : hy — nhe = \/q(1 —1);
s onthe line £y : hy = |/q;
* on the the vertex v* = (,/q, \/q)’, which is an intersection of £; N L.

Letx = (z1,22)" = (h1 — py/r, ha — /1)’. We can re-write £, as a line £ for ;, which expression

isxy —nre = (1 —1)y/q— (p—n)y/r. Similarly, we can re-write Ly as a line £y: x1 = /g — py/T.
We apply Lemma([A.T|to get

. . o la=mya—(e—n)vr*a-p?
glengl d2(po1,€) = xlen[gi d2(x,(0,0)') = [ fl N Qpn]

inf 5 (uor, ) = inf, dy(, (0,0)') = (V= pv7)*(1 = )

ko1, v*) = o ((Va, /@), (VT V/T)')
= (V- oV + (V3= VD = 207 = o) (T~ V)
The value of infeer d%(,u()h €) is the minimum of the above three values. In fact, the distance d,,

is related to the size of an ellipsoid that centers at (p+/7, 1/r)" and hits the boundary of R. As /7
increases from zero, the center of this ellipsoid moves upwards on the line of h; = phsy. Consequently,
the minimum of the above three values is initially (i) inf¢c, dz(,um, &) when +/r is appropriately

small, then (ii) dﬁ( o1, v*) when /r is moderately large, and finally (iii) infec -, df)( o1, &) when
/1 is sufficiently large; see Figure We now figure out the range of /r for each of the three cases.
Recall that v* = (\/q,/q)’. Let £ = (£,£3)’ be the vector that attains infec, d2(p01,&). We
have an explicit expression of £* from Lemma|[A.1] By equating it with v*, we can solve the critical
value of /7 at which case (i) transits to case (ii):

Vimui=G=Vitai- ) = V=

Similarly, let £* = (é{, 55)’ be the vector that attains infeez, d% (01, €)- By equating & with v*, we
can solve the critical value of /T at which case (ii) transits to case (iii):

)

3

oA [(L=m)y/@— (p—m)V/r](p—n) 147
Vi=v =8 =Vr+ T+ 02 —2pm \/;—m\/zl
We combine the above results to get
(1= ) (Vi — oy iVFS e
it d3(por, €) = § B (VT VD) (V7 V). if 55V < VTS EEVE (D

1—p? :
T =) ya — (p— Vi3, if > g,

Recall that = p/(1 + ) is a shorthand notation. We plug (T1) into (T0), and then we insert it into
(). This gives the second term in FP,,. We can follow the same routine to derive every term in FP,,
and FN,,. We omit the details but summarize the results in Theorem [B.T]below.

Next, consider the case of p < 0. We re-parametrize the linear model by replacing (11, ;1) with
(—2j41, —Bj+1). After this re-parametrization, the (j,j + 1) block of the Gram matrix is a 2 x 2
matrix ¥ whose off-diagonal entries are —p = |p|. The rejection region is defined by the solution
path of (7) associated with |p| > 0. This allows us to use the expression in (8] directly with a simple
replacement of p by |p|. There is no need to re-calculate the rejection region for a negative p.

Let g1 = 2y/+/2log(p) and g2 = 2/, 1y/~/210g(p). We still have § ~ Na(p, ﬁg(mz). How-

ever, the four realizations of (3;, 811) become (0,0), (0, —73), (7,0), and (7, —7;). Therefore,
the mean vectors i have changed to

O P A R [
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Similar to (@), it suffices to calculate dx: (oo, R), ds (o1, R), ds (10, R¢), and dx(p11, R€). Here
R is the same as in Figure[T] but the locations of the  vectors have changed. Since R is centrosym-
metric, ds;(too, R), ds (101, R), and dx (p110, R€) are actually the same as before. We only need to
re-calculate d% (p111, R¢). The calculation routine is the same as that for (TT). We omit the details but
present the results directly in the theorem below.

To summarize, in this part, we have proved the following theorem:

Theorem B.1. Suppose the conditions of Theorem@hold. Let A = /2qlog(p) in Elastic net. Write
n=p/(L+p). Asp — oo,

FP, — Lppl—min{q, PEAGFVDY FN, — Lppl—min{wfz(ﬁ,ﬁ), 20+ 5 (VEVD) }
where (below, dfp‘ (u,v) is as in Deﬁnition

(i~ IR IV <

AR ND = { T (B (oVE V), I v < v < Hif v
[(1*|77|1)_\~_/32*_(|2P||pT||T177||)\/ﬂ+7 if\r> 11;2; NGT

R Va) = min{ (7 - g, VU VI,

(L= P+ Vi = vl

f(Vr,va) = L% — 20

Part 3. Calculating the phase diagram. By Theorem B.1] the Hamming error is FP,, + FN,, =
Lppl_h(Q$197T), where

h(g;9,7) = min{min{q, I+ [L(Vr,va)}, min{d+ fo(Vr,4), 29+ fs(Vr, ﬂ)}} (12)

To calculate the phase diagram, we need to find ¢* that maximizes h(q; J, ) and then investigate the
conditions on (r, ) such that h(¢*;9,r) > lor ¢ < h(¢g*;9,7) < 1or h(g*;¥,r) < 0.

We first prove that » = 1 is the boundary between the Regions of Almost Full Recovery and No
Recovery, i.e., the boundary separating ¥ < h(¢*;9,7) < 1 and h(g*;9,7) < 9.

When r < ¢, we need to show h(g;9,r) < 9, Vq. If ¢ < 9, then h(g;9,r) < g < 9. If
q > 1, then we look at f>(/7,/q): Now we have 0 < fo(/7,/q) < (v — /)% = 0. Thus
hg;9,7) <9+ fa(V7r, /@) = 9.

When r > ¢, we can always find suitable ¢ to make h(q*;9,r) > h(g;9,r) > ¢. It is left for
later discussion whether h(g*; ¥, r) is greater than 1. In fact, such ¢ can be any value satisfying
max {9, (2=111)2y} < ¢ < 7, which always exists because 2517 < 1. Since r > ¢, we know

T—n]| 1—|n]

f2(\/7,/q) and f3(y/7,/q) are strictly positive from their definition; since (1 — |7])\/q > (|p| —
In|)v/7, we also know f1(y/r,/q) > 0. Since all four components of h(q; ¥, ) in (I2) is greater
than 1, we have the desired result.

To sum up the discussion so far, we have shown that » = ¢ is the curve separating the regions of
¥ < h(g*;9,r) < 1and h(g*;9,7) <.

For the rest of Part 3, we try to find the boundary between h(q*;9,r) > 1 and 9 < h(q*;9,r) < 1.

We need an important fact about such boundary, not only for the proof of Elastic net but also for all
other methods. Recall the definition of FP, and FN,, in (9), and we actually have the general form

FPp — Lppl—min{d%(uoo,R), 19+d2>:(y,01,7?,)}7 FNp _ Lppl_min{ﬂ+d22(ulo772c)’ 219+d22(M11,RC)}7
and
h(q; 0, ) = min{min{d3 (o, R), V-+d% (o, R)}, min{o-+d2 (0, R), 20+ (1, R)} }.

As an important fact, we always have the following relationship at the boundary:
min{d%(ﬂoo, R)a U+ d%(HOIa R)} = mm{ﬁ + dQE(,ulov R)7 29 + d%(ﬂlla R)} =1 (13)
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This is because: First, at the boundary = r(¢) , we must always have h(g*; ¥, r(})) = 1; otherwise,
since h(q; ¥, r) is continuous in (g, r) for fixed J, it would contradict the definition of the boundary
itself. Second, the exponents of FP,, and F' N, has to be equal. This is because if we change the tuning
parameters for fixed (¢, r'), it can only enlarge or shrink the rejection region R, and thus the effects
on FP, and FN,, would always be in the opposite directions. As a result, if the exponents of FP,,
and FN,, are not equal at the boundary, we can change the tuning parameters to make h(g; 9, r) > 1.

With the important fact, we can proceed our discussion. By the definition of h(g; ¥, ) in (I2)), it gives
us 2 x 2 = 4 cases respectively for p > 0 and p < 0. We discuss them one by one and summarise
the results when the full phase curves are complete. For brevity, we also denote \" = /g for the rest
of Part 3.

When p > 0, we have four cases.

First, if N2 =9 + fo(y/r, N) = Land 9 + f1(y/7, N) > 1,20 + fa(v/7, \') > 1: we have X = 1.
From ¥ + fo(y/r, A') = 1, we know

L—n

L—pn|"

T+n2—2
ﬁ:max{lm_ﬁ,wﬁ_w
—p
We also know from ¢ + f1(y/r,\') > 1, that since /7 > X' =1, /r < ;:—Z - 7W\/1 — 1,
from 29 + f4(\/r, \') > 1, that /r > VH" 2p7'\/1—2

(1-n)(1+p)

1+p
After roughly interpreting the requirements we make two points: (i) we always have
1 + —2pn 1412 —2pn
Vitn?=2m gy 1 S VI =20 s (14)
1 —pn (L=n)(1+p)
and thus the requlrement from 29 + f4(y/r,\) > 1 is loose. This can be proven by showing

1_77 1 \/1+7]2—2p7] \/1+7] —2pn . .. L.
o B s s and = > (1 S ICE™) respectively. (ii) Actually, we can eliminate the
V1
curve \/r = Tnpn V1I—9+ =L from this step, without using the requirement from 29 +

fa(x/T, N) > 1. (As a result, the same proof holds for the corresponding case of p < 0.) This is
because if we put together

VI 2T+ 5 > 14T 0

1—pn

V1412 —2pn A=+ L=n 1—n _ V14n*—2pn 7
1—pn v+ l—pn —  p—1n p—n 1-9
we will have no solution. To be more specific, the first inequality gives us /1 —19 >
n(l—p) . . . _ {A+4md—p)
—0_"F  and the second equation will eventually give us /1 — 9 <
V1+n2=2pn—1+pn d Ve T ()12 —2pn

However, the upper and lower bounds on /1 — 1) admits no solution, because we can prove

n(1— 1 1— . . P .
\/1+n;]£ 2PZ)71+P77 > (1+(p)—"\_}]ii772p*)2ﬂ77 jusy by simplifying it for a few steps.

To sum up, the first case gives us /1 = 1 + /1 — 1 with the requirement /7 < 1=n _

p=n
V1+n2=2pn
ps V1—=19.

Second, if ¢ =20 + fy(/r,N)=1and 9+ f1(/r,N) > 1,9+ fo(/r, N) > 1, we will need

V1+n*—2pm
Vr= YT TP Ty
(1 =n)(1+p)
while requiring /7 > max {1 +V1 -9, 1J1ri2p;2pn V1—-9+
ble from Equation (T4). No curve is produced in this case.

Third, if 9 + fi(v/r, N) = 9+ fo(a/r, N) = 1,and X > 1, 29 + f3(/7,\) > 1, we will know
from 9 + fo(y/r, \') = 1 that

Nipra— 1-
\/;max{/\'wL\/lﬂ,W\/lﬁJer_p?;}.

1 } We know this is impossi-
—pn
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We can use the same method as in the first point of the first case to show that 29 + f3(y/r, \') > 1is
loose with A" > 1.

Now the curve seems to have two choices, but the latter one is actually impossible. When +/r =

7&“}2—2%\/1 — 9+ )\’11__—;;], we have

1—pn

1—pn 1—pn
N > 1

{W=Aﬁ$wffmﬁ—=VW%MﬁﬂHX“

_ (+p)V1+n2=2pnV1-

which implies \' = =Dl
the requirement of 20 + f3(+/r, \') > 1, because with such \' > 1, ¥——=— 1+n _2’)" V1—-9+ /\’

X + +/1 — 19 cannot hold. To see this, we can compare - Jlr” o 1 =9+ Ni=L 1— cancellmg
out “4/1 — 197, we have

Vit =2pm o n(l—p) (+p)VI+9?—2pm

1—pn ~ 1-pm (1-p)(1+n)

Simplifying this for a few steps, and we will arrive at “4/1 +n2 — 2pn > 1 + 1" which gives a
contradiction.

> 1. We can eliminate this case now, without considering

We can only have one case, where A’ + /1 — 1 is greater:

{WZAﬁ$”TTMﬁﬂhX+ﬁﬂ9
N> 1

. . — V122 . .
To sum up, the third case gives us the curve \/r = [}Z + # v/1 — ¥ with the require-

1

ment \ = {p_z + VH”LQ’W] V1I—9>1.

Fourth, it 9 + fo(y/r,N) = 20 + f3(v/r,N) =1land N > 1,9 + f1(y/r,\) > 1, we have the

same contradiction as the second case, that
\/1 —2pm v/ 1 —2pm
+ 7?2 o 120 + + 7?2 on M0+ )\/

(A=n1+p) - L—pn 1L—pn

cannot hold.

V

Summarising the cases of positive correlation,, we have two curves:

Vr=1+V1-19
1-— V1 2-2

\/;:[ 77+ +7 pn] A_9
1—p 1—p

V/14n2—2
and the intersection point of the two curves is exactly at {p 1 4 Jrln_pm]] v1—19 =1sothe

two curves can be summarised as taking the maximum.

When p < 0, we also have four cases.

First, if N2 = 0+ fo(y/r, N) = Land 9 + f1(/7, N) > 1,20 + f4(\/7, \') > 1: We already know
from the same proof when the correlation is positive, that /r = 1 + /1 — ¥ is the only admissible

> v 1+n2—2pn \/7_’_

A+DA~Iel)
Second, if \? = 29 + f4(\/r,N') = 1land ¥ + f1(v/7,N) > 1,9 + fo(y/7, N) > 1, we will need

V= (m)\/i—i—l "andweneed\f>1+\/ffmm19+f2(\[ N) > 1.

curve. Now we additionally need it to satisfy /7 > = ‘p‘
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To sum up the first two cases, they give us

V1 2-2 1
Vr=maxd1+vi—g, Y2 T2 gy .

(T +[nD(1 = lp]) 1—1p|
and we need /1 < ‘ll)‘f_lm — X 1|:|n_2|;|2pn V1—=9dfromd+ fi(y/r,\) > 1.

Third, if 9 + f1(y/r,N) = 9+ fo(y/r,N) = 1, and X > 1, 20 + f3(\/r,N) > 1, we
already know from the same proof when the correlation is positive, that we have only one

curve /7 = {177 4V 1J1rj2p2pn] v/ 1 — 9. Now we only need to update the requirement from

29 + f3(y/r,N) > 1, which is
V1En? =2 !
Jrs MIEr =2 g N

(L + )1 —1pl) 1—1pl
Plug in \' = {Vi_lpnl + \/1Yﬁp|2pn} V1 — 4, it is equivalent to

1- V1 2—-2 v1 2-2 1-—
|| + +n Fn N tn Fn VI—0+ ‘77|m
1= 1p| 1—1p| 1 =2[p| + pn 1+ [n|

where the RHS is another curve which will show up in the next case.

Fourth, if 9 + fo(3/r, N') =29 + fs(y/r,N)=1and N > 1,9 + f1(y/r,\) > 1, we will have the
most tedious case.

It can be implied by ¢ + fo(y/r, N') = 29 + f3(y/r, \') = 1 that

1—n| 1 > V1i+n*—2np V1i+n?—2np
X( - =v1i—9¥—1 "1y "I
lpl =1l 1—p| lp| = In| (L+ 0L —|pl)

When 1+ pn — 2|p| < 0, the equation admits no solution, because the coefficient of \’ is not positive.
In this case, if we look back at the curve in the second case F'P; = F N5, we will notice that

2 _ _ 2 _
AR i A NV TR U e bl e L NI
(+ D= [o]) =1 S =l el

has no solution either. As a result, when 1 + pn — 2|p| < 0, there is simply no Exact Recovery region
ind € (0, 3).

When 1 + pn — 2|p| > 0, we can proceed to solve for \’ and then /7

V1412 —2pn { lpl = Inl
N=Y_T1 P |ph)vVI-0+ V1—29
1 —2[p[+ pn (1= le) L+ [n|

Vitn?—2 1—
ﬁ:ﬂpn[ﬁﬂ“ ] /71_219}
1 —2[p[+ pn 1+ |n

|
For all the requirements from A > 1 and ¢ + f1(y/r,\') > 1, we actually need \' > 1 and

VT > max{)\’ +v1 -9, @M+ N 1=l }

1—pn 1—pn [*
The requirement A’ > 1 is actually

\/1+772—2m7[ 1—n| ] V1+n*—2pn 1
Yoo T AT =9+ Vi > Y- A T+
1—2[p[ +pn 1+ |n| (L4101 = o) 1—1p|

and /1 > N + /1 — ¢ is actually
VItiE =2 1 1- VIt =2
e N LT E [ il VI 2\ e

1 —2[p[+ pn 1+ [n| 1—|p| 1—1p| -
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So we can already conclude, that the diagram is

1- 112 -2
Vr=max {1+ V1—0, 1_:Zl+\/ iy pn] T3,

1—||
VIt =2 s Vit =2 [ o 1|l 755
(L+ D) (L = |pl) 2 1*Ipl (1 —2[p| + pn)+ [ + + [n] b2 }}

1-2[p[+pn

v 1J{ij};2pn VI=9+ N1 1= |7’| It is actually loose, but the proof may be tedious (and unimpor-

tant). We just need to prove that when 1 — 2|p| + pn > 0 and

However, we are left with one last constraint Vtn® =2 [\/1 — 9+ 1 +| \/ 1—219} >

V1+n® =2 lp|l = In|
N=XY"TT T p)vVI—9+ VI—29| > 1,
1=2p[ +pn ! 1+ [n|

we always have \' + 1 — ¢ > Y——=— Ltn?— P /T—0 4 N3=2 which is equivalent to

1—pn 1—pn
(1 —lpDv1+n*—2pn ﬁJrlpl Inl V1+n*—2pm T30 > V31t —2pm— QA -pn) —F5
1—2[p| +pn L+nl 1—=2[p|+pn Inl(1 —[pl)
V1402 =2pn—(

We first look at one sufficient condition, L=pm) < 1 By simplifying this inequality, we

[nl(1—[pl)
get /1 4+ 0% — 2pn < 1+4|n|—2pn. The RHS is positive, because: (i) If |p| < 0.5, 1+|n|(1—-2|p|) >

0; (ii) If [p| > 0.5, recall 1 = 2|p| + py > 0 = [n| > 2=t — 14 |p(1 - 2/p]) >

1- W > 0 for |p| > 0.5. Then we can equare both sides and proceed, and finally getting

np < 3.

As aresult, when pn < %, we already have a sufficient condition for what we want to prove. When
pn > %, we look at another sufficient condition:

We only need to prove another sufficient condition, by looking at the coefficients of /1 — 4,
(L= oDV +n* =20 _ \/1+n*—2pn— (1= pn)
1—=2|p[ +pn - n(1 = |pl)
which is equivalent to verifying
(1= [nl = 2lpl + 3np — nlp*) /1 + 1% = 2pn < (1 = pn) (1 = 2|p| + pn)

It is elementary mathematics that (RHS — LH.S) is always positive as a function of (|p|, |n|) under
pn > 5,1 =2[p|+pn>0and 0 < [n| < |p|.

Summarising the cases of negative correlation: The diagram is

N
m, Vit "”]m7

\/;:max{l—i—\/l—ﬁ, il
1—1pl 1—1p|

V1+n*—2pn V1+n®—2pn —Inl 7=
arma— ¥t 2t ||(1—2\p\+pn) [ 7+ Y

B.1 PROOF OF LEMMA [B 1]

Recall the optimization in (7); the solution b = (by, b2) has to set the sub-gradient of the objective
function to zero. As a result, the equation of the sub-gradient for b = (b1, bs) is:

1 [bs] + V4 |sgn(b)| T2 [bs] = |ho
b ] vl e[ - i

10
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Now we begin to find out the solution path. Fixing p, we decrease ,/q from a sufficiently large value
to see when the variables enter the model. We assume h; > 0 and 0 < |ha| < hy. Other cases can be
computed in a similar way.

Stage 1: When /q is so large that neither of (x;,2;41) is in the model

b ) v ) i) - ]
it requires \/g > /g1 = max{|hy|, |ha|} = h1.

Stage 2: When /q crosses /q1 = h1, we assert that variable x; has to enter the model, while ;4
does not. This is because:

* by has to be positive. If it is negative, we have by — /g + p - 2b; = hy, which implies by
has the same sign as hy + \/q > 0, which is a contradition.

* by cannot enter the model at this point. Otherwise, we have (1 + )ba + /g sgn(bz) = ha,
for |ha| < /q < hy. Considering the sign of by, we have a contradition.

So b1 has to enter the model as a positive number. Now the equation is

b 18] ] 48] - ]

Thus b, = hﬁf and pb; + ,/qsgn(0) = hy. Since sgn(0) € [—1, 1], we need

p
1+p

lha — 1+7\f| V4 15)

By discussing the sign of the content of the absolute value as ,/q decreases, we have the following
two cases:

Stage 3, Case 1: When hy > nhy (recall we define = - as a shorthand), and ,/q crosses
V& = h2 "hl , then x4 1 enters the model and b is posmve This is because Equation (I3) is now

ha — nhy + 77\[ < V@ as g = /2 = h2 "h1 , the sub-gradient of |by] is taking the value of
1 € sgn(0), so by has to enter the model as a posmve number.

b vl e = 1)

h1—+/q ha—+/q ha—+/q h1—+/q

by — 1+p 1+p by — 1+p " 1+p
b 1—n2 ’ 1—n?
n n

In this case, we solve

and get

Stage 3, Case 2: When hy < nhy, and |/q crosses /g2 = i 11+nh x ;41 enters the model and by is

negative. This is because reviewing Equatlon. we always have ha — nh1 +1,/q < /¢, and thus
when ,/q is small enough to make |y — nh1 +nv/4| = /¢, it has to be —ha +nhy —1,/q = /4.

As aresult, when /g crosses /qz = nhll i , by enters the model as a negative number. Solving
1 p 1 bl |
b v -
we have
hi—va  hat+4q ha+va  hi—V4q
b _ 14+ 14+p b _ 14+p 1+p
! 1—n2 ’ 1—n2

11
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C PROOF OF PROPOSITION[I| (MARGINAL REGRESSION)

Proposition[T]is about the connection of Elastic net to Lasso and marginal regression.

To prove the assertion about Lasso, we only need to quote the results from the Corollary 4.2 of |Ke
et al.|(2020) on the phase curves of Lasso. In fact, the phase curves of Lasso can be exactly obtained
by setting ¢ = 0 in Theorem [2] As p decreases from some positive value to zero, the curves in
Theorem 2 just converges downwards to the phase curves of Lasso.

To prove the assertion about marginal regression, we need to fully study the variable selection method
based on marginal regression, which we will be devoted to for the rest of this section.

Definition C.1. Marginal regression refers to the variable selection method which ranks all the
variabels according to {|X'y|; : j € [p]} and sets some cutoff point t for the ranking. Then the
variables {j € [p] : | X'y|; > t} is selected.

Soft-thresholded marginal regression behaves the same as Definition[C.T]in terms of variable selection.

Remark 1. If we focus on (1 + p) BEN, then Lasso and soft-thresholded marginal regression are
Jjust two limits of p = 0 and . = oo, in terms of the solution and its path, the shape of the rejection
region, and phase curves.

As described in Section [A] our proof still consists of three parts: (a) deriving the rejection region, (b)
obtaining the rate of convergence of E[H (3, 8)], and (c) calculating the phase diagram.

Part 1: Deriving the rejection region. According to Definition|C.1] the variable selection based on
marginal regression can be decomposed to every correlated pair of variables, (z;, z;+1). It directly

thresholds (z%y, ¥, 1y) with ¢, and if we divide (zy, 2} 1y,t) with \/2log(p), it is equivalent to

thresholding hy = 2%y/+/21log(p), ha = 2 1y/+/21log(p) with t' = t/+/2log(p).

The solution path of marginal regression is very straight forward, so we present it in Lemma |C. 1
without proof.

Lemma C.1 (the solution path of marginal regression). The definition of (hy, ha, by, by) follows from
that ofLemma and we still assume hy > |ha| > 0. The solution path of marginal regression
defined in can be describes as:

1. Whent' > hy, we have by = by = 0.
2. When |ha| < t' < hy, we have by %0 and by = 0.

3. Whent < |hs|, we have by % 0and by # 0.

We now use Lemma [C.1]to derive the rejection region R of marginal regression. Recall that R is the

set of h = (hy, ha)’ such that by # 0. In fact, the same procedure of Elastic net can be copied here,
except that the specific behavior of the variable selection method is different. Lemma|[C.1|tells us it is
just

R = {(hl,hg) hy > t/} U {(hl,hg) thy < —t/} (16)
Part 2. Analyzing the Hamming error. The first steps of analysing Elastic net applies here as

well, and we just need to compute dx; (oo, R), ds(po1, R), ds (10, R¢), and dx(p11, R°) given
the different shape of R. Then we can compute

FP, = Lppl—min{d%(uoo»R), 19+d22(H01,73)}’ FN, = Lppl—min{ﬂ'*'d%(#mﬂzcl 219+d2v;(u11,736)}.

Finally E[H(/B, ﬂ)] = FPp + FNp — Lppl—h(t/;ﬂ,r).

Theorem C.1. Under the conditions of Theorem |2} let t = t'\/21og(p) in marginal regression
defined in[C.1} As p — oo,

FP, = L, - p' ™™ 9+ —lelvii}
FN, = L, - pr {0+ (/=t)1, 20+(A+p)vr-t11}

12
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Part 3. Calculating the phase diagram. By Theorem the Hamming error is FP,, + FN,, =
Lpplfh(tl?ﬁ’r), where

h(t';9,r) = min{min{t’g, I+t —|plvr)t}, min{d+(vVr—t)7, 219+[(1+p)\[—t’]i}}
a7

The first steps of the proof of Elastic net can also be applied directly. We still try to find ¢'* that
maximizes h(t';9,r) and then investigate the conditions on (r,4) such that h(t*;d,7) > 1 or
9 < h(t™;9,r) < lorh(t"™;9,r) < 9.

We can still prove that » = ¢ is the boundary between the Regions of Almost Full Recovery and
No Recovery, i.e., the boundary separating ¢ < h(q*;9,r) < 1 and h(g*; ¥, r) < ¥. The proof just
needs slight modification to the proof of Elastic net.

For the rest of Part 3, we try to find the boundary between the Regions of Exact Recovery and Almost
Full Recovery, i.e., the boundary separating h(¢t*; 9, 7) > 1 and 9 < h(¢*; 9, r) < 1. We can still
leverage the important fact that Equation[T3]holds at the boundary:

min{t?, 9+ (t' = [p|v/r)3} =min{d + (Vr — )7, 20+ [1+p)Vr -7} =1
The above equation still gives us 2 x 2 = 4 cases respectively for p > 0 and p < 0. We discuss them
one by one and summarise the results when the full phase curves are complete.

When p > 0, we set out to prove the final phase diagram is

VT = max{1+\/f \/f}

First,if t? =9+ (y/r —t')2 =land 9 + (¢’ — |p|y/r)3 > 1,20 + [(1 + p)y/r — /]2 > 1, then
t=1andr=1++1-19.

We also need to meet two requirements: /7 < *=1=% Vpl_ﬂ from 9 + (¢’ — |p|y/r)% > 1 and /7 >
1+ . 1*219 from 29 + [(1 + p)\/F —t']2 > 1. The second requirement is not restrictive, and the first
one is equwalent tov1— 1 +p

Second, if t"* = 20+ [(1+p)y/r—t']3 = Land 9+ (y/r—t')3 > 1,9+ (¢ —|p|y/r)% > 1, then we

have no admissible curve. This is because /r = ”lvip 29 and it is required that V> 1l+y/1—

by ¥ + (y/r — /)3 > 1. It gives us no admissible /7.

Summarising the first two cases, we have only one curve /7 = 1 + /1 — 9 under the constraint

VI-9< 32,
Third, if 9 + (' — |p|f)+_q9+(\/77—t’)+=1,andt’z1,20+[(1+p)ﬁ—t] > 1, the

equality gives us f 7=,V1—7Jand t = 1f£ v/1 — 1. We are also required to have ¢’ > 1 and
Vi—29 \/
V> - (not restrictive).

Fourth, if ¥ + (t' — \p\\/f)+ =20+ [1+p)r—t)3 =Landt' > 1,9+ (Vr—t)2 >1,
then we have no admissible curve. In fact, the equality gives us /7 = = pl_ﬁ =t +1V _&p 20
t' = pv/1 =29 + (1 + p)v/1 — . We are also required to have /7 >t/ + /1 — 19 < /1 - 29 >

}'H' v/1 — ¥, which gives a contradition.

Summarlsmg the last two cases, we have only one curve /1 = p\/ 1 — ¥ under the constraint
V1—19 > 1 +p
Summarising the cases of positive correlation, we have proven the phase diagram is /r =

max{1+\/l—19, %\/1—19}.

When p < 0, we then prove that the phase diagram is

\/Fzmax{1+\/7 2 i V1-— 197+\/1—219,1+L/1—2 }
= |pl 1 =2|p| 1—|pl

13
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First,if t? =9+ (yr —t')2 =land 9 + (¢’ — |p|\/7)% > 1,20 + [(1 — |p|)y/r — ]2 > 1, then
t=1andr=1++V1-19.

We also have two requirements, /7 < 1=Y1=2 W and /1 > 1t 1‘ ‘2 We have studied the first one

when p > 0, and know itis 1 + /1 — 9 > %W\/ 1-—9. The RHS of the second requirement is
actually a new curve we will see later.

Second, if t'? = 29 + [(1 — |p|)/7 — ] =land ¥+ (t' — |p|\/?)121,19+(ﬁ7t')3_21,we
have \/r = “52-20 and /r < 2550 r > 14+ VT -0,

Summarising the first two cases, we have \/r = max {1 + 1 -1, 1+17 [1‘5‘219} and we need /1 <

1-v1I-9
ol

Third, ifﬁ+(' plVr)i =9+ (Vr—t)2 =1andt > 1,20+ [(1 — |p|)y/r — ]2 > 1,
then \f - ‘p‘ v/1 — 19, and the two other requirements are t' = 1J_r‘p ‘ V1—49 > 1land /r >

]
VI=29 L IS —c
1—|pl (1-[pl)?

In the next case, we will get another curve /r = Y=~ +2V|p1| 2Y In the above inequalities, the last

one corresponds to |\/1 > +2V|p1| 20 ¢ = }jzl‘ v/1 — ¢ > 1 in the above inequalities
isjust 1 ++/1 -9 < 1_“)‘\/ .

Fourth, if 9 + (t' — |p|y/r)3 =20+ [(1 — |p))yv/r =t =1land ¢’ > 1,9+ (y/r —t')3 > 1, then
we know from the equality that

t/
\/’F:

and we will get this when we solve for ¢':
¢ ' V1I-20 V1-9
[ol  T=lol 1ol o]
If |p| > , this equation admits no positive solution for ¢’. Recall that in the first and second cases,

we also needed Vr < 17V and /r > 1=2% iy the cases of F'P; being tight. When |p| > 1,

ol e
1+1v 1|p|2 < 1= V‘p‘ Y has no solution either, so there cannot be any curve in the interval 0 < ¢ < f.

—V1i-9 t'+vV1-29
ol 1—|pl

if [p| < 1, we can proceed to have the two requirements:

Y= g VT VT 21
V= 1+2\plw > lfél\ V=20 + VT =0
In the above inequalities, /r = YA=Uty1=20 ol /T—29 + 1 2381el /T — 9 is equivalent

ool 2 T ~3lp]
to Y= +2V|p1‘ 2 > lflplx/ 1 — 9. The requirement on #' is equlvalent to r = Y= Jrzv‘pl‘ 20 >
1+/1-29

1-1pl

Summarising the cases of negative correlation: The final phase diagram is

Vi = max{l—k\/i \/IT\/1 ﬁj\/1_219,1+\£ﬁ}
= lel 1= 2|p| L—1p|

When p < —1, /1 has no finite value for ¢ € (0, 1/2), and we do not have Region of Exact Recovery
or h(t';9,r) > 1 atall.

D PROOF OF THEOREM 3] (SCAD)

As described in Section[A] our proof for SCAD still consists of three parts: (a) deriving the rejection
region, (b) obtaining the rate of convergence of E[H (3, )], and (c) calculating the phase diagram.

14
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Before starting, we first recall the definition of SCAD. An alternative way to write the derivative of
the penalty function is:
A - sgn(6) if 0] < A
q(0) = =L sgn(f) ifA<|0] <ar (18)

0 if |0] > aA

ford e R, a>2)\>0.

Part 1: Deriving the rejection region. Just like the first steps of Elastic net, we define

h = (hi,hs)" € R? where hy = rhy/\/2log(p), ha = 2 1y//2log(p); A = N'y/2log(p);

(B4, Bj+1) = \/21og(p) (b1, by) are the entries of the estimator 3SCAP corresponding to (x5, 21 1).

The estimator of SCAD is 35CAD — argming {|ly — XB]?/2 4+ Qx(8)}. Like Elastic net, it can
be decomposed into bivariate sub-problems of each pair of correlated variables. By dividing the

bivariate sub-problem of (x;, z;+1) by v/2log(p), we have
1
L(b) = 5b’ [pl, ﬂ b+b'h+N(g(b1) +q (b)) 19

and the minimizer of the optimization (T9) is (b1, b3). The next lemma proves the solution to (T9)
when hq > |hs|, and it is proven in Section

Lemma D.1 (the solution path of SCAD). Consider the optimization in (19). Suppose h1 > |hs|,
and suppose p > 0.

« When X' > X, = max {|hi], |ha|}, b1 = b2 = 0.

(p+ Dby ifa> 12
e If(p—1)hy < hy < a : 1op
f (p a) ! 2 {1;”0}11 lfafﬂ
1. When N < X and X > |hg — phy|,
2. When X' < |hy — phq],

=0.

e Ifa> 1%pand (p+ %)hl < hy < %phl:

1. When N < X, and N > % by # 0 and by = 0.

2. When X < la=2ha—pla=Dhy 3 - 0 gnd by + 0.

a—2—ap

. Ifhg < (p — %)hl, Ya:

1. When N < \| and)\’>% by # 0.and by = 0.

2. When X' < £le=tiu_le=lz ) o4 0 and by # 0.

e Ifhy < =Lt2hy or hy > HLhy:

1. When X' < Xy and X' > Xi® = 122001 b o2 0 and by = 0.
2. When N < M2 by # 0 and by # 0.

We did not require p > 0 in the solution path of Elastic net, but here p > 0 is needed to cut down
unnecessary discussion. The proof of Elastic net has shown that the solution path of h; > |h2| and
p > 0 is enough to draw the whole rejection region.

Still requiring p > 0, the rejection region looks different for a > = and a < 7=. The first steps
are the same as those of Elastic net, and we only present the rejectlon region here

15
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Whena > 2
P

-1
R = (s, 1) ha = phs > (1= p), b > X by — 2O g 0Py

@] {(hl, hg) :hy — phy > )\l,hg > a)\’} U {(hl,hz) :hy — phy > )\/(1 + p)}

1
U{(h1, ha) : hy — %hg > N1+ %),h1 — phy > X}

-1
U{(h1,h2) : =1+ pha > N'(1 = p), hi < =X, —hs + “)Ll(aj)m > N(1 - aa_p2)}

@] {(hl, hg) :—hy +ph2 > )\/7h2 < —CL>\/} @] {(hl,hg) :—hy + phz > )\I(]. + p)}

—1
U {(h1, hg) —hy + %hg > )\/(1 + %), —hi + th > /\/} (20)

When a < 1%:

A

1
R = {(h1,h2) : hy — pha > XN (1 —p), hy > X, hy > —;—th}
2\
L—=p

-1
U {(hl,hQ) chy — %hg > )\/(1 + %),hl — phy > )\/}

U {(hl,hg) thy — phg > )\/,hQ >

} U {(hl,hQ) :hy — phgy > /\,(1 + ,0)}

1+
2

FU{(h1, h2) © —h1 + pha > X' (1 + p)}

U{(h1, ho) : —h1 + pha > X (1= p), h < =N, hy < ——Lhy}
2\
I—p

1
U {(h1, ha) - —hy + %hg > V(14 %), —hy + phy > N}

U{(hl,hz) i —hy +ph2 > )\/,hg < —

21

When p < 0, we apply the same sign-flipping technique in the proof of Elastic net and still use the
rejection region of positive correlation. Such technique requires considering one more case for p < 0,
which is the elliptical distance from the center u11 = ((1 — |p|)v/7, —(1 — |p|)+/T) to R (plotted
with positive correlation |p| > 0).

Part 2. Analyzing the Hamming error. we allow p € (—1,1) from now on. The analysis of
Hamming error follows the same procedure as that of Elastic net. It is only the shape of R which is
different. For a > %lpl and a < —2—, we respectively present a theorem for the Hamming error

= D
rate.

Theorem D.1. Suppose the conditions of Theorem hold. Let A = N /2log(p) in SCAD. De-
fine a few important points in the rejection region (as noted in Figure 2): A(N,X), B((1 +
[pDA,2X), C((L + alp))N, aX'), D((L = [p|)N', =2X). As p — oo,

FP, — Lppl—nnn{,\’2, 19+f1(\/F,)\’)}7 FN, — Lppl—min{ﬂ+f2(ﬁ,A’), 219+f3(\/F,)\’)}’
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where (below, d‘?p‘ (u,v) is as in Deﬁnition

Nk I <
1,1,, \p\( (|p|\f \f)) lfﬁ < \/f < N
AN N <r<2)N

Ny=qn 2
AN mmkmuj<<mw¢v}#wsw@XP+F%ﬁﬂ

alely | lolyT
R N == I : Io|=s"
mm{l—p2’ 14 P2 o= 1232_2p 1) fvr=X|2+ (a=2)(1+1pl)
(a—2) a—

"2
AR ,
min ¢ =02 [(1 —p)Vr—(1— |P|)>\] if /7 < a(a—2)(1—p )+|p|>\/
1 / alp| p?(a—1) 2 [p[(a—1)(1—p?)
fQ(\/":v )‘/) = 1+M Zpi(agl) |:>\ <1 - af) - \/’F (1 - ﬁ)}
=2l (C, (V7 lolVP) i N < v <
T [( — ) =N if\r = ‘”

The definition of f3(\/r, \') is different for different signs of p. When p>0:
L=V =N, o
mww>1;,““&mw> AT
[(1=p?)y7 = X7 > e

where

h(v/r, ) = “ﬁ¥

(
d(C, (L4 p)v/r, (L4 p)v/T)) iV > P

When p < 0,

L (la=AE— s lX] e 2
hW?M=1_f'Hm{M—fN7%T > 2

k(N a)

where

b [ (1 2) 0o (- )] s

a(a=2)(1—p*)+p

a(a=2)(1—p*)+p

(a=2)(A—p?)+p—p?

4 (D, (1 = |p))v/r, —=(1 = |p))v/7)) if
2 a a— 2
k()‘/a a) = 1+ﬂ<2(a—()}2)_2/ilp2(f2—1) |:_)\/ (1 + %) + (1 - |P|)\/; ’ (1 + %)}

_ N lpl+p
ifVr = o [2 * <a—2><1—p2>—(|m+p2>}

Proof of Theorem|D.I} See the rejection region in Figure [2]for a visualization of the rejection region.

The ellipsoid centered at the point jioo: Easy to see the rate is L,, - pl_’\/z.

The ellipsoid centered at the point po; © We set out to find out f(y/r,\'). Similar to Lasso,
we have: (i) When /7 < %I/pl AT N) = (N — |p|lv/7)2. (ii) When %I/ﬂl < Vr <N,
fily/r,N) = f d*(A, (|p|\/r,+/T)). The point A is noted in Figure (iil) When X < /r < 2,
mwwrgﬂw

Then we need to investigate the green segment in Figure 2] When the ellipsoid is tangent to the green
segment on the right side (i.e. BC), and the tangent point is above Point B, then using Lemmal[A-T]

— el [X (1_a|p\)+f \pl}

L+ St - 2

VT + > 2\

17
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p=0.5 a=6, A=3/2

pla-nd _ o -
ha A 24 = = _%aﬁ) h2 =
hy ~phy=(15p)A
hy /phy =A
/ /r
/C
/ /:‘ hz=-—z-h1
/ /
,f'/’ ;«’ hy= gﬁ‘*'%)hl
/ / hy =222y =A(1 - 2)
/ /if f‘irz =ph1=A
/ | f'é! |
/ hy = phy
/ /
/ /,f
V4 T B —h =0+ )
/ hy=hy =2
/ Phr=h>
j’} / h2=(0-3)h
hy
0
hy="32h,
[‘o’
/ /
/ /
/
&f" ¥
/ /!
/ /
/ /
/ /
/ /
/ /
/ /
/
i’i /
hy1—phy=A
h1~ph2=(1+p)A
=2, A+ 25
a-2 [ = h2= —hl

2

Figure 2: When a > =7,

the rejection region looks like this

which implies /7 > X' [2 + 222" ]

When /7 > X\ {2 + %] , the ellipsoid either intersects with the green line segment BC, or

the red segment beyond C'. However, we need to eliminate the possibility of the ellipsoid having a
smaller radius when tangent to the segments on the left.

We will see that the line segments on the left can indeed be eliminated. This is because when the
ellipsoid is tangent to both the green lines on the left and right,

2 2
(1= %) [N = 22y + BT (1= p?) [ (14 2le)) 4 el

e L+ et~ a
alp| llvr alp| lplv/T
( a—2)+a—2 ( +a—2) a—2 \/; “
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As aresult, when /7 < a), we can ignore the possibility of the ellipsoid intersecting the green or
red segments on the left side. When +/r > a), the right side still has the smaller distance.

when 2 < v/ < X [24 B2 £ (U X) = 2d(B, (1plv/F, /). The point B is
noted in Figure 2]

12 M
when /7 > A {2 + (a—?)(1+|l’|):|,

2
(L= p) [V - o)+

Ly Sl e

min ¢ \?,

fl(\/;a )‘I) =

1— p2?

The ellipsoid centered at the 1115: We only explain one tricky point: When the tangent point to the
segment BC' is precisely Point C,

a 2 a—
2 [V (1-58) - (1)
1+ i - 2es)

plVr + =aX

— a(a=2)(1=p*)+|p|
then v/ = STt —72) -

The ellipsoid centered at 11 = ((1 + p)+/7, (1 + p)/7), when p > 0 : We still explain only one
important point: When the ellipsoid is tangent to the green segment precisely at Point C,

e VR )

2(a—1)2 2p2(a—1)
1+ p(a—2)2 - pa—2

1+p)Vr+ = a\

ala— —p2
then (1 + p)\/7 = %X.

The ellipsoid centered at pu11 = ((1— |p|)v/r, —(1 = |p|)y/7), when p < 0 : We explain one
important point: when the ellipsoid is tangent to the green segment at the Point . Now we have

22 [V (14 28 — (1=l (1 lles)]

@17 2p2(a—1)
1+ 855 — 05

= 2N

—(1=|p)vr +

then (1 = p[)vr = [2 + (a—2)(1|—pl|1j)p—(|ﬂ|+92)]

2) N |p|+p? . L.
Note that even when =P <r< - {2 + (a_2)(1_p2)_(|p|+p2)} , and the ellipsoid intersects

with the rejection region at Point D, it may be tangent to the red segment without being tangent to the

green segment. This is especially true when a < 2 + 1|f‘|p‘ (but this only happens when a < 1%\pl’

the next section.) O

Theorem D.2. Suppose the conditions of Theorem hold. Let X = X /2log(p) in SCAD. De-
fine a few important points (as noted in the rejection region in Figure [3): A(N,X), B((1 +

PN, 2X), C(FHEN, 25), D((1 = [p))N, —2X). As p — o0,

FP, — Lppl—nnn{,\’2, 19+f1(\/F,)\’)}7 FN, — Lppl—min{ﬂ+f2(ﬁ,A’), 219+f3(\/F,)\’)}’
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where (below, d‘?p‘ (u,v) is as in Deﬁnition

(X — |plv/r)? ifVr <
(A, (o7, V7)) if i S VSN
AN = { T iFN < V< 2N
i 2
min { 2%, Lo d?(B, (ol Vi) | 2N < Vi < 38
. /2 1 r 543
min § 125, EHLﬁQD} if = 2+2IZIX
(V7= X)2
2
min § = (L= P2 )VF = (L= [pDN]"  ify/r < e Bhlel o\
fa(VrX) = Ui, " ,
L (0 (V) mﬁﬁﬁwﬂéﬁéw@w
= (1= pP)Vr =X VT2 iy

The definition of f5(+/r, \') is different for different signs of p. When p > 0:
2 _ _ "2 ,
' nm{m py?<1pnh < 2

f3(\/;7>‘/): 1_p2 ! h \/777)‘1 ) —;:2
(1= p?)/r = X] if > 25
where 1) (140)
1-— 1+ . N 5+3
i) = { IS i
E(C(A+p)Vr,(L+ V7)) iV 2 15 ais
When p < 0,
X (1= )= (L4 [DN] i Vv < 20
f?)(\//;a)‘/) = - . 1*p2 *)\/ 2 . ’
1—=¢% | min /[g((x,@ WX e 2
where

& (D, (1= loDVr (1= VD) i 2 <V < 25 2+ e ]
2
BV, a) = § s [N (1) + (= loDvr (14 250
ﬁ* a—2

142
(a
) \ lpl+p*
i > 2 [2 + <a72><1—p2>—<|m+p2>}

Proof of Theorem|D.2] See the different rejection region in Figure[3]
The ellipsoid centered at [1o9: The rate is L, - pl_’\/2

The ellipsoid centered at pip;: Still similar to Lasso, we have

e when /1 < %{M’ (/T N) = (N = |p|/r)2.

* when 1+|/ <Vr <X, ilyrN) = dz(A,(|p|\/77, \/7)). The point A has been
defined in Theorem@ and noted in Flgure @

e when N < /F < 2N, f1(V/7, V) = N2

Then we need to investigate the green segment in Figure[3] When the ellipsoid is tangent to the green
segment on the right side (i.e. BC), and the tangent point is above Point B, then using Lemma[A.T]

- 11— |p)2Vr =+ oy
Jﬁl+¢¥v—muﬂm‘
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p=0.5, a=37, A=3/2

h1 = pha=(1-p)A
hz=hy
hy A 21 s hiypha=A
hy=2h,
hy =232h;
hz = ph1=A
5 y _,’“‘”C =M1+52%)
/ 4 412 = phy
/ /
/
'./
4
/ hy—hy =A
/ pPhy—hy =
/
/
/j By/
hy=(p=3)h
hy
0
hy="2h,
/ / D
/ /
/ /
/ /
/ /
/ /
/ /
/ /
y y
/
hy—phy =2
h1+phy =(1+p)A
h L2 Dh, = AL +.2f) bz — by
Figure 3: When a < 5 | E the rejection region looks like this

. . . 5+3|p‘ /
which implies /7 > Sl N -

When /7 > SBIZ I X', the ellipsoid either intersects with the green line segment BC, or the red

segment beyond C. However, we need to eliminate the possibility of the ellipsoid having a smaller
radius when tangent to the segments on the left.

Actually, we will see that the line segments on the left can indeed be eliminated, without doing
any computatron The case of a < | i isa degenerate case, as we have M > 1+—‘p‘. when

a<y | - From the computation in the a > _‘ | counterpart, the green and red segments on the
left srdes can be ignored.

So we can continue the discussion and present the rest two cases:

e when 2\ < /r < ‘;’ig}p‘ N, rate = d*(B, (|p|+/7, v/7)). The point B is noted in Figure
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5+3|p| y/
e when /1 > Sl A

[ =l el
rate—mln{)\2a (5 + 3|p|) }

The ellipsoid centered at 1110 : Only one special point needs to be investigated. When the tangent
point to the segment BC is precisely Point C (Hlp Ly 2 ),

1-1p| 1-1p|
7172\,)\ {|ﬂ|(12+|ﬂ|) _ 1} \/; 3\
|/ + =
1+ (222 — (1 +1p)) 11l

_ 5+3|p]
then v/ = =tz

The ellipsoid centered at j111 = ((1 + p)+/r, (1 + p)/r), when p > 0. We explain one special point:
When the ellipsoid is tangent to the green segment precisely at Point C,

(1—p)(1—p2)\/; 2\
1+ (522 —p(1+p) 1-p

(1 +p)Vr+

_ 543
then /1 = W)(QJFP)X.

The ellipsoid centered at p1; = ((1 — |p|g\/77, —(1 = |p|)y/7), only when p < 0: This case is
identical to the counterpart proof for a > and nothing needs to be changed. O

1=|pl”
Part 3. Calculating the phase diagram, for a < — | - The boundary between the Regions of

Almost Full Recovery and No Recovery is still 7 = 1, and it can be proven in the same manner as
that of Elastic net. For the rest of this part, we focus on the boundary between Exact Recovery and
Almost Full Recovery.

We focus on the case of a < ‘ E because: First, the phase diagram of SCAD when a <

1- Ipl
is worse than Lasso’s diagram When p > 0, and becomes the same as Lasso when a is sufﬁ01ently
larger than 1=. When p < 0, the phase diagram is better than that of Lasso when a < and

1\\’

numerical results show that when a > the diagram is monotomcally moving upwards towards

1- | [
Lasso’s diagram when a is increasing. Second, when a < % | K Theoremdoes not depend on
a in its most part, and is much easier to compute. To sum up, the case of a > is much more

tedious in computation but less informative.

1|\

We start from the case of p > 0. Before diving into the proof, we give an overall account for the
diagram:

1. The diagram is the same as that of Lasso, only except that when p < 0.179, there is a tiny
difference in a small neighborhood of ¢ = 0, slightly worse than Lasso. See equation (23)

2. Aslongasa < = the phase diagram does not depend on the specific value of a.

Then we move on to the proof, which has four cases just like the proof of Elastic net.

First, N? = 9 + fo(y/r,N) =land 9 + fi(v/1,N) > 1, 219—|—f3(f ) > 1: We know X = 1.
From the definitin of fo(y/7, \'), we know /7 > 1++/1—9 > 1.

Then we start our discussion on the conditional expression of fo(y/r, \’). (Note that numerically,
. 543

mlnp M’W = 4848)

If1 -9 = =d%(C, (p\/7,+/T)): As we know d?(C, (p\/7,~/T)) > WT, S0

Vr<V/1 =19, / = f];’@ bR which contradicts the pre-condition that \f > (1 i;’(?im We have

no curve in this case. If 1 — ¢ = #[(1 — AT — 1),

contradicts the pre-condition that /7 > e SA=p) We have no curve in thlS case.

1—p2 .
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As aresult, we can only have 1 < /r < % and one of the following three:
Vr=1+V1-9
-9 1

VT =

- p? +1+p

54 3p
Vr=vV1_9,|—2"°F
(1=p)(2+p)?

We then discuss the three curves one by one, starting from the last one.

1. Vr=+v1—-19,/ %. We need to look at F'P» to eliminate this curve.

When 1 < /r < 2, we have /1 — 9 < %ﬁ. In F' N7, for the last term to be the
minimum among the three

(1-PF=X3
min{ [(1- p)vF — (1- o],

(1=p*)(1=p)(2+p)®

513p r
we need v/1 \/(1 )0 2+p)2 > \/1 v+ m which implies
1—p 5+ 3p B 1 S 1
L+p |V X=p)(2+p)? J1-p2|  1l4+p

Simplify this for a few steps and we can see the contradiction.
When /1 > ;I—‘;”;, we can see the contradiction by simplifying this inequality itself.

When 2 < /1 < gi—‘;”;, by looking at

5+3p 5+3p
2+,o2 =242

5+3p 1-9
JisT
p)(2+ p)? 1—|—,0 1 — p?

we can see that no p € (0, 1) can admit a possible v/1

2. =k +

We already have f > 1; when 1 < /7 < 2, from the rate of F'P,, we have 1 — 9 < L_p
However, In F'Ny, for the middle term to be the minimum among the three

(A==
min ¢ [(1=p*)V/r—=(1=pN]" |

(1—=p*)(1=p)(2+p)*
5+3p

. We need to look at F'P» to eliminate this curve.

r
we need

1 n 1-9

1+p 1—p?

>14+v1-9.

The upper and lower bound of v/1 — ¢ would render this case impossible.

When 2 < /1 < gigg , using the expression of (23], we need

p’r —2(1+p)Vr+4>0
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in which we use /7 to express v/1 — 0. By letting /7 = 2 or 2752, we can see they are

242p°
both negative, so we have a contradiction.
When /1 > gi—;p, we have

1 n 1-9 S 54 3p

1+p 1—p%2~ 242
5+ 3p 1 1—9
V-9 <
1—p “14p * 1—p2

and the upper bound on /1 — ¥ is even smaller than the lower bound. Contradiction.

Now we are only left with \/r = 1 4+ /1 — . We need it to meet the following requirements:

1+vV1—-9> ﬁ + 11 _;92 for it to be the smallest among the three
1+vV1I—-9>+1 % for it to be the smallest among the three
1+ \/ 9 < = ‘Zﬁip) pre-condition; not restrictive

> 5 ford + fi(v/r, N) >1

209 + fS(\/Fa )‘/) >1

Among the first 4 requirements, the fourth one is can imply all of the rest. Then we look at F' N5, and

show it is always o(1) when ¥ > 1+p When p > L 9> %; when p < % we discuss as follows:

. . 5%3p
When\f< 1+p (1-p)(3+p)°

For the first term, we need 1 + /1 — 9 > 219 + 155 80 that the exponent is negative.

(LHS — RHS) is increasing in 1, and Verlfymg ¥ = 1 is enough.

For the next term, we need = ij{?’f +p V1 ¥ <14 +/1— 4. Now we need to verify

9 = max{£5,1 - (=2 - 1) }. and it still holds.

As long as k < 2, kv/1 =9 — /1 — 29 is increasing in V. 1/% < 0.454167

numerically.
* When f > 1 2 : impossible, because \/r = 1+ /1 —

5+3p
* When S m < V1 < 7225 We know

B(C, (14 pVF, (1 + pI) 2 max{wr, (1= 7= AT}

So a sufficient condition is

1—-29 1
e <14VI—D
1—p2 1-—p2

with = 2. When p < §, this holds.

To conclude, we have verified that FP; = F Ny can only admit /r = 1 ++/1 — 49, for ¢ >
and this curve indeed meets all the requirements.

Second, if 9+ f1(\/r,\) = 19—|—f2(\f N)=1,and N > 1,29+ f3(y/r,\) > 1, we also need to
discuss along the conditional expression of fl(f ).

1+p

When ) < /r < 2) in F'P,, now we have )\’ = i‘—ﬁ\/l — 9. Because we want \’ > 1, all we

need is to require A’ > 1, which implies 9 < 1 +p
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Since min,, 0 5130 — 4.848, we only need to consider the first case in conditional expression of

1-p)(1+p)?
f2(y/r, \'). This gives us three possible curves:

ﬁ:(lﬂ/i—ﬁ)m

1-9
V=207 e
5+3p
r= V1—149
(1—=p)(2+p)?
Actually, ¥V p € (0,1), 1 + 1+p > max { \/12 -, (kiigip)fz }, which means that in the
—p

expression of f, when
(V= V)%
2
min § 4 [(1= p2)vr = (1= pN]*

(1—p)(2+p)*
§+3pp r

neither of the last two lines cannot produce a curve and be the minimum at the same time.

14+p°
I+ fi(\/r, N) > 1land 9+ fo(y/r, N) > 1, and we are left to verify 29 + f3(y/r, \') > 1. Actually,
this does not always hold when p is very small, in which case we need one more curve.

So we are only left with \/r = (1 + 4/ 1J”))\/ . When ¢ < 22, we already have \' > 1,

When p > 0.197, /7 < X - % always holds, and we only need to consider the first case.
We need

1 14
(1+ p) ZT\/ pvl— +\/
(1+ ZWl U= V=20, /it

The first one always holds for p € (0,1). We can separate ¢ and p into two sides of the inequality
and see this. The second one always holds for p > 0.183. We can separate ¢ and p into two sides of
the inequality and see this.

As aresult, when p > 0.197, F Ny = o(1).

When 0.183 < p < 0.197, /7 is always in the second case, and F'No = o(1) still holds, because
(O, ((1+ pVF (1 -+ Vi) = L= 0y,

When p < 0.183, we need to look at the expression of d?(C, ((1 + p)/7, (1 + p)/T)).

f@MLH%@O+MWW=%me+m%—ﬂme+mXﬁ#%%%W(n)

In our case, we want d2(C, ((1 + p)+/7, (1 + p)v/7)) > (1 — p?)(1 — 209) which is

2
1+p 2B8+p) [1+p 1+p 3p+5 129
2(1 144/ - \/ 144/ > .
(+p)(+ 1—p) o Vi—p U TVT=p) "= = 19

There is no simpler form even if we further break this down.

When p > 0.179, the LHS is always greater than 1, and not restrictive to 9. When p < 0.179,
this imposes a lower bound on ©J; when ¥ is very small, there will be another curve above /r =

(1+/ERWT =7

To sum up, now we have /r = max {1 +v1-9,(1+ 1Jr”)\/l - 19}, but when p < 0.179, we
seem to need one more curve which is unknown for now.
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When /7 > gig”X in f1(y/7,\),if A2 < %W then we need A2 = (1—9)(1— p?), which

contradicts A > 1 (for F'P;). So we must have \'2 > (1”5_‘)_731”” and /1 = 51t3p”\/ 1-—9.

However, this curve /1 =

+3pp V1 — 4 is always greater than the /7 = (1 + 1er)\/ 1—9

we have computed. By requiring /7 > 532\ we have 1 < X < 2040 V10 Notice that

2+2p S Usrspvip:
Vv1i—19 > 7% is a strictly tighter requirement than 9 < 1 +p As a result, even if this

curve exists, it is not part of the boundary in the phase diagram.

When 2)\ < /1 < ;igz N, M2 cannot be smaller than d?(B, (p\/7,/T)); otherwise A2 = (1 —
p?)(1 — 9) which contradicts \' > 1in FP;.

Then we need the following things:

1 5+3p y/
2V <V < b

&*(B, (py/r, V1) = (1 = p*)(1 = 0)

N >1
219+f3(\/777/\/) Z 1
\/Fz/\’+\/1—

19 N
Vr = + 15
5+3p /1
= (a=p)(2+p)?
and one of the last three inequalities must attain equality.

If /7 = X + /149, then \/r > 2)\" would imply \' < /1 — ¥, contradicting \ > 1.
If /7 = \/7 + 15 +p we need to look at the expression of d?(B, (p+/7, \f )) computed in 23).

* 2+4P+3p _ 2(14+2p) *
We let A ’,and \/r = v+ A 1+p - Now we have =77~ 7(1+p)\/§)\ +
1f2 > = 0. However,
p
14+p 1
Vr> 2N = A\ < S
1+ 2p \/1— p2
9+3p ., 2 1
< N = N >-—
vr 2+2p 3/1—p2

Plug such lower bound and upper bound into the quadratic equation, and the values are negative at
both the upper and lower bounds. Thus we know that it has no solution for \” at all.

If /r =,/ %\/1 — 1, then we have the following two requirements:

N 5+3 1
\/FZ \/ +m = N < (1+p) |: (1—p)(2l—)&-p)2 — \/l—p2:| \/1719

5+3p \/ ’ 2(1+p) 5+3p
Vs g = N 2 S o VL

and the upper bound is smaller than the lower bound, contradiction.

Tp sum up the second case, we have \/r = max {1 +v1I-9,(1+ H'p)\/l - 19}, but when
p < 0.179, we seem to need one more curve which is unknown for now.

Third, if \'? = 20+ f3(v/7, N') = Land 9+ f1(y/7, ') > 1, 9+ fo(y/7, N') > 1, we will eventually
have now curve in this case. We start from some basic requirements:

Now we have \' = 1. When )\’ = 1 is fixed, the exponents of F'P and F'N are all decreasing in /7.
For F'Ny, we thus need

\/;zmax{lJr\/ 19+ ! 5+ 3p \/119}

=p* 14+p" \ (L=p)(2+p)?
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Even if we finally find an admissible curve with N2 =29 + f3(y/7,\) = 1, it cannot be lower than
Vr=1++/1— 1, s0 we can require 9 < 1+p

Now we look at ¢ + f1(v/r,A') > 1. If \/r < 2, then ¥ < % gives us a contradiction. Thus
/T > 2. We still need F Ptwo > additionally to /7 > 2.

Then we discuss the conditional expression of f3(1/7, A") one by one.

=4/ }fﬁ T 1_1p2 which contradicts /7 > 12_’\;2.

5+3p
When 1+p o < \f< z,we have

d*(C, (14 p)V/r, (14 p)V/r)) = (1 — p*)(1 - 20)

_2)2
d(C, (14 p)Vr, (L + p)V7)) > Wr

~ 543p
and thus /7 < LI V1

For 9 + f1(/7, \') > 1, we look at the conditional expression of f7, which now can only take one of
the last two cases.

« if it is the last case, then we need /1 > E’l%gp”\/ 1 — 4, which does not hold.

« if it is the fourth case, then we need

d*(B, (pv/r,v/r)) = (1= p*)(1 = 0).
We already have the expression of d*(B, (p+/7,+/7)) in (23), and the expression of
P(C, (1 + p)v/r, (1 + p)yr)) in @

543
7“—4\[4— + p >1-4

340 5430  1-20

1—p2ﬁ+2<1—p2>2‘2<1+p>
1—20 34 5+ 3p 5+3p

Vr— —4r+ >1-9

2(l+p) 1-p? 2(1—p?)? +p

1

3+p2\/;7 5+ 3p 4\[+5+3p_17 Py

214p) 1-p 2(1-p?)? 1+p

It turns out that when we regard +/7 as an independent variable, and let it vary in the interval
(2,2.5) as in F'P,, we always have, V p € (0,1),

1 3 +p 54 3p 5+ 3p 0
S W <1- -2
21+p) f 2(1-p)? vr 1+p L+p
so we have a contradlctlon.
To sum up, no curve in this case.
I\ 5+3 - 2 (1-p)*(1+p)
When /r < m . m, if [(1—p?)yr— (1,/)))\/]4_ < g, then we
have /r = 219 + m which contradicts 7 > /1% + m required by F'N;. If
[(1=p*)r— (1 —p)N ﬁ_ > %S(plmr then we have \f 1+2+?(”1’ o7V 1 —20. This is

a tedious case.

* Upper bound on ¢: /7 > 2, which implies ¢ < min { 1245);; % — %};W}.

* Lower bound on ¢: Even if the curve is admissible it only makes a difference if it is smaller

than (1 + 1+p)\/ 0. This gives us y/ 1= (1+ ’/%) % L d(p).
Also, /r < implies ¥ > 3 — £(5 + 3p)(1 - p).

(2+2 )
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We then examine ¢ + f1(y/r, X').

543p y/ 543p . . _
e When /r > 5 +2p/\ > 3 T2, We easily have a contradiction because /r =

5+3p -
Vi V1~ 20

* When /1 < %X, we need to look at d?(B, (p/T,+/T)). It now becomes /7 — 2 >

PEE)
pr — 1. The derivative of (LHS — RHS) w.r.t. 9 is
P
o 2(5+ 3p)
| VEr-s

from which we can see (LHS — RHS) is either increasing, decreasing, or first-decreasing-
then-increasing. If we evaluate (LHS — RH.S) at the smallest and largest ¥ and they are
both negative (Vp), then we have a contradiction.

— When p > 0.183, ¢(p) > 1. The (LHS — RHS) is below 0 at both max{0,

L(1 = p)(5+ 3p)} and min {% 1 %ﬁ} for all 0.183 < p < 1.

— When p < 0.183, 0 < ¢(p) < 1, and it poses a lower bound on 9.
* When p < 0.091, the lower bound is greater than the upper bound, so this case
does not exist for any 9.
* When p € (0.091,0.183), we can verify that the (LHS — RH S) is below 0 at both

. 2 _ 42
max{0, § — 1(1— p)(5+ 3p)} and min { 22, 1 — 2042500) =0},

1
2

We finally know that F'P; = F'N, gives nothing.

Fourth,if 9 4+ f1(v/r, N) =20+ f3(y/r,N) =1land N > 1,9 + fa(y/r, ) > 1, we will get the
last curve.

From ¢ + fo(y/r,\') > 1, we know /r > X, so we start from the case ' < /r < 2X in
fi(V/r ).

When \ < /7 < 2\ in fi(y/7,\'), we have ' = /112 . 9. If 5 < 2 1+p %m
f3(3/r, \'), we could have either of the following two,

\/;Z\/i_ip<\/l 19-‘1-\/1—219)
- 5+ 3p —
M N ce T R

When it is the former, for ¥ + fo(y/7, \) > 1, we need /7 > (1 + Hp)m which implies
\/ﬁ >p+ m > 1, which is impossible.

When it is the latter, for ¥ + fo(y/7, ) > 1, we need /7 > (1 + 1+")\/m which im-
plies \/11121;9 > \/(”gfé})“’) (1 + \/Tp> Also, /1 < 1’\+'p . 7(17";)?31;)) implies 1121;9 <
v (15+p3)23 i:)p However, now either the lower bound 4/ (l-%gﬁ)j’# (1 + \/?" ) >1> 721;9,

or the upper bound is smaller than the lower bound.

If lip (1_5;% VT < g 2 in f3(1/r, \'), we need to solve a quadratic function of /T, i.e.

d?(C, (1L + p)/r, (1 + p)f)) (1 — p?)(1 — 299). The expression of the LHS is already in (22).

Then we have
B 3+p 1+p T—9+ - (1=9)
N AV 1=p ! \/ 1—|—p (1—p)? 23)

28




Published as a conference paper at ICLR 2022

We take the larger root, because when +/7 takes the smaller one, the ellipsoid is actually still tangent
to the green line segment in Figure[3] Thus the smaller root should be discarded.

Of course, we also list all the requirements it must meet. They are loose only except the first one.

Vi (14 /B2 T=9

543 1+
= p2)<§+p> VipVI =V <V <2y /15V1

When /7 > 3532\ in f,(\/r, \'), We know from F P, that \f = ﬂ\/ — ¢. ( Because we

242
need \' > 1 for Z?’Pl, the other term is not possible.) If /1 < 1+p O 5;)'(334_;)) in fg(\f X)), itis
only possible that /7 = 2“9 + 2= + . However, FN; = o(1) requires that /7 > 19 + 1’ip
so this case is not possible. If f > 2_’\ s in f3(y/r, \'), we have /1 = 1_3;3
N (\f— 1:2129), we have /7 < 2 3;29 = X < /(1—-29)(1— p?), which
contradicts \' > 1. If lip a 5p+33”+p <V <3 2 in f3(1/7,\'), we know that

(1=p*)*(+p)
54 3p

and thus /1 < 1= p) (1 +p)2 v/1 — 29 which contradicts /7 = 5+3p /1

When /7 € (2, 3522\ ) in f1(v/7, N'):

(1= p*) (1 =20) = (O, (1 +p)Vr. (L +p)V7)) 2

1 2% 2p
If 7 < 1+p a 5p+)(33+p) in f3(y/r,\'), and ﬁ = 2+ m we have a contradiction. This is
because F'N; = o(1) requires that y/r > “9 + m so this case is not possible.

If V7 < 1+p a 5p+33+p in fs(y/r,N), and \/r = (Hi)*f‘l’ SyV1 — 20, this turns out a very

tedious case because we generally need to work with (¢, X', p) at the same time. For completeness,
we include a rigorous proof anyway.

Briefly speaking, we let \* = \/117719 . Because all we need is

(B, (pyr, /1) = 1= p)1=9) (9 + A7, N) = 1)
V= (1+;;;?E’f SVI=20 (20+ f3(y/r,X) > 1)
N >1
\f>>\’+\/1—19 (9 + fa(v/7, N) > 1)
\f>\/ +1+p 19+f2(\/77’)‘)2 )
NGV 2>*<§ip>zv 0 9+ (VX)) 2 1)
2x<f<3f§5~ (9 + (VP X) 2 1)
\[ < 1= i+33+p)>\l (27‘9"_ fg(\/;",)\ ) 2 1)

. : : _ [1—29
by cleaning this up, we have, letting z = |/ 5=,

def 543 543 5+3 X _
9(2) = Grdt — 4 arrdp AT ( p) (A)?=1=0

A >1

meaX{<1+p>2<1p><v 41 ) Lp gy <1+p>2<1p>} (24)

5+3p 1+p ﬂ » 2% p 5¥3p
xﬁmin{l,’\—; (5+3p)(1—p) L\/ﬁ}

7 3+p 1—p
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If we want some admissible x to exist, we need the upper bound to be greater than the lower bound in
the last two inequalities. This will give us B(p) < A* < B(p). (The expressions of B(p) and B(p)
can be explicitly written, but are omitted for brevity.)

* For some p € (0,1) and \* € [B(p), B(p)], we try to plot g(x) at a suitable z. If g(z) < 0
always holds, then x has no solution, and this case is eliminated.
(+p)*(1—p)
5+3p
already know is smaller than z. Thus ¢(x) is increasing in admissible z, and we only need

to evaluate g() at the maximum z: 2 = min {1, 2V (BE+3p)(1 - p), 3+p, / 5”’”}

* Now we are left to prove a bivariate function is below zero, which can be easily verified
given all the requirements on X" and V p > 0.

* ¢(z) is a quadratic function of z. Its axis of symmetry is 2\* , which we

When /7 > 2 in f3(v/7, V'), wehave /7 = /1220 4 1A (vi-\/E2).
we have /1 < 2 if = X < /(1 —29)(1 — p?), which contradicts \" > 1.

When 1+p a 5p+)3?)p+p <V < 2 in f3(/r, '), we have

d*(C. (1 + p)Vr. (L4 p)Vr)) = (1= p*)(1 - 20)
d*(B, (pv/r,v/r)) = (1= p*)(1 = ¥).

This is an even more tedious case, and we eliminate this case as follows: We first list all of the
requirements we have:

(B, (py/r,v/r) = (1= p)(1=9) I+ fi(yr,N) = 1)
d2(0,((1+p)xﬁ(1+p)\f))=(1—02)(1—219) (20 + f3(v/r, N) 2 1)
AN >1

2N < V< FEEN (94 AV A’) > 1>
v >max{ﬁ + 25 T VI= ) 0+ R(VRN) 2 1)
VT2 Y w+f1<m>_ 1)

Define z = | /7 and \* = \/11_719 . We know the upper and lower bounds of z, from the last three

inequalities:

5+ 3p 1 A* 5+ 3p 5+ 3p
max{ —————— A", 2\, + , <z< A,
{(1—p2)(3+p) Vi-p2 14+p | (1=p)(2+p)? 2+42p
For admissible x to exist, we need p < 0.415 and A\* > max 2 , 2(14p) .
3v/1=p2" (2+p)y/(5+3p)(1—p)

Then we want to know the upper and lower bounds of A\* given p < 0.415. In terms of the upper

bound, we know from d?(B, (p\/7,+/7)) = (1 — p?)(1 — ) > (1 — p)?N? that \* < 1+p . To
sum up,

max < 1, 2 , 2(147) <A< ﬂ
3v1—p 2+ p)/(5+3p)(1-p) L—p

Having the upper and lower bound on ', we look at the first two quadratic functions, and we know

that
22 — Ap)\F + 5+3;>\*2 -1
{2(1 + p)a? = BEPA + A = Y <
The LHS of the second quadratic equation, as a function of x, has the axis of symmetry at 5 (1 ,’; 7 A* >
gig/’j)ﬁ‘ so it is decreasing in x (fixing \*).
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We look closer at 22 — 4x\* + 51+T3pp)‘*2 = 1, which gives z = 2X\* + /1 — %)‘*2 < 2\ +

N
1+pA

Lety = min { gigz A 20 4+, /1 LZ A* } be an upper bound on x. Both terms in y are increasing

in \* < HZ while = has no such monoticity.

2(3+p)x)\* 5+ 3p

2B3+p) \x 5+3p 2
_ A
1—p (I=p)>*(1+p)

N2> 2(1+ p)y? —
R e R (e

2(1+ p)a* —

The RHS of the above line, viewed as a function of A* and fixing y, is also decreasing in \*, because
the axis of symmetry

1 )3 1—p2)(3 543 =
1=p)B+p), _ (L=p) +p)min{+p)\*,2/\*+\/ﬁ}2)\*.
5+ 3p 5+ 3p 2+2p L+p

(The above line can be proven for \* < 1+p and p < 0.415 as we have required.)

Thus, as a whole, dRHSg/\(f LA — 8RH§;7”A*) . 86/\'1’* + BRHBS/\(,?’A*) < 0. Sothe RH S is decreasing
in \*.
When we let \* = H” which is the maximum, the RH S is a univariate function of p € (0, 0.415),

which is always greater than 1. It cannot be equal to 1721;9 , and now we have a contradiction.

We then look at the case of p < 0. Before diving into the proof, we first re-iterate the phase
curves in Theorem [3]in an equivalent way. As the proof is tedious, the simplified form of the
diagram in Theorem [3|may not be recognizable, so we describes the diagram in an equivalent way in
Theorem [D.3]again, making it more consistent with what we will see in the proof.

To ease the notation, we recall in Theorem 3] we defined

1-2]p| —29 1- 2|p| 1— ol 9 _1-29

I\ T \/ 1 |p| 1+p} (1 =9) — a0
1 1-20p[\? | 1-|p|
(1—1pl) —]pl + T+p|

Theorem D.3 (Re-iterating Theoremin an equivalent way for p < 0). For p < 0and a < %‘pl

the half of the phase diagram of SCAD when 9 € [%, 1) is the same as that of Lasso and SCAD for
positive p. When 9 < l, from left to right:

V= 12

When |p| > 0.535 (approximately), \/7 = max{ "1+3||pp V1I=79, 1 219 + ‘p‘}
When % < |p| < 0.535,
5+3p] o [1-29 2(1+|p|)
oo WVERVIZT i = (1 - ity ) VE ST TRD
he (V) =T (1 _ %) N EEEE)CEa)

When 0.3965 < |p| < %,

553 (1+]p])
VI Fz(l = rtec P RVAGEREI) QR

N

N-

Vi =4 Vhe(0) '\/ 7 < SEp ey
f1=29 4 JlHlel VIZO e [1-20 o (+]eD(1=2]p])
1—|pl? 1-|pl 1— Iﬂ 1-9 = 1—pl

(1 2(14p)) >\/(5+3|p|)(1+ o) and 1 219 > (1+|P|)(1 |2|P|)
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When 3 < |p| < 0.3965,

<
v

(1+
( (1moﬂ%m)V@+3Wﬂl+WD
(1+
( = ‘p‘)(5|z-|?‘}|p|)> V(5 +3[p))(1 + [p]) and
(14

0 - (+lp)(—2lp])

1— 219 > (I+]pD(1=2|p|

1—1p|

5+3Lf)|| /1 19 lf‘
Jio |V if\ 5 <
-
T—20 1+|P‘\/7'l9 o [1—29 lp])(1—=2]p) 1-29 2 |p|(1+|p|
7o+ Tl T2 lfFS P26l anay[1220 > /T= P - L
L] ——5 _ lel(tleD)
|)\/7 iy 27 < V1=l = Hif
When 0.311 < |p| < 4,
5+3\ | e [1-29 2(1+]p|
S V1= iy 2 > (1 ety ) V6 3D+ oD
— 2(1
VR i3 < (1 5y ) VO + 31D + [0 and, /1=
9 1+| 9 . —2¢ (1+] )(1 2| D 9 1+ )
= \i\ o i < T and [ > VTP - S

ma{ 1+ ")m, 1+vI—0}i w < /T [p? — lelldtled

—|pl (1=l

When 0.28832 < |p| < 0.311,

1 1-2
o (0) ify /522 > (tlebi—2in)
= 129 1+ 1-9 219 1+|p)(1—2 1,219 1+
V= 0y T i < ! lpl‘)(\ \ 2D and, 322 > /T [p? — 1ol
max{(l + i‘IZI) VI=0, 1+ \/f} if v |p|2 %

1 219 (I+[pD(1—=2|p])
if =

max{, /22 + 2, 1+\f I} ify ) \/W e

Wo note two things additionally: First, the exact computation of the numerical results (e.g. “0.28832”)
are covered in the rest of the proof. Second,

_ 20 +1eD) 3—dlp| —3p> | 1+|p|
(1 <1—|p|><5+3|p|>)“(“3")')(”"") T-1) \ 5530

always holds, and the shorter RHS is shown in Theorem E}

Before proving Theorem [D.3](and Theorem [3at the same time). we put two important results here.

* In f1(y/7, X') (recall Theorem , when 2\ < /r < gig}g:/\’

Vhe (V)
Jr 11_‘21‘92 + i+|‘p‘m if 1 219 < (1+\p\ (1 2\9\ and 1 219 > \/7|2 |p|(1+|p|
V 1-lp p p V1

BV V) = (- ) - v+ T o
e In f3(/r,N), when /1 > % \PI’
d* (D, (1 = lohvr, =(1 = lp)v7r)) = (1 = [pl*) [ (1~ lplyr — 203 — o)X Vi + > 3'ﬂ'
(26)

Then we move on to the proof, which has four sections: F'P, = FNy1, FP, = FNy, FP, = FNo,
FPy, = FNs.

32
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First, if 2 = 9+ fo(/r, N) = Land 9 + f1(y/7, N') > 1,20+ f3(y/7, \') > 1, we will prove that
V7 =14 +/1 — 9 is part of the diagram with the condition

2/p|
(= 1+][pl

L+VT=9> /=28 +
When ¢ > 1

5, the second condition can be ignored. Even when g < %, the second condition is
restrictive (stronger than the first one) only when |p| < 0.28832 approximately. (LHS — RHS is
increasing in ¢.)

1- \p\

We know A = 1 and /7 > 1. From the previous discussion in the case of positive correlation, we
already know that only one curve is possible, which is

Vi=1+vV1-9
We still need it to meet the following requirements:
1+V/1-9> ﬁ + \/g for it to be the smallest among the three in fo
1+4v/1-9>V1-9 % for it to be the smallest among the three in f5
14/1-9< % pre-condition in fo; not restrictive
9> £l ford + fi(v/r,\') > 1
20+ f3(vr,N) = 1

Among the first 4 requiremenrs, the fourth one can imply the rest. Finally, we look at 29 +

fs(Vr,N) =1
When ¢ > 3, we naturally have 20 + f3(,/r, N ) > 1. When [p| > 3,9 > 1+\p\ >

and no more discussion is needed. When |p| < 5, we proceed to the followmg discussion.

For [p| < 1, since /r =1+ V1 -9 <2< 2 ||,weneed1+\/1—192 2794—

Second, it 0+ f1(v/1, ) =9+ fa(y/r, N) = Land N > 1,29+ f3(y/r, \') > 1, we will prove that
we can have one curve at most, /7 = (1 + }f'”') V1 — ¥, and it exists in the interval: (Define

ol
o) vT=07 (1= 25 /1))

* When 0.28832 < |p| < 0.3965, the curve exists in the interval [M 2le] )

> 1 always holds,

1- \p\

2=9(1pN)?? T+l
» When |p| < 0.28832, the curve does not exist.

* When |p| > 0.3965, the curve exists in the interval [1, 5 +\/|JI)

We discuss the conditional expression of f1(1/r, \") to prove such result:

When X < /7 < 2)X in fi(y/7,\'), we have \' = }jﬁl‘ v/1 — 9. Because we want \' > 1, it

2|p|
I+|pl

implies ¥ <
We have discussed and eliminated several curves in the case of positive correlation in the case of

positive correlation, so now we are only left with one curve: /1 = (1 =+ ijz D v 1 — 19 and we
only need to additionally verify 29 + f3(y/r, \') > 1.

Since ¥ < 1—5‘-\‘\’ when |p| > %, FN; = o(1) naturally holds for ¢ € [3, 1_11‘1‘) We only need to
discuss ¥ € (0, 3); when |p| < %, we need to verify F Ny = o(1) for all ¢ < [0, ﬂ"’L‘ ).
Now it can be verified that /7 < 7 /\’ always holds, so we need

1 1
14 Lt el T-9> ol 7=
1—1p| 1—p 1—\,0\ 1—|p|
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which implies

w(lpl)zw—p?(l—l'p' ”'O)z L=29 @7)

lol V1= lpl 1-9
By taking a close look at the function of |p| on the LHS:

* When 3 < [p| < 0.3965 (approximately), ¢(|p|) is positive and smaller than 1. If we define

d £
P(lpl) = = \/7p2(1 — 1‘_’)|‘p| 1+‘IZ‘I>’ then the curve \/r = (1 + T_F}ZD V1i=9

ot : 1-9(|p))? 2|P|
exists in the interval [2 w(pDZ Ttlp ‘)

* When |p| > 0.3965, ¢(|p|) is negative. The curve /1 = (1 + }jgl‘) v/1 — ¥ exists only

in the interval [3, ﬂ‘r))l ).
* When 0.28832 < [p| < 1, the curve /7 = ( + ‘Ip‘) v/1 — ¥ exists in the interval

{171&(\9\)2 2\9\)
2—([p))? 7 1+l

* When |p| < 0.28832, this curve does not exist at all, because on the RHS of the inequal-

ity (Z7), the smallest value it can take is 1/% When |p| < 0.28832, even this

smallest value is greater than the LHS, so the inequality cannot hold.

When /1 > gi‘;’}p} N in F Py, or when 2)N < /r < gi;}p‘ X, the same proof for positive correlation

can be used to eliminate these cases.

To sum up the whole case of ¥ + f1(y/r,\') =¥ + fo(y/r, ') = 1: We can have one curve at most,

VT = (1 + f_rIZ I) v/1 — 99, which exists in the interval mentioned above.

Now we are left with the third and fourth cases, both requiring 209 + f3(y/r, ') = 1. We assume
9 < % from now on, because the different definition of f5(y/r, ) makes no difference when ¢ > %,
and the proof for p > 0 can be copied.

Third, it \? = 29 + f3(y/r, N) = Land 9 + f1(y/r, N) > 1,9 + fo(\/7, N) > 1, since N = 1is
fixed, all of (f1(\/7, ), fa(/7, N'), f3(y/7, \')) are increasing in /7. As a result, the requirement
from ¥ + fo(y/r, \') > 1is just

—p* L+l | (L=1pD 2+ |p])?

ﬁ>max{1+ﬁ 0 \/ Ehal m} (28)

When /r < 12’\|  in f3(y/T, X), we have /1 = | /1= |2p1|92 + 1= ‘p‘, and we will see this curve does
not exist in the diagram. We need to look at ¢ + f1(y/7, \') >

If /r < 2in fl(f '), then we can limit |p| < 1 because we have assumed ¢ < 3, and now we
need |‘p|| <9¥<i

* When 0.28832 < |p| < 3, this case does not exist. This is because we also need /1 =

1 ‘21‘92 + 1= \pl > 1+ +/1 — 9. But we already know from the start of the first case, that

2|p| 1-29
9 2 3y implies 1+ V1 =9 2 /350 + -

» When |p| < 0.28832, this case indeed exists, though it is visually only a tiny segment. The
curve exists in the interval defined by
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in which the second line is an upper bound. (Actually, ¥ > 12+|‘|’L| = /1 ﬁ% +
2)

In terms of (the requirements of ¢ + fao(y/r, X)), we still need to verify /r >
max {, / 11:“;'9‘2 + 1+1|p|’ - Iil+?2‘+‘\pl V1 } Using v/1 — ¢ < /r — 1 to replace
V1 — 99, we will find both of these are much weaker than /r < 2 and not restrictive.

1|P_

If \/r > ;fg}p‘ in f1(y/r, \'), then, in terms of ¥ + f1(/7, \') > 1, we are required to have
5+43|p]
V> 2+2|Z|
5+3|p| —
ERYe = e

Now, by using 3/ > %ll’ﬂl) and /1 > 5+3lp|\/ — 1, we can easily verify that the

requirements of 9+ fo(y/7, \') > 1in all holds. So we only need to focus on 9+ f1 (v/7, \') >

We further argue that /7 > 5;:3“;“ V1 — 4 implies /7 > gig}z }

. 51+3|‘pp V-9 < gig:g I , this condition itself imposes a lower bound on ¢. Since ¥ < L

we actually need |p| < 0.3798 for such lower bound to be smaller than l . However, when

|p| is too small, \/r > 5+3‘p v/1 — ¢ admits no solution at all. Namely,

VG 3D+ VI =9 - VI—20 < @

admits no solution. The LHS is not monotone, but its minimum in 9 € (0, 2) is taken at

_ (643D + o) =
2(5 +3[p) (1 + |pl) -
At this point, the LHS is greater than the RHS, so it admits no solution.

. 5+3 o 5+3|p 5+3|p 5+3|p
 Since ||\/ _2+2} },wehave\f>,/1 ||p|\/ 9 = \f—2+2IpI

As a result, /1 = 1— 21‘92 + 7 makes part of the boundary when it is greater than

1-[p Ip\

5+3|p|

v 1 — 1. We will see later, that the latter is also part of the boundary, when it is greater than

1— 219
Vasrchdert

If 2 < r < SEIZI in fi(y/r,\) , then in terms of ¥ + fi(y/r,N) > 1, we need

(B, (Iplv/r,v/r) = (1= |p*)(1 = 0). Because 2 < /1525 + 2 < F5a4, we need

|p| < 0.535; otherwise no solution for 9.

We now need to use (23). When ¢ > Hl‘p‘, 2(B, (|p|v/r /1) = (1 — p?)(1 — 9) always
holds. However, ¥ > 12+‘|p ‘I also makes /7 < 2, which contradicts /7 > 2. When ¥ < 1241’\) ,lj‘,

(B, (|plV/r, ) = (1 = p?)(1 — ) implies /7 > 2 + /2Ll — 9. which is
s 2|p| A=29 < (—

1+ |p|

—2)/1—p2.
1f|p| )

We take a close look at the LHS, as a function of 9.

* Using the lower bound of ¥ implied by 1 219 + 1= | o< giglz }, the LHS is greater than
the RHS.
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» Using the upper bound of 9 implied by ,/ iif + 171|p‘ > 2, the LHS is greater than the
RHS.

» The LHS is either increasing in 1, or decreasing in J, or first-increasing-then-decreasing.
Since LHS > RH S holds at both ends of the interval, it holds for all 9. Now we have a
contradition.

When /r > % |p| in f3(4/r, \'), this case produces no curve in the diagram, but there is no easy
way to eliminate this case. We still need to use some tedious calculation.

If the smallest term is [(1 — p?)\/7 — )\’]2 in f3(y/7, \'), then we have \/7 = |/ =25 + 72> which

1—p2
: 2
contradicts /1 > 1=

[ol*

If 222 < < -

we recall the form of k() a):

—lol \p\’
E (D (L= pvE (1= lehvP) i 2 <V < 2 24 g
2
B, a) = 3 ity [V (1 #5) + (0= v (14 1252 |
) a—2
; by lp|+p?
V2 2 2+ Gt
2 . .
* When /r > 2 |p‘ [2 + s 2)(1|_p))j)p_(‘p‘+p2)], the expression of /7 is

1+ a\pl +\/7\/1+ pa 1 _ 2p2;(i12—1)

T (- o)+ 'P““ ”)

and actually /7 < = ‘ I {2 + @ 2)(1‘ oLy 7= (\p\-ﬁ-ﬂz)}’ which gives a contradiction. To prove
this, we take ¥ = 0, and re-arrange the terms:

lp[(a—1)
2(a—1)2  202(a—1 pl(1+ o=
1+p(a 2)_p(a )<1—|—|p|+ lpl( 5)
(e —2) a—2 (a=2)1—1pl) = lp|
_ P4 (a=2?1-p
(@=2)*(1=1p|) = Ipl(a —2)
2 2 212
+(a—2)%(1—
s@-22+pa-12-22a-1)(a—2) < P*+ (a2 —p )]2
[(a =2)(1 = |pl) — o]
Multiply each side with [(a — 2)(1 — |p|) — |p|]?, and we have a polynomial. We can then
factorize LH.S — RH S and get —2(a—2)(a—1)|p|(1 = |p|) [p? + (1 — p?)(a — 2)?] < 0.
e When /r < 1j;p| [2 + (a72)(1k’Lﬁ)‘f(|p|+p2)}, we calculate the distance related to Point
D and eventually get 2(1 — |p|)/r — 2(3 — |p|)v/T + 51_73\5‘ = 1 — 29 which implies

V= 2(31_—||pp||) +34/1— 1f“|9p|. This expression is not too complicated, and we can easily

verify /1 < %‘p‘ which gives us a contradition.

Ifa< 2= I I, we still have /7 = |pp‘|) + %, /1 — ﬁ—?p‘ < 1 |p‘ like the case above, which is still
a contradlctlon

Fourth, if 9 + f1(y/r,N) =29+ f3(y/r,N)=1land X > 1,9 + fa(y/r,\) > 1, then:

For & + fa(y/r,\’) > 1: When ) is fixed, the exponents of F'P and F'N are all decreasing in /7.
We thus need

ﬁzmax{xwﬁ LA \/ 5+ 3lp) m} (29)

= 14l | (= 1pD(2+ Ip])?
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When /' < 2 in 20 + f3(y/r, N) > 1, for fi(v/F, \):

If N < r < 2XN in fi(y/r,N), we have N = 1Jr—""\/l—ﬁ and thus ¥ < 12+"|’“ and
NGERE = ‘p‘z + 1= ‘p‘ iﬂz VI —1. Since /7 < 2), we need both |p| < % and /122 <

M. When we come to verify the conditions in (29)), the first one still dominates the others.

As a result, the curve

1— 29 1
Vr = 5 Jr|p|\/1—19.
L—1p[2  1—Ipl\ 1—|p|

exists under the following conditions:

ol < 3
\/ﬁ - <1+\p|)<|1 2l
1-Ip
lol(1+]p])
72 V1=l = St

L 20p
(The last one implies ¥ < 1 +| o7

If /1 > giglpl in f1(y/r, '), we have \/r = 51+3||[f’|\/ — ¢ and X is computed with \/r =
1—29 DN
VI T T

Now, /1 = 51+3“pp V1i—49> giglpl requires

=20 _ ([ 2(1+lo)
o = (- e ) VI 0

and 9 + fo(y/r, ) > 1 requires 111%;9 > }f—l‘zl‘ (1 —2|p| iﬁl}p) and > 1 Ipl —
ll_p‘lp‘ /(54 3[p[)(1 + |p|). The conditions required by ¥ + fo(1/7, \') > 1 are actually even weaker
than /r > ;I;’}f: A > 1 requires 51+—3|I;f)||‘/1 —J> /% 219 + = ‘p‘

* When |p| > 0.535, the RHS of

=20 201 + |pl)
Vizs = (1 T |p|><5+3p>> VG+3D0 + D

is negative, thus not restrictive.

Taking the requirement 5+3|”| V1I—19> 1:?;3 + 171‘p‘

-2 1
max{ 5+3|p|\/1— 19—&- }

1 —1p| p* 1—=lpl

* When |p| < 0.535: 4/ 51+_3||pp“ Vv1i—19 > tiﬁ + 1_1|p| is not restrictive, because it can be
re-written as

into account, now the boundary
consists of

/1 — o2
VBT 3A T VI — 0 - VI—20> 1_7‘;
which always holds, because we have shown the minimum of the LHS is taken at

_ (643D +1pl) =
2(5+3lpl) (1 +pl) — 4
and the minimum can be verified to be greater than the RHS. Thus

54300l g 1—219Jr 1
1—{p| -p*  1—|p|

is not restrictive. We only need requirement (30).
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If 2\ < r < gi;m N in f1(y/r, X), this case is very tedious. We present the closed form of \’
and /T

2
1-2 1—
V- ( |p|> L L1l
1—|p 1+ p|

1-29 N 1
Vr = + =2X+\/1—19— 12l 5o

-1
1—-29

(1 +[p])?

(1-7) -

2
1-2lp| j1-20 (1—2|p|) L 1=l
L—=1p[ | 1=p? 1—|p| 1+ p|

1=p*  1—p| 1+ 1pl

. / 5+3|p| /. . ’ . .
In terms of the requirements from 2\ < /r < ol N First, Vr > 2)N will give us

1 1 1—-29 (1 1-2
either |p| >  or <p<2and = 2| +|T|)—(p Ipl)>

Second, /1 < gigm N will give us

|p| < 0.535 (the same numerical value which appreared before)

=29 2(1 + o)
w725 < (- i) VI

In terms of other requirements, we show that they are can be implied by the two conditions we have
just arrived at.

2
. ) 1-2 1-
We first look at the requirement A’ > 1. We need /=22 < (1 + |p|)\/( 1_||pp|‘) + 1+‘|£‘| to

.. ... . 5+3|p| y/ 1 :
make the content of the square root positive, but this is implied by \/r < 3 3] A.Then \' > 1is

equivalent to: (let z = ,/1=2)
1-2 1—20 1-2p\* 1- 1—20 1-2p\* 1-
ol U ( Ipl) L lelel g ) 22( p) L 11l
L—[p V 1=p 1—1p| L+ |p (L+pl) 1—|pl 1+ p|
2 2
oL 1-2p| @ (12p> Ll a2 ><12lp|> L L=l
V2 =22 | 1—|p| /1=p? 1—1p| L+lpl | (A+1p)?| — \ 1—]pl 1+ p|

(1+ 11 ~ 2lo) | 201+ )
for s {0, SR <0 i1, (1= s ) VOB

and |p| < 0.535

It always holds, because we can verify the graph of (LHS — RH S) as a bi-variate function of (|p|, z)
is always above zero.

We then look at the requirement /r <

13;‘ : This is equivalent to

2
1-2Jp| 1—|p|
1-20 _ (HM) T Tl
— 9 = (1=lpl _2lpl(1—2]p])?
1-9 (H\Z\_ fl—\pmg )

1
T—p? T T 02

which is always weaker than ,/1=22 < min {17 (1 - %) VG +3p) (1 + \p\)} .

We finally look at the requirement from ¢ + f2(1/7, ') > 1, or equivalently (29). First, we need to

verify \/r > X 4+ /1 — 0. Since \/r = i:ig + 13\\,,;\ , this is equivalent to i:fg + 1Lp‘|p‘ A >
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V1 — 9. Tt naturally holds if |p| < 0.5, because X' > 1. When 0.5 < |p| < 0.535, still letting

1-29

T > WE have

xr=

1-29 |

N >vV1-9
=2 1]y
!
D S I, SN - B

1—p2 (I—|pl)
D S . NN
V1—p2  (1—pl)

The LHS is either increasing in « € (0, 1), or first-increasing-then-decreasing. When z = 0 or 1, the
inequality holds for 0.5 < |p| < 0.535, so it always holds.

: ; 1-9 N 5+3|p|
We still need to verify /7 > max{ = + T C=PCEERIE V1 } With v1 -9 <
Vr — N, we can get rid of v/1 — ¢ and arrange either of the requirements as an inequality between

v/r and ). Such an inequality will be weaker than /r < gigiz I N

When /1 > % |p| in f3(y/r, \'), we will see this case does not produce any curve in the diagram.
We still need to discuss two cases in terms of f;(1/r, \'):

If i > ‘;’ig}p‘)\’ in fi(y/r,\'): We have /r = /5+3\p /1 — 4. Because /7 > = | ‘,we have
N < 5\/(5+3lp|)(1 —lphv1-9

To admit a solution for A > 1, we need |p| < % so that the RHS is large enough.

/ 5+3|p| 19—
/)2 Tz p2’>\ - (\/ 1-|pl
1-249.

this with \' < 5 \/ 54 3|p|)(1— |p|)\/1 — U, we can get a requirement for z = |/ =55

5+ 3[p|
> /(5 + 3lp))(1 —7,/
2>/ (5+3[p))(1 + |p]) T+

but the RHS is always greater than 1. Thus we have a contradition.

* When /1 =

) Combining

« When /1 = ==L\ 4 \/ 200-29) _ 14lpl \r2. We temporarily ignore the relationship

2(1=[pl) 1=lpl 1=|pl
between )\’ and 9, and the \’ which maximizes /7 = 2(31 l\p,l\))‘/ \/ 11 ‘?‘9 — 1“’)} A2
is \ — 2(3—|p|)?(1=29) : '
is\N = \/(3—\p\)2(1+\p|)+(1—\p\)(1+\p\)2' Even with the maximizer )\, we still have

—lpl 1 [2(1-29) 14 |p| 5+ 3p|
ST B U — N2 < V1I—9
2(1—1pl) 2\ 1-p| 1—|pl 1 —|p|

for |p| < . Thus we have no solution for X

. —lpl Y o+
When 2 o <0< i | and\f 2 T2 [2+ @=20=p7)—(rlT0° )] the contradiction
comes from the fact that

5+ 3|p| N lp| + p?
VI T vV <1||[2+<a2><1 ) - <|p|+p>}

for any f:m <a< 1_—‘0‘, lp] < 3 and X > 1.

2>\ 5+3|p| \s 5+3|p| .
If 9 < VT < sl A in J1(v/r, X'): For this case to exist, we need 7 ‘p‘ < 35a],» Which

requ1res |p| < 0.1547. Solving d?(B, (|p|\/7,v7)) = (1 — p?)(1 — ) in FPQ, we have \/r =
1—|p|
2N + /10— ey
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» When /7 = /1228 + 125,
when |p| < 0.1547.
When d? (D, (1 = [p])v/r, =(1 = [p]) /7)), the (/7, ') pair are given by

V= 2N 410 - A
_ 3—1p| r4 1 (1-29)  1+4|pl yr2
V= \p\)A \/ o il e

:oh impli \ \ 1-1|p| 2(1-29) _ 14p|
which implies 2(1 p )\’ +4/1 1+\Z\)‘/2 \/ =p - |Z|X2.

However, the above equatlon has no solution for \’, because the LHS is always greater than
the RHS. We look at (LHS — RHS) from now on, and prove it is positive:

Let \* = ,and \* > 1 as well. Then

we need , / i:i@ + 1 :\/pg > 1f|p| )’ which contradicts A > 1

\/7

(LHS — RHS) 1-3|p| ., lf\p\ , 1 2 1-20 1+4]p.
= N1 - )\* — - - A*
V1-19 2(1 = |pl) 1+ 2V 1—1lpl 1=9 1—]p|
> o L1=3lpl L3l .y \p\ 1 _ L4l
21—|| 1—|p| 1—|p|

Thus we only need to prove

1—3|p| L=3lel ey Ipl 1+|P|)\*2
2(1 = |pl) 1*\p\ 1—|pl

1+|p|

I—=[pl"

Square both sides, and ignore the cross term on the LHS, and we can actually prove a
stronger result,

1—3|pl )2 2 ( 1—|p| 2) 1 L+ 1pl .2
AT+ (1- A7) > - A

(2(1 —|el) L+ |p| 201 —lpl) 41 —lpl)
1+p|
1-[p

From the content of the square roots, we can see that A\* <

We only need to verify the two ends, A* = 1 and \* =
holds for 0 < |p| < 0.1547.

2 N o+ .
27 and V2 200 (24 gl e |

by lpl+p? : 3\ RS Y
e [2 + (a72)(17p2)7(|p|+p2)} is at least =pE which is still greater than /1 = 2\ +

_ 9 _ 1=lplyr2
1-9 1+|p|)\’.

, to see that this inequality

. 2—1p|
When =P <a<

We have finished discussing the last case. To sum up the whole phase diagram, it is exactly Theo-

rem[D.3

D.1 PROOF OF LEMMA D]

(We have assumed p > 0 in Lemma[D.1])
Recall optimization [19|and our assumption b; > |ha|. The equation of the sub-gradient for b =

(bl, b2)/ is
1 P bl q’ (bl) hl
= . 31
{p 1] [52] * [q’(ba ha G
When ) is sufficiently large, neither of (by, by) is nonzero. We investigate the process of decreasing
X’ from oo, and discuss the major stages along the way.

Stage 1: When ) is large, both (b;, b;11) are zero, and SCAD behaves like Lasso. When X’ is large,
Equation (3I)) becomes A’ - sgn(0) = hy, A’ - sgn(0) = hs and so we need

N > A\] = max{|h], |ha|}. (32)
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Stage 2: When X’ crosses A} = max {|h1], |hz2|}, since we have assumed hy > |ha| > 0, by becomes
positive. To see this, consider A’ in a very small interval (A} — 6, \}) = (|h1| — 0, |h1]):

1 P b1 + /\/ . sgn(bl) _ h1

p 1110 A sgn0 | 7 |ho! -
Now we have by = hy — X - sgn(by). From this equation, we know b; has the same sign as hy, so by
enters the model as a positive number. On the other hand, b, cannot enter the model before by, or

we have a contradiction. This is because we would have by = hy — X’ - sgn(bs), but the signs of the
LHS and RHS can never agree.

Now that b; is positive, for the above system of equations to admit a solution, we also need
|ha 4+ pX' — ph| < N (33)

Stage 3: When X’ continues to decrease, we have two possible cases when the solution path enters the
next stage. First, b; continues to increase and becomes larger than \'; then its gradient will change
according to the definition of SCAD (see @])), while b, = 0 all along. Second, b enters the model
before by gets larger than \’.

We start from the first case mentioned above. In this case, at the next critical point A’ = A}, we would
have b; = ) while by = 0 still. Then

b ] v oo = 2]

For this equation to admit a solution, we need |ho — pAj| = |ho — 2phy| < Ay = Lhy which is
-1 1
+ phl < hy < —;

With this constraint and \' € [)\/2(1), A}], we can also go back to check the Condition in the
previous stage, and we can see it holds.

Then we have \\*) = $ha.

Py (34)

We then consider the next case in which b enters the model first. This case is essentially Lasso. We

solve
b ] L] =[]

when X € ()\/2(2) — 9, )\’2(2)). We then have two cases, depending on the sign of b, when it enters the
model. If b5 enters the model as a positive number, then eventually we have

hg — ph1
1—p

If by enters the model as a negative number, then eventually we have

phi — ho

1+p

0<ph1<h2<h1,and)\'</\’2:

—hy < hy < phy, and X' < X}, =

With these constraints and ' € [\'(?), \|], we can also go back to check the Condition (33) in the
previous stage. It holds, and we omit the details for brevity.

We have discussed the two cases in the third stage, and we need to decide which one actually happens.

When hy > Lg—phl or hg < _12+” hy, requirementis not met, and thus the second case is the case

that happens. The subset of rejection region when hy > #hl or hg < #hl is the same as that
of Lasso. Now both b; and b, are nonzero, and we need not discuss any further.

When = 2+ph1 < hy < %phl, we can verify that

1 ho — ph
)\/2(1) _ §h1 > )\/2(2) — %ppl when hy > phy
ph1 —h

1
X = 2> X = 2 when hy < phy

1+p
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So by becomes larger than A’ before by enters the model.

Stage 3: When (hq, ho) satisfies = 2+” hi1 < hy < %”hl in the last stage, we stil need to find out

when bs enters the model after b; becomes greater than \'. When ) < )\/2(1) = %hl we still have
two possible cases to discuss: First, by continues to grow larger than (a)\’), making the expression of
¢’ (by) different again, while by is still at zero. Second, b enters the model before by hits (a)\’).

Before the discussion of the two cases, we look at the system of equations when X' € (A, — 4, \5)

for a very small §.
Lop| [o] ([ &5 ]2 [M
b 9] e do] - 5]

(a—1)h1—a)’
a—

The solution of b; is by = 5

and the sub-gradient for by requires

lhg — pbi| < X (35)

We start from the first case in which b; reaches (a)) first. At the point \' = )\é(l), we have by = a\’

1 p| |aN " 0 |
p 1]]0 N -sgn(0)| | he| -
Thus A" = % hy

“L. In terms of the sub-gradient sgn(0) , we need |hy — phi| < 7%, and thus
(p— L)hy < hy < (p+ L)hy. Compare the above equation with Equation and we get

1+ph1} _ {(p+}1)h1 ifa> 2

1 .
2 Zepy ifa <=

1 1
(p — g)hl < ho < min {(p+ a)hl, (36)

B

Then we consider the second case in which b enters the model first. We look at the condition [35]to
find )\;(2), because condition would become tight at A = )\g(z). It requires

—1)hy — apX —1)hy —apX
pla—1)hi —ap G )h1 — ap
a—2 a—2
The left half of the inequality is equivalent to (We have implicitly used p > 0.)
pla—1)h1 — (a — 2)hs
a+ap—2

N+

N>

The right half of the inequality is
(a—2)hy —pla—1)hy < (a—2—ap)X. (37)
It turns out that we still need to discuss whether a > 1%,):

When a > %p, a — 2 — ap > 0 and requirement (37) is restrictive. We have

(a—=2)hy —pla—1)h1 pla—1)h; — (a — 2)hs
a—2—ap ’ a+ap—2 '

N> /\/3(2) = max{

Of course only one of the two terms will be positive, and it involves the discussion of whether
(a —2)hg > p(a — 1)hy or not.

When a < %, Wwe can prove requirement always holds without any requirement. To see this, just
plug \' = X = “Linto requirement (37), and we will see (a—2)ha—p(a—1)hi < (a—2—ap)Xy < 0
because it is equivalent to ho < 1;—‘%1. In other words, requirement (37)) is not restrictive, and we
only need the left half:

(a — 1)h1 — (a — 2)h2

N> =L
3 a+ap—2

Finally, we need to decide how to choose between the two cases:
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» Whena > 12 and (p— 1)h1 < ha < (p+ 2)hy, we should choose A3 = . This is

because now % > max{(“ Dha—pla=hy — pla=bhi—(a=2)hs } always holds.

a—2—ap d atap—2
* When a < i and (p — l)hl < hy < 1+”h1, we should choose )\ % This is
because now h1 > W always holds.
e When a > ﬂ and hy > (p + 2)hy, we should choose )\g@) = W > 0.
* When hy < (p — 2)hy, for arbitrary a, we should choose )\é@) = %;(_a;% > 0.

/(1)

In the discussion above, if the Condition (36)) is met and A" < A5 hl , we still have not seen by in

the model when b; hits a)\’, and we need to discuss further.

Stage 4: When )\ fall below A;’(l), by is greater than a\’. Now the system of equations:

b AL bl = [1)

Now we have by = hy, and A" > |hg — phy|. Thus we know A} = |ha — phq|. (The sign of (ha — phq)
is not determined yet.) When )’ fall below A/}, by inevitably enters the model.

E PROOF OF PROPOSITION 2] (COMPARING SCAD AND LASSO)
Proposition [2] makes two assertions, the first about positive p and the second about negative p. We
prove them respectively.

When p < 0, it would be obvious that the diagram of SCAD is lower than the diagram of Lasso.
Reviewing the diagram of Lasso in the main text, it is the maximum of four curves:

U () = max {hy(9), h3(9)}, when p > 0,

Rassol B0 L max {hy (9), h3(9), hi(0), hi(9)},  when p < 0,

where hi(9) = (1+ VI—0)% h5(0) = (1+ /122)°Q - 0). B3(0) = =L (1 +
e T=20)% and 1 (0) = (b (/2 VT =0 + /1 T —20)",

1—[p

(38)

In terms of SCAD, hy(¥) = (1 +vI—0)% hi(¥) = (1 + /T52)*(1 — ) and h5(9) =

oz (L+y/ ;—L’;IM) ? are also present in Theorem (The notation of the corresponding
curve of hi(19) is different, hi () = <7 +
compare only the last curve below:

) ) The only different curve is the last one; we

1 1+ |p| — |l
hr ) = 1—9+ 1-—29
wo®) = T (Y T TR
(51+3‘\p‘\) (1-9) i 1 219 < 3 élﬂ\l li’)m 51+3||/J||
=lp ’ - P +3[p
hscap(9) = 1 117 =[] 2 129 (tle—2lp])
<1—\p\>2< T V1I— Y+ 1+\mvl*2’9) T < AT
he(9) other wise

) (543l 1 L+ |pl ol =
Smln{(1_|p|>(1 J), (1—|p|)2( 1—|p|\/7+ ||\/17)}

S hLasso (19)
Thus the assertion when p < 0 is proven.

When p > 0, from the details proof in Section@ we know that when a < %, the diagram of SCAD

is the same as that of Lasso except when p < 0.179 in a tiny neighborhood of ¥ = 0. See Figure 4]
for an example.
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SCAD when p=0.15, a <%

[ ER
I NR
--- (14+V1-9)?

---new curve h3(9)

Figure 4: The phase diagram when 0 < p < 0.179 with the newly added curve.

When a > % and increases, the penalty function of SCAD converges to that of Lasso and so does

the rejection region. Eventually the tiny corner will vanish, and the diagram of SCAD with optimal
(a*, A*) and p > 0 will be the same as Lasso.

F PROOF OF THEOREM [4] (THRESHOLDED LASSO)

As described in Section [A] our proof has three parts: (a) deriving the rejection region, (b) obtaining
the rate of convergence of E[H (3, )], and (c) calculating the phase diagram.

Part 1: Deriving the rejection region. Recall that the rejection region R is as defined in (3)). Still
use the scaled version of (A, ¢, 2%y, 2%, ,y): Define hy = z%y/+/21log(p), ha = 2 1y/+/210g(p),

N = X/v/2log(p) and t' = ¢/+/21og(p). Consider Lasso decomposed into bivariate sub-problems,
and for (2, 2;41), (b1, ba) minimizes

1
L) = 5V [g ﬂ b+ b'h+ N|[b]y (39)

It is seen that (5;, Bj11) = \/210g(p) (b1, b). Thresholded Lasso applies threshold ¢ to (5;, 5;11),
which is equivalent to thresholding (bq, bo) with ¢'.

Fix p > 0. The next lemma gives the explicit solution to (7)) in the case of hy > |hs|. It is proved in
Section [E1l
Lemma F.1. Consider the variable selection method by solving the optimization [39) and then

thresholding the solution with t'; if (b1) (or (by)) survives the thresholding, then variable x; (or
xj4+1) is selected. Suppose hi > |hg| and p > 0, then

» When X' > hy, neither of (xj,x;11) is selected.

o Ifhy > XN and phy — X (+p) < ho < phy + N (1 — p), then: When hy < X' + t/, neither
of (xj,xj41) is selected. When hy > X +t', only x; is selected.

Ifhy > XN and hy > phy + N (1 — p), then

1. When hy < phy + XN (1 — p) 4+ t'(1 — p?), neither of (x;,x41) is selected.

2. When hy > pha + X (1—p) +t'(1 —p?) and hy < phy + N (1 —p) +t'(1— p?), only
x; is selected.

3. When ha > phy + XN (1 — p) + (1 — p?), both (zj,z;41) are selected.

Ifhl > N and ho < phl — )\/(1 + p), then
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1. When hy < phy + N (1 + p) + /(1 — p?), neither of (x;,x41) is selected.

2. When hy > pha + N (1+p) +t'(1—p?) and ha < phy + N (1+ p) +t'(1 — p?), only
x; is selected.

3. When ha > phy + N (1 + p) + (1 — p?), both (zj,;41) are selected.

Following similar reasoning to that of Elastic net, we can use Lemma [FI]to write explicitely the
rejection region R, which is the region in R? where the value of (h1, h2) implies x; will get selected
eventually. The rejection region of Thresholded Lasso and p > 0 is

R = {(h1,ha) : hy > pha + N(1 — p) +t(1 — p*), hy > N +' '}
U{(h1,ha) s hy > pha + XN (14 p) + /(1 — p*)y U {(h1,h2) : h1 < phy — N (1 +p) —t'(1 — p?)}
U{(h1,ha) s hy < phy — N (1 —p) —t(1 — p?), hy < =N —"t'}. (40)

See Figure[I]for a visualization of the rejection region.
p=05 A=15, t=1
hy hy g oy M1 p)+t(1-p?)

hz = phy +A(1 - p) + t(1 - p?)

ha = phy +A(1 - p)
ha=ph,

hy =phy = A1 +p)

hs=phy =A(L+p) - t(1 - 0?)
1

hy = phy + A(1%[p) + t(1 - p?)
1=ph2 o P hy= —hy

Figure 5: The rejection region of Thresholded Lasso for p > 0.

Part 2. Analyzing the Hamming error. The discussion of Elastic net can be applied here as well,
and we present Theorem [F.1] directly.

Theorem F.1. Suppose the conditions of Theorem 4| hold. Let N' = \/+/2log(p) and t' =
t/+/21og(p) in Thresholded Lasso. The correlation p € (—1,1). As p — o0,

FP, — Lp' ™l (VEN ), 0+ RmN )} N = g ptomin{ TN ), 2040 (VRN |
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where (below, d‘?p‘ (u,v) is as in Deﬁnition

AN = mind =g [+ DN + (1= A7, (X +0)2)

(N + = |plv/r)? if v < Al
Fa (VN H) = S a2 (X + 1, + [plt), (1ol v/ /) sze@“ 1o N [plt)
Ly V(= o) + (1= p?)) NI

Falyr X ) = min{ (V7 =X =00, o (= AWVE = (1= ) = N (1= o]},

FVEN ) = 2 (L= PVE = (1= ) = X (1= p)]

Remark 2. When p > 0 in Theorem we notice that f5(\/r,N,t') < fo(\/r, N, t'), and thus
FN,, can be simplified:
FN, = Lyp' 0~ fs(Vm\t),

When p < 0, such simplification is not available.

The proof of Theorem [F]is easy given the simple rejection region shown in Figure[5} and we omit it
for brevity.

Part 3. Calculating the phase diagram. The boundary line between Almost Full Recovery and No
Recovery is still 7 = 4, and the proof is similar to that of Elastic net. The rest of this part calculates
the curve between Almost Full Recovery and Exact Recovery.

In such calculation, thresholded Lasso has two tuning parameters, (\', "), and thus we need one more
equality additional to the important fact noted in the Part 3 of Elastic net. In other words, we not only
need

min{fl(\/’;a )‘/a t/)a v+ f2(\/;7 )‘/7 t/)} = mll’l{ﬂ + f3(\/7j7 )‘I? tl>7 29 + f4(\/;7 )‘/7 t/)} =1
but also need one more equation. This gives us more than 4 cases for other methods. (For brevity, we
use f; (i = 1,2, 3,4) as shorthand of f;(/r, \',t") for the rest of this part.)

For the rest of this section, we use a clearer way to discuss all the cases; that is, we discuss each
possible curve and find out whether they can be present in some interval of ¥.

We first talk about p > 0: In this case, since we always need 9 + f3 > 1, we much have /7 > X +1'.
As aresult, for 9+ fo > Lo N = |p|) +t/(1— pz)]2 > 1since /1 > N+t
Also, according to Remark 2] we can ignore the requirement 20 + f4 > 1 for p > 0.

First, we study the curve /7 = 2 2 , which is the curve given by letting

1

2
0
+1_

s VA=l 410 = ) = z9+1_—1p2 (1= PWr =10 = ) = X1~ )] =

in fo and f3. We also need ¥ 4+ f1,9 + f3 > 1 and one more equality. One possible case is

=z [(L+ Ipl)/\’ 11— >1
N +t)?>

[A'(l o+ - P =1
0+ (f— X -t

(- )\/F—t’(l — ) =N = o])]* =
14+p

: : 1 14p — ! 1+9 1
which gives \' = 5 (\/ﬁ 1) vi—9dandt' = /77 (

p? P

— 1) v1—19. In
1—p2
this case, t' > 0 always holds; (\ —&—t’)2 >1 = 5 [(L+]phN +(1 —p2)t’}2 > 1, and

> > 1+ +/1 — 9. This is a sufficient condition for this

(N +1)2 > 1is equivalent to /7 = 2
curve to show up in the d1agram
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Second, we study the curve /7 = 1++/1 — ¢, whichis given by (N +¢')? = 9+ (y/r—N —t")2 =1
We also need f1,9 + f2, % + f3 > 1 and one more equality. Depending on which requirement to
take equality, we discuss two possible cases:
2 2
If L [(L+ DX + (1= p2)]” = S IV =)+ (=] 2 10+
2 \/1—p2—(1—p?

= p > (L= p?)Vr—t'(1—p?) = N(1 - |p|)} > 1, then we will get \' = # and
= (A+p)—/1-p*

T op(4p)

. From the two inequality requirements, we get

—/1—=p2+2 2 1-— 1-—
\/lﬁgmin{ pPept \/1p2,p}p

(1+4p)? L+p L+p
Hﬁ+t%[a—p%¢?—ﬂu—p%—A%L—mﬂ = land = [(1+[p)N + p%ﬂ2>
LN —|p)) +t/(1— p2)]2 > 1, then we will get )\’ = 1# ( 1) V1-49,

t' =1— ). Fromt > 0 and the two inequality requirements, we get

—1 —1 -1
1-— 2 1 2
—pgvl—ﬁgmin — 1 ,L — 1 = ——-1
1+p 1— p? 1+p 1—p? 1—p2

Taking the intersection of the first two cases, we already know that /r = 1 4+ /1 — ¢ exists as
long as \/17 =14++vV1I-9 > 2 11:/;’;. There is one more case left, but the interval of 1 for

Vr =14 +/1— 9 to exist will be a subset of what we already have, so we omit it.

Now we already seem to have the whole phase curve, but the tricky part of thresholded Lasso having
two tunable parameters is that we might have multiple curves for the same 1, and we need to take the
minimum across all the curves. Thus we need to continue discussing all the other curves. For p > 0,
we have three more to go.

Third, we study the curve /7 = Q(Vll_;)j/_#)) v1—-9+ \/— given by
—p)\/1-p?

3 (L PN + (1= )] = 04 (Vr=N )] = 7

1—

NowwehaveX—H"’( L —1)\/1—19andt’— L _ H'” (\/1 1)\/1—19.
p2

» \Viee i A1)
From ¢’ > 0 and f1,9 + 9+ fo > 1, we get

—1 —1

(1+ p)? 1 1 1—p 2_2 1—p2+1+p 1-p
P\/1* V1-—p? "1+p’ 1—p 1—p 1+p
As we can see, when /1 — 9 <
‘We must take the lower one then

Fourth, we study the curve /1 = ( + \}l) V1—-9+

\/7 given by
T3 [T+ DN + (1= P = V1 fpz N = [p)) + /(1= pA)]” = 9+(/r=N—t): =1.
Now we have \ = QL (1-vV1-9)y/1—p?andt’ = [(1+p)V1I=0—(1-p)].

Fromt’ > 0and f1,9 + f3 > 1, we need

1—p 2/1=p2—(1-p) 1— 3—p A\
max{ }gmg;’(ﬂ)

V1 — 9 <min

1 + , now we have 2 curves, both of which seem to be the boundary.

1
2p+/1—p2

1+4p’ 1+p 2
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This gives us an empty set, because actually

19,(3,0_ 1_p2>_1<2\/1p2(1p)

2 1+p

Fifth, we study the curve \/r = 11:;92 + 2p+(21_+ o )12—,) : given by

[ DX + (1= )] = V) = 9 (1= P)VF =21 = %) = X (1= o)) = 1.

1—p2? 1—0p
— — _2 — —
We get \ = 7W andt’:% W.Fromﬁ+f2,19+f3 > 1, we get
l-p g Vi=-P-(1-p)
1+4+p - 1+p

Summarising all the five curves when p > 0: We will elimiate the third and fifth curve. For the third

curve, when /1 — 9 < L__z it is always larger than the other curve \/r = 1 4+ /1 — 9. In other

words, when /1 — 9 < %, we always have

Al i e ) B wr S Sy S
vr (1—=p)v/1—p? +\/1*p22 i

In fact, (LHS — RHS) takes its minimum at /1 — ¢ = 1;—/’;, which is exactly zero.

For the fifth curve, when i—g <V1-09< 27%;(17”, we have

1-9  2p4+2—4/1—p?
r= +
vr 1—p? (1+p)?

2max{1+\/1—19,2 11_192}
—P

which can be verified using % <V1-9< 27”_{)1;(1_”) in a similar manner. To sum up, for
p > 0, the phase curve of thresholded Lasso is

1—
ﬁ:max{l—i—vl—ﬁ,? 1_;’;}

We then talk about p < 0, which now requires additionally 29 4+ f4 > 1, or
20+ [(1 = p)Vr = N(1+]p]) = (1= 2]} > 1.

When 9 > %, this newly added requirement has no effects, and the right half (¢ > %) of the phase
diagram should be the same as that of p > 0. As a result, we can limit ourselve to consider ¥ < %

Also note that we used to ignore 29 + f; > 1 for p > 0 because it is not restrictive; now we have
added it, and it is the only difference between the cases of p > 0 and p < 0 (because f1,7 + f2, g3
only rely on |p|). As a result, we only need to discuss this additional requirement; since we have
eliminated three curves when p > 0, there is no need to discuss them again.

First, we study the curve \/77 =2 T2

which is the curve given by letting

1
1— p?

V(1= o) +£/(1 = 7)) = ﬂ+%p2 (1= ) —t(1— p2) = N (= |p])]* = 1

I+ 1

ind + fo and ¥ + f3. We also need f1,9 + f3,29 + f4 > 1 and one more quality. When p > 0, we
used to consider only one case, but now we need to discuss all four cases and take the union to get
the interval of ¥, because each case has different (\’,¢') and lead to different intervals of oJ.
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2

I 9+ S NA-lph)+t(1—-p)]" = 9+ (r - XN - )7 = 9+
(=)=t - 2)—/\’(1—|p|)]2 = 1, and ¥ + f1,20 + fo > 1, this is the
case we covered when p > 0. Then 20 + — [(l—p )\/f—t’(l—p2)—)\’(1+|p|)]2 >1

implies 1 219 < V1 f T(‘lﬂpl and other requirements imply v1 — ¢ (

2_ 1) > 1. (The
\/1—p2
first constraint 1mphes ¥ > some value, and the second one implies ¥ < some value.) The overall
requirements are:

_ _ 2 _
175y 1) v I < B

V1—p? 1—9 ~ 1—|pl
o (4N + (=] = 9+ L NA-|p)+¢(1-p))])]° = 9+
= p [(1 — PP —=t(1—p*) = N(1 - |p|)]2 = 1, and other terms are greater than one, then
— 2 ’ .

we have \ = 12‘5‘ . 1\/1V = Ut = \/11_p2 - 1:\‘[)‘. In this case, t' > 0 and f1,9 + f3,20+ f4 > 1
implies

_ 2 (1— _ — 2 (1—
VI > maxd Lolel 2VL=p® = (A=) 1—1pl _2y1—p?—(1—p])

1+ |p| 1+ |p| (3—[p|) —2¢/1 = p2 1+ |p|

I (N + )2 - 9+ N+ -’ - v+
- p 2 [(L=p?)r—t'(1—p%) = N(1—|p] ]2 = 1 and other terms are greater than one,
then we have \' = HI-Tllpl (1 — f:;’;) and ¢’ = 1 — ). In this case, A’ > 0 and ¢’ > 0 implies

”1Jlr‘7pp|2 <V1-9< \/ 1 — p2, which is weaker than the requirements from f1,49 + f3 and 29 + f4:

2 - 21— p2 — (1 2./1—
(\/172—1> <Vi—o< _f+_|(| —1PD na = W < p\/l—

0+ L V(1= o) + (1= p2)]* = 0+ Lz [(1— )V — (1= p) = N (1= |p])]” =

20 4 = 1 z [(1— p2)\/F —t(1—p?) = N1+ |,o|)]2 = 1 and other terms are greater than one, then

(\/1 —J—+V1-20)andt' = :;’; - 1+|p| In this case, A’ > 0 and

72
wehave)\’— ""

ﬁ

Qo

=5 2 1-— 2‘ ‘L‘ , which is still weaker than the requirements from f1, 9 + f3 > 1:

- 2 /1
\/1 219>2\/1 P (1+|P|’a 2 +\/ﬁ< \P‘m

t’ > 0 implies

-0 - iy = iy
Taking the union over all the four cases of curve \/r = 2 2 , it exists for ¢ satisfying /1 — ¢ >
( 12 - — 1) and 21721‘?2 1—-29 < i’:m V/1 — 4, which is equivalent to

-

1- 1 1- 1-2
Vr=2 19>max 1+vV1-9, 1+ + Irl 19-|— [ Y
1— p2? 2 1— p? 2 1— p?

Second, we study the curve /7 = 1++/1 — ¢, which is given by (X' +t)? = 9+ (y/r—X —t')3 = 1.
We also need f1,9 + f2,9 + f3 > 1 and one more equality. When p > 0, we have discussed two
cases; now we discuss the two old cases with the additional requirement 29 + f, > 1, and two
additional cases.
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If — ,,2 [(1+]p)N + (1 - pQ)t’]2 =N+t)2 =9+ (Vr— XN —t)% = 1 and other terms
are greater than one, We have already considered this in a previous section. Now we only add the
requ1rement 20+ 2 (L= pH)/r—t'(1—p*) = N(1+ \p\)f > 1. The final requirement on 1J

ﬁ<”ﬂ‘and 1—\/1— +¢1—219<\/1— 21— 1.

FOY )2 = 04 (V7 = X = )2 = 0+ 1z [(1— p) V7 — (1= p?) = N(1 — [p])]* = 1
and other terms are greater than one, we have already considered this in a previous section. Now
we only add the requirement 20 + = [(1 — PP T — t’(l —p?) = N1+ |p|)]2 > 1. The final

: o 1=1pl — . 1-29 _ 2y/1=p*=(1+p])
requirement on 1 is THo] <AV1I-19< ( Ji 1) and /5= < -

LN —p))+¢'(1 - p2)]2 =N +t)? =9+ (y/r— XN —t')2 =1 and other terms
are greater than one, this is a new case, and we have \' = Ltlpl (1 — 4/ 11__;92), t =1-—N.

]

N, t' > 0 requires ”H' < V19 < \/1 — p2, and the requirements from f1, 9 + f3,29 + f4 >

-1
1are VI—0 < min{ Dz olm ol (122—1> } and 12 /T—p2 + V120 <
p

ol

1 . . . . .
(JIZI + /1 - p2) v/1 — 9. Taking the intersection, the overall requirement on % is

1+|p|

V1—p?

N+ =0+ (=Nt =20+ =5 [(1-p )\/?—t'(l— 2)—X(1+\p\)}2—
2),15’:17/\’.

and other terms are greater than one, then we have N = 1 ‘p ‘ (\/ 1-—
The requirements from A, ¢’ > 0 and f,9 + fo,9 + f3 > 1 are:

\/1—219<2¢1—p2—(1+|p|)
1=9 = 1—1p|

lV1=p* | = 20>/1—p2-vV1-0

1—|p|
1—V1I-p)+V1I-20<\/1—p2- V10
1+IpI\/1—p2+\/1—2ﬁz( +|”|+\/ )
—1lp

Taking intersection, the first and the last can imply the other two, so the final requirements are just
the first and the last one.

—1

Taking the union over all the four cases of v/r = 1 + /1 — 9, we have /1 — 9 < (\/1272 — 1)
—p

and 4/ 11__21;9 < 2y 17p27(1+|p|), which is equivalent to

1-lpl

1-9 1 1-9 1- 1-29
\/?:1+\/1—192max{2 p2,1—|— i + el }

1- 2 1— p2? 2 1—p?

; , . 2
Third, we study the curve /7 = Lfg + \/11_7 given by = [(1+[p])N + (1 = p*)t']” =
20+ 25 [(1—p?)Vr —t'(1—p?) = N(1+ \p\)}Q = 1. We need one more equality constraint
and other terms greater than one. We will see this curve does not exist for ant ¢ at all.

2
If the additional equality is (N + ¢)? = 1, then we have \' = 7% and ¢ =
(I+]p)—+/1—p?

. However, this case admits no ¢, because ¢ +

2
GIeSr) = (N =)+ (1=p?)] 21
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requires /1 — 19 < Q—Vl_fi‘_p(‘l_w and ¥ + (vr — X — t')3 > 1 requires (1 — /1 —p?) +

V1 =29 > /1 — p?-+/1— 9, these two requirements have no intersection.
L N —=p) + (1 —p2)]2 = 1, then we have \ =

2

12_‘;] \/1177 (1 —v1- 19) and t' = \/117,; — L\‘/p‘. However, this case admits no 1, because
t" > 0 requires v1 —9 > H_M and ¥ + = [(1—,0 )\/;*t/(1*/72)*)‘/(1*|p|)]2 > 1

requires 1 + V1 =29 > 24/1 — 9J; these two requlrements have no intersection.

If the additional equality is?+ (yr—XN—t)% =1,then N = 17pp‘ (\/1 — - }:iﬁ) and

t = \/1%7 2 ‘p‘ However, this case admits no 9, because (\'+t')? > 2 requires (1—+/1 — p2)+
L (1= pP)Vr = #/(1 = p*) = N(1 = |p)]” > 1 requires

\/1—219>\/1— V1 —
; these two requirements have no intersection.

1—29 < 24/1- (1+|p|
1—9

If the additional equality is ¥ + = [(1 —p )\f —t'(1—p*) = N(1 - |p|)]2 = 1, then \ =

1— o N : .
2\p| ﬂ (VI—d-v1- 219) and t — 12y,;- However, this case admits no 9,
because ' > 0, (N + ') > Land 9 + 1= [N | o)) +t'(1— p2)]2 > 1 respectively requires
2|p|
+V1-29>V1-9
1+ pl
W-v1i-p?) )+\/1—219>\/1—
1+ |p|

1+V1I-20>2V1—-9
These three requirements admit no 9 € (0, 1).

To sum up, the third surve does not show up in the phase diagram.

1 219+2(1 lpD—+/(1=9)(1-p?)

Fourth, we study the curve /1 = =ik given by

(N+t)? = 041 !

5 V(= 1pl) +2(1 = p1)]° = 20+ 1p (1= )7 =#(1=p) = N(1+|p])]” =

We have N = 1%")‘ (1 — 11:;’;) andt’ =1 —X. XNt/ > 0 requires VH‘ ‘ <V1l-9¢ <

/1 — p?, and we also need the requirements from f1,%¢ + f3 > 1. The overall requirement on ¥ is:

1+|p|
1 1
1+|p|\/1— 2+\/1—219>(1+Ipl+ 1—,o2>\/1—19
21— p
T VI >1 IpI\/l—

This is also an empty set, and this curve can never be present in the phase diagram.

To prove this, we note that ¢(}) = 1” |p| + V1 Ipl \/1 — 9 1is a “first i 1ncreasmg, then

decreasing” function of ¥ € [0, 3]. When |p| > 1+2f , the maximum of 2Y~%* | /T~ 29 —

1- \ \
o= }Z } V1 = is not positive, and does not admit a curve. When |p| < 122 we add the requirement

of V1 —1 > VI- f +_p(‘1 let) , even the largest ¥ is still on the left side of the peak of the maximum

point of ¢(¢}) and still makes it negative.
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—p

Fifth, we study the curve /1 = <1+2p + \/117> V1I—19— LL’;I =29 which is given by
p2?

19+1_1p2 (= Jpl) + /(1= p2)]" = 0+ (r=N =) = 20+ 1,) (1= p)Vr =1 = p?) =N (1 +|p])]”* =

1
Now we have N =

—lpl — 3 [/1=29 r_ 1 XN :
] (x/l ¥ 1_p2) and t' = S T The requirements of

N, t'>0and f1,9 + f3 > 0 are
— 2
m_iﬂlmlplg\/mgz =22~ (1+ o)
L—p| 11— 1—|p|
1 1
*‘2”+m§< g'p'ﬂ/W)m
1 1
1+:p:\/1_ﬂ'2+¢1—219§<1+:p:+ﬂ>m
_p —

This may not be an empty set. However, even when it is not an empty set, the curve is actually either

greater than /r =1+ /1 —dor/r=2

11’192 . To see this:
—p

» In terms of the existence of /7 = 1 + /1 —9 and /7 = 2,/1=%: When 1_“" <

. 1-p +lpl
VI—9< (\/1272 — 1) and /1= 219 < VT f I—p(|1+|p|) we have proven that /1 =
—p

—1

1+ +/1 — 9 is one segment of the phase diagram. When /1 — ¢ > (\/1272 - 1) and
—p

1-29 2y/1=p>—(1+]pl)

=20 < Tl , we have proven that \/r = 2,/1=%

12 is one segment of the

phase dlagram. We can prove that

1=z e+ 1eD) S\/1219 _ /T2 (14

1—|p| 1-9 = 1—|p|
/1—29 24/1=p2=(1+|p))
<+1-9 <( p—l) and g < =
/1—29 24/1=p2=(1+|pl)
ory1—19 >( 1—p2_1) and g <

1—|pl

either

soone of /r =1+ +/1—9and \/r =2 11:;’; exists as long as the fifth curve exists.

1—9

* In the latter case, it is greater than /7 = 2 1=

easily verified)

which exists in the same region. (can be

* In the former case, we can assume |p| < 3 — 2v/2 because we need v/1 — J > L‘Ip‘l to

hold for some 9 € (0, %) Using |p| < 3 —2v/2, we can prove /222 > /1 —p2 —

W = V1-9 > 1 +|‘p |, Now we can easily verify the curve is greater than

v/ =14 /1 — 9 which exists in the same region

As a result, this curve does not play a part in the final phase diagram either.

Sixth, we study the curve \/r =1+ 1+2|p| 11:;92 + 1;"” — 219 , given by

<X+t’>2=z9+ﬁ (1= IV = (1= ) = N = o))" = 20— [(1= )V = £ = ) = X1+ 1p])])* 5

We get N = 2_ (\/1 — 9 —+1—-20) and t’ = 1 — X. The requirements from ¢’ > 0,

== [(L+1phN Pt S NA = o)+ (1= %)) > Tand 9 + (V7 -
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N —t')2 > 1 are respectively

Al e vz
V1—p?
_ 2
2(1? V|1|p)+\/1—2q9g\/1—19
P

24/1 — p? 3 —
e

[T=20 _ 2¢/1—p% — (1+1p])
1—-9 — 1—|p|

Taking the intersection, the last two inequalities can imply the rest, and it is equivalent to

2 1—p? 2 1—p — p?

1 -9 1- 1-29 1—9
Vr=1+ + lpl + o 22max{1+\/119,2 1}.

Now we have studied all the curves for p < 0. To sum up, the phase curve is

[1=9 140 [1-0 1-1p [1-20
= 1 1-49,2 1
NG max{ +V : e +— 1—p2+ 3 =2

F.1 PRrROOF OF LEMMA [E]

Recall the optimization in (7)); the solution b = (by, b2) has to set the sub-gradient of the objective
function to zero. As a result, the equation of the sub-gradient for b = (b1, b2) is:

b Ao fae)] < )]

Now we begin to find out the solution path. Thresholded Lasso has two steps: First, we run Lasso

to select variables from (z;,z;+1); second, a thresholding step with ¢ = t'y/2log(p) is further
performed, and the surviving variables of the two steps are the finally selected ones. Also note that
we have required p > 0.

First, we study the behavior of Lasso, and decrease A’ from a sufficiently large value to see when the
variables enter the model. We assume A1 > 0 and 0 < |ha| < hy.

The procedure is just setting £+ = 0 in the proof of Lemma|[B.1] and we summarise the results below:

e When \ > hy, we have by = by = 0.
* If hy > phy, when "2=2" < ' < Iy, we have by = hy — X, and by = 0;

When ) < ’121%”:1, we have

b (h1 — ph2) — (1 = p)X' P — (he — ph1) — (1 = p)\".
1 — 1_ 2 l) 2 — 1_ 2 b
p p

* if hy < phy, when =H2EEML < N < iy, we have by = hy — X', and by = 0;

When ) < _hfftfhl, we have

B (h1 — pha) — (L + p) X P (ha — ph1) + (1 + p) N
1 — B ) 2 — B .
1—p 1—p

When ) > hq, for any ', we have by = by = 0.
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For hy > phy, when "800 < X' < hy, if hy < N + ¢/, then we still selected neither of (2, 7;11)
in the end. If h; > A" + ¢/, then we will select only ;. When X' < M , we have by > by > 0
and it depends on whether ¢ > 131, 132 <t<bjor 132 > t how (xj, a:JH) are selected in the end.

For hy < phy, when _tht’;hl < XN < hy,if by < N +t/, then we still selected neither of (z;, z;41)

—ho+phy
~ ~ A~ 1_p
and it depends on whether ¢ > by, —by <t < by or —by > t how (x;, xj41) are selected in the end.

in the end. If by > X + 1/, then we will select only ;. When X’ < , we have by > —by > 0

G PROOF OF THEOREM [5] (FORWARD SELECTION)

The proof for Forward Selection still consists of three parts: (a) deriving the rejection region, (b)
obtaining the rate of convergence of E[H (3, )], and (c) calculating the phase diagram.

For Forward Selection, we first write X = [x1, Z2, ..., 2p|, where z; € R” for 1 < ¢ < p. For any
subset A C {1,2,...,p}, let P4 be the projection onto the orthogonal complement of the linear
space spanned by {z; : i € A}. Before the first part, we formally define Forward Selection in
Algorithm [T}

Algorithm 1 forward selection

1: Input X and y (generated with our own setting.)

2: Fixt > 0. R
3: Initialize S©©) = 0, 50 = 0, #(0) =y,
4: Initialize k = 0.
5: while true do > forward step
6: k—k+1
7. D pLoy & #(F=1) is the residual of the OLS fit of Y onto X g(x—1).
8: i + argmax; %S(k b |21
9: ot % > the forward gain, equivalent to the decrease in the loss function.
k 1
10:  if 0" <t then
11: Break.
12: end if
13: SR) o gk=1) 1 {i*} > Note this step is after checking §+ < ¢
14: end while
15 k< k-1
> Because the kth variable hasn’t been added when the “while” loop is broken.
16: 3= BoB(SH) > S is the set of selected variables.

Remark 3. The stopping rule is equivalent to measuring the decrease in the residual sum of
squares. To see this, suppose i € {1,2,...,p} is enrolled at step k, ans S*) = S*=1) U {i}. Then

ly = Xs B (SW)|I> = | Plyl? and |ly — Xgawn B (SED)I? = ||yl By adding
variable i into S®*=Y), the decrease ||Pi- ,y||* — ||Pi-yl|? is equal to the squared norm of the
L 1 . . 1 -7 D 2 A(k—1) — pl
projection of Pj,- |y onto the direction of P;- | x;, which is (ﬁ{iﬁ) where #(k—1) = Py
Part 1: Deriving the rejection region. Forward selection is a sequential method, and we first
need to show it can be decomposed into bivariate sub-problems. The main reason is that whether
some variable x; is selected in the end only depends on (, ;41 ), and has nothing to do with other

variables, or the number of steps k. We still use (z;, z;41) to denote an arbitrary pair of correlated
variables:

In terms of forward gain, whenever ;.1 is not in S*=1) for arbitrary k, Pl z; = x;, and

ZL’/ T(k . . A .
l = [}y = [h1]y/21og(p). When z;, is already in S*E=1) for arbitrary k, Pi- ,x; =

HPL 1le\
pllk— 1)‘

‘-L T ‘(-L —pT +1)y‘ \hl ph2|
T; — prir1,and 4 /2 log(
[ I e 8(p
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In terms of the entry rule (“i* « arg max;g -1 |2j7*~1|” in Algorithm , since #,7(F=1) =

o Py, itis still 2y or (2y — px;11y) depending on whether x4, € S~

do with specific k or other variables than (z;, z;41).

. It has nothing to

As a result, Algorithm [T] under the block-wise diagonal design can be viewed as many bivariate
sub-problems going on simultaneously for each pair of correlated variables. In each “while” loop,
variables from different pairs may be enrolled, but (i) the order of (z;, z;1) does not depend on k
or other variables, and (ii) the bivariate problem must have terminated when the whole algorithm
terminates, and the result of the bivariate problem does not depend on k or other variables.

Of course, we have assumed that Algorithmﬂ] will always terminate in finite steps, which is true,
because each bivariate sub-problem always terminates as we will see in the proof of Lemma[G.1]

Working on a bivariate problem, we can scale everything down by +/2log(p) and define ¢’ =
t/+/21og(p). Then the solution path can be described in Lemma

Lemma G.1 (Solution path of Forward Selection). Consider the bivariate problem of running
Algorithm[l\with y and (xj, xj41). Suppose hy > |ha| > 0, and p > 0.

» Whent' > hy, none of (x;,xj41) will get selected when the algorithm ends.

e If —h1 < ha < (p— /1 —p?)h1, when t' < hq, both (x,xj4+1) will get selected when
the algorithm ends.

 If(p— /1 —p?)h1 < hg < hy, whent € {l:;lpih;’ hl), only x; is in the model before
—p

the algorithm ends.
* If (p— /1 —p*)h1 < hy < hy, whent < ‘hz%\/ﬂ;', both (x;,x;41) will get selected when
—-p
the algorithm ends.

Proof of Lemmal|G.1} Note that we have required p > 0 to avoid unnecessary discussion. Since
hi > |ha|, at any step k when neither of (x;,2;1) is in the model, we have |2)71| = |h1| >
|25 1 17k—1] = |h2|. As aresult, if t > hy, then the algorithm will terminate without selecting either
of (xj,xj11). If t > hy, it will select x; at some step and proceed to the next “while” loop.

After (xj Elas been selected, if ho > (p + /1 —p?)hy or ha < (p — /1 — p?)hy, we have
’ ~(k—1
LIS I _ w > hy > t, and x4, will be selected at some later step. However, since

1Pzl \/1-p2
LT ho—ph
;0>0,W6haVep~¢-\/m>l,sowecanhave“+1 | lha—ph

1Pzl ™\ /1-p2
ha > (p— /1 —p*)hi.
[h2—phi| [h2—phi| :
If (p — /1 — p?)h1 < hy < hy, we have ﬁ < hi. Whent < ﬁ, both of the variables

‘ > hy only when

will be selected; when ¢ € [h—ﬂh' h1>, only z; will be selected. O

V1-p
We use Lemma|[G.1]to write down the rejection region, as in Figure[6} still for p > 0.
/1= p?
R = {(hl,hg) chy — phg > t/\/ 1-— p2, hi > ?pp}
U {(hl,hg) thy > t/, hi > hg} U {(h17h2) thy < —t, hi — phg > tl\/ 1-— p2}
t'\/1— p?
U{(h1,h2) : —h1 + pho > t'\/1— p?, hy < ——Y ="y

L—p
U {(h1,h2) thy < —t/, hy < h2} U {(hl,hg) :hy > t, —h +ph2 > t/\/ 1-— p2} 41
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p=0.5, t=1.5

— /1 — 2 _
hy ¢ h1=h5thh2+t‘1 P* hy=hy

hy =phy +ty1 - p?

hs'=phy

ty1-p?
Y

hy =phy — t/1 - p2

hy

hy=(p—V1-p?)h

h1=ph2+t/1»p2

hy=—-h;

Figure 6: the rejection region of forward selection (p > 0)

Part 2. Analyzing the Hamming error.

Theorem G.1. Suppose the conditions of Theorem @ holds. Let t' = t/+/2log(p) and hy =

riy/+\/2log(p), ha = 2’ y//21og(p). Asp — o,
FPp _ Lpplfmin{ta, ’l9+f1(\/;,t/)},

FNp _ Lpplfmin{ﬁ+f2(\/7"vt')» 219+f3(ﬁ’t/)},
where (below, dfp‘ (u,v) is as in Definition ’

(¢ = lolvry mfsdm
fl(\/;vtl) = d%p‘((t/,t/)7(|p|\/77, \/77)) lf1+‘p| < f— 1+|p|
mm{ (1= |pl)r, t2} iffr > 2 1+‘p‘
min {(v7 = )%, 5(1—[p)r} if\/?é\/L
fo(Vr,t') = min{(\/F—t')+7 T rdt (B, (VT |P|\[))} lf\/— <Vr<t |p|(1 |p|)
[“_ﬂﬁ_ﬂ iV >

The definition of f3(/7,t") depends on the sign of p. When p > 0,

S

When p < 0,

2
A t) = min{ [VI= 727~ 1]" & (.0 = IoDVE.~(1 = v |
(VT 2ol v -}
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The calculation of the elliptical distances are easy given Lemma[A.T]

Part 3. Calculating the phase diagram. The computation of the boundary between Alomst Full
Recovery and No Recovery is almost the same for every method, so we omit the details and conclude
that such boundary is r = 9.

Then we set out to calculate the boundary between Alomst Full Recovery and Exact Recovery. As
usual, we have four cases respectively for p > 0 and p < 0. However, unlike previous methods,
forward selection is very easy, so we combine p > 0 and p < 0 in our discussion and use |rho| all
along.

When p > 0, the phase curve is

- — [20-9) [1-20 1
Vr = {1+\/1 19,\/ e ,\/1p2+m}.

When p < 0, the phase curve is

1—219 1 1—-29 1
vr= ma"{”v %—m ¢ A\ 2D +1—|p|}

First, if t'? = 0 + fo(\/r,t') = Land 9 + f1(\/7, ') > 1, 29 + f3(y/7,t') > 1, we discuss the
conditional expression of fa(y/7,t'):

When /r < \/?_/7 in f3(y/r,t'): Now /r = max{l ++v1 21(1 \;’9| } We need the

following requirements: First, /7 < 2t _ 2 itself. It is not restrictive, because 1 +

\/17p2 \/17;)2
VIZT <2< 2 and NET ‘j) < \/1 71 < i Second. 0+ (/7. 1) > 1, whichis
still not restrictive. When\f > g +\P\’

we know F'P, = o(1) from /r > 2;:;? andt' = 1.When
1< r< m, we know F'P, = o(1) from d2( (VT plvT) = (1 + |p|)(1 — |p|)?r. Third,
29 + f3(y/r,t') > 1, which requires /1 > 219 + F when the correlation is positive, and
VT > max{ % iﬁ \/1 £/ 2(11 2\130 + 1= |p| } when the correlation is negative.

When —2 < /7 < (YIS in SV ) IE (L= 0)(1 = ) = d(B.(VF. |ply7). then

since d?(B, (v/7,|plv/T)) > (1 +1p|)(1 — |p|)?r, we have /r < 2(1‘19‘) However, we also need

V> F which glves a contradiction. This case does not exist. If v/r = 1 + /1 — ¢, then it
\/1_72 :
t

When /r > WM in f3(y/r,t'):

also contradicts /7 >

T It cannot meet the requirement

t'/1=p?
\/F > TPI=To) S° this case does not exist.

To sum up, the first case gives

\/;:max{l—k\/i 1(_19)}

which exists in the region:

SO CES RGN E=

\/#}forp>0.

c oo <t vz B2+ S 30+ 2 b e <o,
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Second, if O + f1(\/r,t') =9+ fo(y/r,t') =1and ¥’ > 1,20 + f3(y/r,t') > 1, then we will get
nothing in this case. To see this, we first list a few requirements:

* We know that t' > 1;
* We know from ¢ + fo(1/7,t') = 1 that \/7 > max {t/ VI D, |2 };

* We know from 2¢ + f3(+/r,t') > 1 that, when ¢ < %, we need

1-29 t i fon-
- \r> T2 T S for positive correlation;

NG max{ \/1 e Ve T |p‘ for negative correlation.

From these requirements, even if this case does admit some curve, it can only be higher than the one
in the previous first case, and exist in a smaller region.

Third, if t'? = 29 + f3(y/r,t') = Land 9 + f1(y/7,t') > 1,9 + fa(y/7,t') > 1, then:

219

When the correlation is positive, we have only one possible curve /r =

9+ fo(y/r,t') > 1, we get the requirement /r > max {1 + 1 -9, 2(1 } For 9 +

fi(\/r,t') > 1, since we already have /7 > \/W we know ¥ + fi(y/r,t') > 1 always
holds.

L . _ 1-29 1 [ 1-29 1
When the correlation is negative, we have /r = max{ =2 T Vi V 30D + 17 } .

From ¢ + fo(y/r,t') > 1, we get the requirement /7 > max{l + 1 -9, 21(1_7‘;9‘) } For

9+ f1(y/7,t') > 1, since we already have /1 > 2f1—7|;9|) , we know F'P, = o(1) always holds.

Fourth, if 9 + f1(y/r,t') =20 + f3(/r,t') =1land ¢’ > 1,9+ fo(y/r,t') > 1, then we will get
nothing from this case. To see this, we still list a few requirement:

* We know that ¢’ > 1.

e From 9 + fo(y/7,t') > 1, we know that /7 > max {t’ +V1-9, /2= }

1-1pl|

* From 20 + f3(y/r, ') = 1, we know that \/7 = /1= 2p’9 + \/—

1-29 t’ 1-29
max{ =+ i meh } forp <0.

Even if this case admits any curve, that curve would be above the curve in the previous third case,
and exist within a smaller region of .

for p > 0 and \/r =

To sum up, we have the following results:

* Phae diagram when the correlation is positive:

Vi=max{1l+v1-9, 2(1_0), 1_2f+ 1 .
1—-p 1—p 1—p2

* Phae diagram when the correlation is negative:

17219 1 1-29 1
vr= m“{”” \/1—|p| \/ A\ 2 D +1—|p|}
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H PROOF OF THEOREM [6] (FORWARD BACKWARD SELECTION)

The proof for Forward Selection still has three tasks: (a) deriving the rejection region, (b) obtaining
the rate of convergence of E[H (/3’, B)], and (c) calculating the phase diagram. However, as we will see
later, forward backward selection has six cases, each of which has a different shape of the rejection
region. After deriving the rejection region, we consider the E[H (3, 3)] and phase curves of the six
cases one by one, and summarise the results at the end.

Defore deriving the rejection region in the first part, we need some clarification about the definition
of the forward backward selection we have investigated. More precisely, we have simplified the
backward step into one thresholding step after the forward selection algorithm, so it is more precisely
“thresholded forward selection”.

The reason why we have not used a sequential algorithm with alternating forward and backward steps,
like FoBa defined in|[Zhang| (2011]), is not compuational simplicity, but to avoid degeneration. We
explain briefly why any sequential algorithm with alternating forward and backward steps will either
have nonfunctional backward steps, or be unable to terminate at a finite step.

To see this, we review the setting of Lemma@]about the solution path of forward selection, in which
hi1 > |hz| and we only consider a bivariate problem. Using the same argument, some version of FoBa
can also be decomposed into bivariate subproblems, and it is equivalent to running the algorithm only
onyand (z;,zj41).

In brief, in such a bivariate problem with hy > |ho/, if either or both of (z;,z,11) ever get selected
and then deleted at some backward step, then they will be selected back again because they still meet
the requirements for a variable to get enrolled. When h; > |hs/, the case of deleting «; while leaving
;41 still in the model cannot happen, because no deletion rule based on (zy, 2’ 1y) can delete z;
without touching x ;1. As a result, the algorithm cannot terminate at a finite step.

If the algorithm termininates at a finite step, then the backward step much have not deleted any of
(xj,x;41), and such algorithm performs the same as forward selection.

We have explained the degeneration of Foba (Zhang| 2011)), but we still want to implement some
kind of backward step additional to forward selection, because the problem with forward selection is
inability to correct the mistakes made in the early steps. Thus it is natural to use one thresholding
step at the end.

Part 1: Deriving the rejection region. We first work on the solution path, and then compute the
rejection region. The forward selection part has been discussed before, and we recall the results in
Lemma[G.T| (re-iterated in an equivalent way):

1. When ¢t > hq, neither is selected.

2. Whent < hq, and phy —t\/1 — p? < hg < phy + t/1 — p?, only z; is selected.

: — 2
3. When t < hy, and {elther hy > phy +t\/1—p

, both z; and x ;. are selected.
0r—h1<h2<ph1—t 1—p2 J J

Now this is followed by a thresholding step. Before using v to threshold the results, we note that:
1. When x4 is not selected, Bj = hy;

2. When both (z;, z;1) are selected, 5; = ’7';:522 and §j41 = hi:;’gl.

When the thresholding is performed, we can naturally describe the solution path of thresholded
forward selection as:

Lemma H.1. Consider the bivariate problem of running Algorithmwith yand (z;,;11), followed
by thresholding (Bj,ﬁj+1) with v. Define hy = z'y/+/2log(p), ha = @, y/\/2log(p) and
t' =1t/+y/2log(p), v = v/\/2log(p). Suppose hy > |ha| > 0, and p > 0. Then

e When t' > hy, neither is selected.
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e Whent' < hyand phy —t'\/1 — p? < hy < phy +t'\/1— p?,

— Ifv' > hy, neither is selected.
= Ifv' < hy, only x;j is selected.

. ) =
» Whent' < hy, and cither hy > phy + /1 , f
or —hy < hy < phy —t'\/1—p?

i

— Ifhy > phy +t'\/1 = p2, and ha — phy > v'(1 — p?), both (x;,x;11) are selected.

— Ifhy > phy +1'\/1 = p2, and hg — phy < V' (1= p?) < hy — phy, only x; is selected.
— Ifhy > phy +t'\/1 = p2, and hy — phy < V' (1 — p?), neither is selected.

— Ifhy < phy —t'\/1 = p2, and phy — hy > v'(1 — p?), both (x;,x;11) are selected.

— Ifhy < phy —t'\/1 = p2, and phy — hy < v'(1— p?) < hy — phy, only x; is selected.
— Ifhy < phy —t'\/1 — p2, and hy — phy < V' (1 — p?), neither is selected.

The rejection region can be complicated, and it has many cases visually. See Figure

R:{(hl,hg)ihl ph2>max{t\/1fp ’U 17 } h2>ph1+t\/1f }

U {(h1,ha) : by > max{t' v'}, ha < phy +t\/1 — p2, ha > phy — t\/1 — p?}
U{ hl,hg thy > hg, hy > max{t',v’}, hy > phl —ty1 —p2}

)
( )
( Y:ihy >t ha < phy — tm, h1 — phg > v’(l — p2)}
( )t he < —t, hl—ph2>max{t’ﬂv’1—
U{(h1, hy) : —hy + phy > max{t'\/1 — p2,0' (1 — p*)}, hy < ph1 —ty/1—p?}
( ):h1<—max{t,v},hgzphl—tm,hggph1+tM}
( )t hy < hy, by > max{t',v'}, hy < phy +t\/1 — p?}

( )i hy < —t', hy > phy +t\/1 — p2, —hy + phy > v'(1 — p?)}

( )t hy > t, —hy + phy > max{t'\/1 — p2,v'(1 — p*)}} (42)
Due to the many cases of thresholded forward selection, we structure the rest of the proof in a different
way: We discuss the six cases shown in Figure[7)in the next six parts, and summarise the results for

p > 0and p < 0 respectively, at the end of the proof. In other words, each of the six cases has its
phase curves, and we take the minimum of all the curves to be the final phase curve.

Case 1: When v' < ¢. From the rejection region defined in Equation (#2), and Figure [7al we
know that thresholding does not have any effects in this case. Everything can be copied from forward
selection:

The curve between Almost Full Recovery and No Recovery is = 9. The curve between Almost
Full Recovery and Exact Recovery is: When p > 0,

Vr=max{ 141 -9, 2(1_19)7 1_2194- L . (43)
1—0p 1—p2 1—p2
When p < 0,

1—219 1 1-—29 1
1+vV1-9, + . (44
vr= max{ \/1— \/ T\ =D 1—|p|} 0

Case2: Whent' <v' < .
1—p2
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p=07, t=15, v=t

hy = phy + tyJ =y
ny < Pt 2=

hy t
hy=phy +ty1-p?

= phy

? 65Zohy = phi — ty/1-p?
7T

Fr=Tp= 11— o)y

hy=—hy

(a) Whenv' <t/

t o
msvs(1+m)t

s = ph; + Vg, =i,
o Zipn £ % V=)

p=07, t=1.5,

hy t v

'hs = phy + ty/1 - p?

= phy

ha = phy - ty/1 - p?

-

—
=(p=\'1-p*)h

hy=ph + Vi@ - p?)
hy=—hy

7)

1 _ 2
1"tsv51+p

1-p

t’ <’Ul§t,(1+

\1—p2

(c) When

p=07, t=1.5,
Uiy < pifn =PV -p?)

) t
hofph +t/1-p?
= phy

hy = phy - ty/1 - p?

hy 2
M =Tp=V1-p*)h

hy=ph; +v(f - p?)
hy==hy

t

/ —p2
(e) When == <o < &
P P

=07, t=15, t<v=s—Lt
p e

- =?
m =nbh7pm +thl=ty

hs =phy +ty1-p?

= phy

ha =phi - ty/1 - p?

e =Tp="1i1 - P

t

(b) Whent' < v’ <

=07, t=1.5, (1+-=2
P U

hy=—hy

ha=phi - ty/1-p?

—
== v1-p")h

L

hy=ph; +vif - p?)

(d) When t/ (1 +

p=07, t=1.5, v>

) t

P <
\/1—p2) =v

hy= —hy

< t'\/1—p2
= 1—p

t

1-p

v
hy=ph +v(1=p?)

=gl +tV1-p?

hy=phy - ty1-p?

i 2
ha=(p=V'1-p*)hy

) mmﬁ/

ha=—hy

(f) When v’ > £

Figure 7: The rejection region of thresholded forward selection has many cases (p > 0).
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Theorem H.1 (The Hamming error rate When t' < v/ < —%— ). Suppose the conditions of
\/1—p?

Theorem@holds Let hy = x’y/\/210g )y ha = @ 4y/\/2log(p) and v' = v/+/2log(p),
t' =t/\/2log(p). We require t’ < v’ < \/7 As p — o0,

FP, = Lypt-min{min® 2% 0+A (e} pN, = g plomin{ 04 WRE ), 204 S0 )
where (below, d?, (u,v) is as in Definition ,

= lohy)? NGRS
fl(\/;,t/,v') = d|29|(( o), (lely/r V) ’fl+|p| < \f_ 1+|p|
mln{ (1—|p]r, tlz} ’f\[> 1+\/)
min { (v —t')%, +(1—|p|)r} if\/FS\/%
Falratr ) = dmin { (V7 — 003, T (B, (7 ol } lf\ﬁ < VP e
[mﬁ_t/] V7>

The definition of f3(+/r,t") depends on the sign of p. When p > 0,

fa(vt) = [VI= v o]

When p < 0,

R ) = min { [VI= V7 ] .1~ oD vr -1~ v |
_ mm{[ﬂﬁt:?, - |p|>\/Ft]2}

o

Remark 4. The proof of Theorem[H.1|is easy, but we need to emphasize one thing: For F' Py, whose
ellipsoid is centered at (0,0), it may be tangent to hy = v' at (V',|p|v); or, it may intersect the

rejection region at the corner (t,t(p — /1 — p?)).
Theorem H.2 (The phase diagram when ¢t < v <

t_pz ). Suppose the conditions of Theorem

holds. The boundary between Exact Recovery and and Almost Full Recovery is Equation{45|\when
the correlation is positive, and Equation[d6|when the correlation is negative. When p > 0,

2(1 — 1-2 1-—
Jr = max 14 VI, 20 =) L L (45)
1—p 1— p? 1—p?
When p < 0,
V= max) 14 VIO, 1f219+ 1f19’
1—|| —p? 1—p?
1-29 Vv1=9 1—29 A/ 1= p?
n : + Pt (46)
20 —1p) ~ T—1p[ "\ 2(1—=1pl)  1—]p|

Proof of Theorem[H.2] Like the proof of forward selection and other methods, We still
discuss the 2 x 2 = 4 cases. For brevity, we use fi, fs,fs as shorthand of

fl(\/’Fa tl7vl>af2(\/77a tlavl)vf3(\/;7 t/avl)'

First, if min(v'?,2t"?) = 9 + fo = 1, we have /7 = max {v +1-— 20 ‘;9‘)}. To ensure
9+ f1 > 1, weneed t’ > /1 — 1. For fs, it need to meet the requirement \f < \/7 This is
not restrictive, because:

{t’ >/1-9

1gu’g\/1t;2 = t' >
—p

=2 = 2t/ > V1 -9 +v'\/1—p2
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(For the conditional expression of fa, /7 <

—2_ s the only possibility here; to see this, we
7p2

can just refer to the same part of proof for forward selection.) Finally, 29 + f4 > 1 requires

1-29 t’ 1— 219 1-29 t’
> 1_p2+mwhenp20,and\/772max{ +\/1 =0\ 301= |p|)+1_|p|}
when p < 0.

In the above discussion, the (v’,t') refers to any admissible ¢ in this case, so we
choose v/ .. = 1 and ¢, = min{\/l—ﬁ,\/l—p2 Q} To sum up, /7 =

max{ Vppin T+ \/f 21(1 ‘;9‘ } and we require /1 > 219 + \/% when p > 0, and

t 1-29 t
> '19 min min <
NG max{ \/1 0\ 20=1D) + 2 } when p < 0.

Second, if 9+ f1 = 9+ fo = 1, this case will not give us any curve. We first need v’ > 1 and ¢’ > %,

and /1 = max{v +v1-9 2(1 %) } For ¢ + f1 > 1, we already have /r > ,/2(1 19) , SO

we only need t' > /1 — 9. The requirement from 29 + f5 > 1 is still the same as that of the first
case.

We notice that even if this case admits any curve, it is strictly above the curve yielded by F'P; = F Ny,
and it exists in a smaller interval of 9. As a result, we need not discuss this case any further.

Third, if min {v"?,2t?} = ¥ + f, = 1, then we immdiately have v’ > 1, ¢’ > @ and we can
limit ourselves to consider ¥ < l. From 9 4+ f; > 1 and ¥ + fo > 1, we have the requirement

\f>max{v +v1-79 2(1 19)}andt’ > /1 —49. Also, since v/ < t'/4/1 — p2, we need
t'> /1 —p2

When p > 0, we have /7 = 1:3;3 +

t . —
i when p < 0, we have /1 =
max{ }:ig n \/1 / 1 219) + & p}. Just like the first case, we can take v/ ; = 1 and
t/ . = min {\/1 — 4, - p?, %} in the expression of /7.

Fourth, if 9 + f; = 29 + f3 = 1, this case does not give any curve. The discussion is exactly the
same as the second case: even if this case gives us any curve, it would be strictly above the curve in
the third case.

To sum up, define v ;, = 1 and ¢, ;. = min {\/1 — 9, v/1—p2, g} When p > 0:

129 ¢
\[ max Umm + / T min
1—|P| 1—p2 /1= p?

1-29 tmin H
and add ,/ 2=, T 1%, Into the maximum when p < 0.

We can simplify the expression of the curve above, by deleting a few curves in the maximum:

e the curve /7 = 219 + f/ 2 s always below other curves, and can be omitted.

This is because when ¥ < %, /1 —49 > g, which implies /1 = i:iﬁ + \/157/[2)2 <

1-29 VIZ9
1—p2 /1—p2
_ 1-29 V2/2 .
¢ for the same reason, the curve \/F =/ 30=p + 1 = is also always below other curves,

and can be omitted.
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. _ [1i—29 | V1-p . .
the curve /1 = Tz T i is always below other curves, and can be omitted.
V2 1 219 1—p?
- When p > %2, \/1—p?> < VI—9forall ¥ < J. Thus = T i <
120 | VIV
1—p2 /1— P2
- > V2. < 2 ; 1-29 V1-p? < Vi=9
When p > %5=: If ¥ < p*, we still have e + Wier LS i If
2 1 : 1-29 , V1-p°
p° < < 3, it can be verified that T2 + N <1l++v1-9.
Now we have arrived at the conclusion of Theorem [H.2] O
. t’ I < ol
Case 3: When s <v <t(1+ \/ﬁ)'
Theorem H.3 (The Hamming error rate When —2— < o < /(1 + el ) ). Suppose

Vie S Vi
the conditions of Theorem @ holds. Let hi = o/, y/\/210g , he = JcJ_Hy/\/Qlog ) and
v = v/y/2log(p), t' = t/\/2log(p). As shorthand notation, define the points A(v',v’),

B(tl V1-p? Uy1-p? ), and D(v' + \/7 ,pv’ + \/7) as marked in thure We require
p2

I=lpl 7 1-Ip]
t'/\/1—p2 < <t'(1+4|p|//1—p?). Asp — o0,

FPP _ Lppl—min{min{v/z,%/z}, 19-i—f1(\/7j,t/,'u/)}7 FNP _ Lppl—min{ﬂ-i—fg(\ﬁ,t',v/), 219+f3(ﬁ,t',v/)}’

where (below, dfp‘ (u,v) is as in Definition ,

(v’— lplv/r)? ifVr <o 5
fl(\/;a tla’U/) = \p\( (|p|f f)) lf1+p < \//»_ 1+p
mm{kv,t), (1*:02)} if Vr > 1.:1,)

where k(v',t') is defined like:

1 20 2t’
§awmr fom Vs 7
o . ’ ty/1—p2
k1) s M(Gmeﬁzfﬁﬁﬁﬁfwmh

. tv/1—p2
[V 1- pzﬁ*t’] =

min { (V7 — )2, (1 |o])r. 2} iFVF <+l s
mmHWwai%u—mn,lp\M (VR lpyT)

PVt ) = ifv' + |p|—A— <\f<m1n{mv +‘ | %}
min{(ﬁv')i,Qljp & (D, (7, |p|\f))} lfmm{ﬁ,v + ‘ﬁ} <JF<u+ \mﬁ
(- ) [Vr— ] V2

where ro = 19(v',t') is the larger root of the quadratic equation

T (DL (VR IplV) = 50— oD

1 / t/2 2 /t/
DI T/ PSS BT V-2 - lplv't \ _ a7
2 1/1—p 1—[) 1_p2
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and the explicitely form of ro(v' ') is

1+ p|

1 lplt! % t
V(W V) = 2 (v + L)+ 20— V- ———— | [+ (1 +2)p)) ——
2 (v, 1) ( = (1—1lpl) — (1+2(pl) T

The definition of f3(+/r,t') depends on the sign of p. When p > 0,

fa(rt) = [VI— v —1]

When p < 0,
R t) = min { [VI= V7 ] .1~ o) F -1~ v |
mmﬂw.ﬁw4{32mmwrﬂﬂ

L —p|

Proof of Theorem[H.3] We explain one detail, about why /72 (v’, ') is introduced in fo(y/7,t',v'),
which corresponds to the ellipsoid centered at 1119 = (/7 |p|+/7). Recall that the point D as noted

in in Figureﬁhas cooredinate zp = v’ + —2Lt = |p|v/ + —L—. Suppose p > 0, as the case

q_pgayD qizg-

of p < 0 can be obtained with symmetry.

When /r < zp = v + LU the ellipsoid can be tangent to any one among the three line
\/1—p?

segments: (i) hy = v/, (ii) he = hy or (iii) he = phy +t'\/1 — p2.

When p\/r > yp = pv’ + \/L the ellipsoid can either be tangent to the red line hy = phs +

1—p2°
v'(1 — p?), or the blue line h; = v’ in Figure

When v/ + 22— < /r <o + —L thing are more tricky:

V1-p2 — py/1—p2’

* The ellipsoid can possibly be tangent to h; = v/, or it may intersect point D and rotate
around it.

* However, it is uncertain whether we should include the segment ho = h; into the form of
the Hamming error. This is because when /7 is large, the ellipsoid is at the upper right side
of point D, where ho = h; does not form the boundary of the rejection region. If we still
include it, the final phase diagram will be worse than it actually is.

* To exclude hy = hy when it is unwanted, we require /1 > /72 (v, ).

* The place of y/r2(v’, ') is exchangable to the symmetric axis of the quadratic equation (#7)),
which is —2-v' + 20t

a (1+p)y/1-p*"

/72", ') can be greater than v/ + —/A— so it is taken minimum with v + —“— in the
P/ 1-p2
definition of f5. O

Before moving on to the phase diagram, we first introduce two terms to simplify notation:
Definition H.1. Define vl ,, and t.

min’

max{l, -9 V2/2 }andt’. —ma}({\/5 i 11_’:92}}

both as functions of ¥ and p. v =

min

— 2 9
1=p*7 \/1—p2 27 1+pl/A/1-p2

/!
min

Figure|[§| gives an explanation of how v/ . and ¢/ , are defined.
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.tl
Hue area 5 baween U’ _J—? ond V'= HHL )

Figure 8: the definition of v} ;, and ¢

min

Each

Theorem H.4 (The phase diagram when

= < v <#(1+ el ) ). Suppose the conditions
\/1—p2

of Theorem [6] holds. The boundary between Exact Recovery and and Almost Full Recovery is
Equation 3] when the correlation is positive, and Equation 6| when the correlation is negative. When

p>0,
5 1-29
\/> max vmln + 1 _ | | 1— p2 + Umin (48)

When the actual correlation is negative,

19 1-—2¢ 1—2¢ t!
f maX{ Umin + \/ 1 _| | \/ 2 +U;nin7 + min } (49)

L—=p 2(1=1pl) = 1=l

Proof of Theorem|[H.4} We start by considering the case of p > 0. The other case of p < 0 can be
prove in a very similar way by adding one more curve. In the discussion below, we do not work with
|p|, but p > 0 itself.

In this particular proof, we do not limit ourselves to discuss the four cases as usual. Instead, we just
think about the conditions for min{v'2, 2t2}, 9 + f1,9 + f2,29 + f3 > 1, and take the smallest /7
possible. Also, remember the important fact that at least two of these requirements should be tight.

For fixed (v, '), the necessary and sufficient condition for min{v?,2¢/?} > 1isv’ > 1 and t’ > g
The necessary and sufficient condition for 209 + f3 > 0is /1 >

should be /7 > max { {:iﬁ + v/, / 11_—;)92 },) From ¢ + fo > 1, we know a necessary condition,
V1 > v ++/1 — 9. From the discussion above, we already know

1-29
ﬁzmax{v’+v1—ﬁ, W+’U’}

In terms of admissible (v/,t’), we already have v/ > 1 and ¢ > @ Additionally, note that
fi(y/r,t',v") as a function of /7 takes its maximum when f; = (1 — p?)v'?, s0 ¥ + f; > 1

Wbt 2 and Sl <0 <
1—p2
t'(1+ \/ﬂ) the smallest admissible (v’, ¢') are precisely defined by Deﬁnitiona (V] ins Erin)-
p2

We consider the two cases: p < 0.576 and p > 0.576. The point 0.576 is important, because when

implies v’ >

p < 0.576, since v/ ;, > max {1 117;9 } we can prove

\/> > max {IUHIIH J’» v ‘ Hlln} — 2(11_;9)'
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Since now /1 > 4/ 2(1 ;9) is already implied by other necessary conditions, we only need to

check the sufficiency of /7 = max { Upin T V1 — 219 + vmm} to prove Theoremfor
0 < p <0.576.

When 0 < p < 0.576, we already have min{v'2, 2t?} > 1,20 + f3 > 1 and /7 > 2(%7;9). we
need to check ¢ + f1 > 1and19+f2 > 1.

For 0+ f1 > 1, because 1z (A, (|, f)) > %( o and i (B (v /) >
1(1 — p)r, we only need to check /7 > /1= > V l_p

e > A > T forallp < 2 e e > VT, 2t now sty
ta/1—p2 1—9 t’
p(1—p) = 17 T V1-p2’

. Since t' >

so this case is not restrictive at all.

For ¢ + fo > 1, when /7 < y/ro(v/, /), it is sufficient to have /7 > M We only need to

check the rest two cases in which /7 is large:

e When /ro(v/, ) < /7 < v/ + —E—, we need d2(D, (v, py/7)) = (1 — p2)(1 — 9).
PV 1-p?
This trivially holds, because /1 > 1/r2(v’, ¢'). From Equation @7):

t'2 2p0't! 1—
r—2<v/+ — >f+< -+ 2 )z Pr>1-9

1-— P \/1— p2 2
whose last inequality is because /7 >

(1 9)
—p

e When /r > v/ + \/7 we need /7 > /2=% + o', Since t' > py/1 — 9, it trivially
holds.

We have proved Theorem[H.4|for p < 0.576. Now we move on to the next case of p > 0.576.

For p > 0.576, our task is to prove it is necessary and sufficient to have /7 > / M. Reviewing
Theorem as long as /7 < \/ro(v/,t’) and /7 < \/2'57 for fixed admissible (v, "), then

V> 2(1 19) is also sufficient for /7. In other words, we could simply set

2(1 — 1-2
\/;:max{’u:nin—i_ Vl_ﬂ7\/ (1_;9)7\/1_p129+1}1/nin}'

.. . 2t’
We are left to eliminate other cases, i.e. /7 < \/ra(v/, ) or /7 < Wi
(v/,t'). They can either be impossible, or only produce a curve greater than the one in Equation 48]
The rest of the proof focuses on the elimination of other cases.

for fixed admissible

To prepare for such work, we take a closer look at the definition of f. We point out that when
o > V2L
- P \/17;)2
(\/'F - U/)i . . / t' ! t'
if min{\/rg,v' + ———=} < Vr <v' + ——
{ 2diy (D, (Vr, pv/r)) lo[v/1=p? lolV/1T= 92

does not ex1st, and the degenerated f5 is just

, the case of

min{(v7r —v)3, 3(1 = p)r, t’2} if V< e
L/t vy = {min{(Vr =035 (1= p)r iz dy (D, (VI oV} i 4 ps <V
(=) W= N
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When o/ < Y2071 ¢ , the case of
p V1-p2

A= PAF—0R s L
{dzw,(ﬁ,pﬁ» i V/ra ) S Vs Soe—s

in fo does exist.

Now we are ready to eliminate the unwanted cases.

(1 )
+p)t’ — 9 _ 42 > 2 2pt’ >
S —v1 /2. There is one important fact: v’ + \/ﬁ > 1+p” + T/ = \/1_p2 .
The middle term is the symmetric axis of Equation (@7)), and can be used exchangably with /7o (v, )
as we have noted in the proof of Theorem [H.3]

When the case of \/7 < Jr < AVl f1 > 1 is tight and active, we have f =

. ’ t’ 2 _ 2 _ ;
Ifr <o+ PV we need dlpl(D,(\/F,p\/?)) > (1 —-p9)1—-9),ie r >
/ pt’ — — 42 . . ..
v+ T + V1 — ¢ — t'2, which gives a contradiction.

o If /7 >0 + \/7 because df (D, (v/r,pyr)) = (1= p*)? [Vr — '], itis the same
p

contradiction.

ty/1—p2 . o e . _ 1—9 '
When the case of /1 > o=y N 9+ f1 > 1is tight and active, we have /1 = —= T S
Then we discuss the conditional expression of f2 in ¢ + fo > 1; given the intractability of /r2(13, p),

we work with the alternative —2—v/ + —2L___ v instead.
A (14p)y/1—p?

e When \/r > v + in fo, we need /7 > 11_’;’; + v’ which gives a contradiction.

tl
py/1-p2

e When —2—v’ r <o v in f5, we actually cannot have , / 1=2
T +(1+p f = SV <Vt o—infy y it

’ . p— f— ’ —
t > _2 , because it means ( = fv’) plop t 5 1opy

1—p2 — T+p Y (1+,,)1/ 1—p? T+p \f1-p2 = 1+p

When the case of /7 > v + in FN; is tight and active, we have /7 = /2 ;92 + Vi

1—;’; }’

it is too large, much larger than /r = max{ Upnin + V1 — 21-9) =2 219 + Umm} whose

t,
py/1—p?

This case does not have any problem or contradiction itself. However, with v/ > max{1,

1—p 7
sufficiency has been proven.

/2(1+p)—1 . . . .. .
When v > ( - PZL , there is no more cases in fo, and our discussion is finished. When

Vi-p?
V< Y 204071 , we need to look at the last case of /ro(v/,t') < /r <o +

p \/17,)2
F Nj. If this case is tight and active, we have /7 = v’ + + 1 =19 —t2.

in

t/
P/ 1-p?

pt’
v 1—p?

. \/1—p? S .
o It can be verified that /7o (v’ ') > ! L , which is equivalent to

p(1—p)
141 _ 3 12 _a2)\2
B S LA PR el A B §+}_3_p2_(1 p*)
2 V1= p? 2p 1—p2 |2 p 2 4p?

el

. . L’ _
(RHS — LHS) is decreasing in %7, and the inequality holds as & = a1
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R . / pt’ —J_12 > 1—9
As a result, we need to verify v’ + T +V1I—-9—-t? > ,/17p2 + e

plied by ¥ + f; > 1. This would give us a contradiction, because actually v +
t’ 1-9
\/‘1’_74—1.02-\/1—19—1&’2 <\ iope
\/5172+1.02~\/17197t’2 <

—p

./2(1:,))—1 +p— 1}
: E—y 3 _pV/1-9
make the LHS decreasing in ¢’ for p > 0.576. Taking ¢ = N proves the inequality.

So far our discussion is finally finished, and we have proven the phase curve to be

2(1 — 1-2
\/?:max{v;nin—i-\/l—&\/ (1_;9),\/1_;294‘1};]0110}-

where v/ ;. is defined in Defition

Reviewing the proof for p > 0, we notice that 2 + f5(+/r,t'v") > 1 is only used at the very start of
the proof, and does not change the bulk of the discussion. It can be proved with vitually the same
proof, that when p < 0, the phase curve is

— 1—2¢ 1—2¢9 t
f max Umin + + U;ninv + i .
1— Ipl 1—p? 2(1—1p) ~ 1—1p|

In fact, We only need to prove

_192 . The coefficient 1.02 as to

O

Summarising the first three cases: When p > 0, among the first three cases, we can take the minimum
over Equation (@3),@3)),[@8)). In fact, the minimum is just Equation (43]), which is

\/F:max{l+\/l—19,\/2(11__f),\/1:3:29—#\/11__;;}. (50)

When p < 0, we also take the minimum over Equation (@4)),[@6),(@9). In fact, in the region ¥ € (3,1),

Equation (@6) is the minimum, but when ¢ < %, Equation {9) is the minimum. As a result, we have
an upper bound on the final phase curve, which can be expressed as:

T3 1-—29 1—-29 t!
\/> max Umin + + Ull'nin7 + L . (51)
1—|| 1—p? 20 =1pl) 1 —1pl

’
where we define v/ . = max{1 andt' . —max{ Y2, — Ymin
min { } min 27 1+‘P‘/ﬂ

Remark 5. Equation (30) and @ is the result we presented as Theorem|[6]in the main text.

j _ 1-9 V2/2 . .
When p > 0, since we used to define v, ;, = max {1, T2 m} in the third case, Equa-
tion @9) is strictly above Equation (40).

When p < 0, in Equation [9), we used to define v, ;, = max {1, 11:;92 , \/% } When 9 < %,
—p

it is equivalent to v/ ;. = max{1, {/ %}, which agrees with Equation (1) for 9 < 5 and p < 0

When p < 0 and ¥ > L, Equation @9) is not the minimum among the three, mainly

2)
V2/2 V2 1
because i > 1 for |p| > 5°. The lowest phase curve for ¥ > 5 and p €

(=1,1) should be max{l + /1 — 21(1_‘;?} but we can also write it equivalently as

max{max{l N }—&—Vl— ,/21(1 Ifl } because 1 + /1 =19 > 11 ;9‘) and 9 > 1 to-

gether imply 117[)2 <1
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The last three cases: We are still left to discuss the rest three cases: (i) /(1 + el =) <v' <

\1—p2" —
IV (i) Y <y

o' < T2 G o > ok
1-Tp] SUS T =

1-lpl*

rest three cases for p > 0. This is because in Figure

When p > 0, we can prove that Equation (30} is alrea 'v the best, and there is no need to discuss the
7

Hand we need v’ > max{L 11:;92}.
We also need at least that /7 > v' + /1 — 9, /1 > ,/2(%7;9) and /7 > 1/1 23 + ', so it cannot

be any better than Equation (50).

When p < 0, the optimal phase curve for ¥ < % may still be one of the last three cases, but the
discussion is too difficult. Even the expression of the phase curves is very complicated. We present
the phase curves of the rest three cases without proof:

Case 4. When t' (1 + \/“)—2) <v' < tli,lwp the phase curve is
P

1- 29 1-29 . (¥)
\f max Umin + + ’U;nin ) y —+ min .
V 1—|| Tz TSy T )

(52)

and the definition of (v/ ;, ! ..) is specific to this case.

l’l’lln » “min

Vrmin () = max {1, %, g (1 + "’|p2> } () = max{lmvmin(ﬁ), f(p),g(l?)}

- N
where
= if [p] < (V6 —1)/2
Fol) = { o (V- 1)/2 < |pl < L [-2+ (19 + 3v3B)YS 4 (19 — 3vF5) 9]
o] if |p| > 1 [—24 (19 + 3v/33)1/3 + (19 — 31/33)1/3
\/1+(1+\p\)2—2(1+|p|)\/ﬁ ol = 3 [ ( ) ( ) }
and

_ (@) 9=
90 {92(19) 9 <9

where ¥*, g1 () and g5 (¥) are respectively the roots of ¢ of the following three equations:

Ipl 129 1+ p?

=1l \20=)  Viee
o ) iy v

9 =9

1—-9—p2=0

L—|pl /1-p?

1 1— 1
tzgz(ﬁ):t< _ >+ 20 —V1-9-12=0

L=1lpl  /1-p? 2(1=1pl)  /1—p2

All three equations can be solved easily with bi-section methods.

t'y/1-p? ’

Case 5. When —— < v < lf]plz We first define vy () =
max {1, 11:;92, . :pp‘z - f(lp|), ¢ in which f(|p|) has the same definition from Case 4.

When |p| < Y2 the boundary is

V7 = max {ummw) V1o, hl(ﬁ)}
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where h () = min {Slope(ﬁ) V1 =19, ha(9), max{ 2(11 2‘;9‘) + & \i)\’ \1/—;2‘p| /1 -0 — =5

in which

_ \/l_p2 * * |p|t 2 _
Slope(¥) =14 ~——— -t*, where t* € (0,1) solves ——= + V1 —t2 =1,

1=l L=
and
1—219 i T
. + HQ i) < 1= Zorippe
2(V) = 1+z|p\ Y N [ s R
Ay (T2 PE(1+1pD?

and g1 (1) is the same one in Case 4.

We define a numerical special numerical value for |p|: |p| = 0.7544. It is the value which makes

_ 142(p] B 1 . V1-p? —3 . _1
Vr= (1t lphV/1—p? + -7 [=EE and /1 = (1 + T ) V1 — 4 intersect at ) = 3.

When Y2 < |p| < 0.7544, the boundary is
/7 = max {Umin(ﬁ) +v1 =19, hg(ﬁ)} ,

where the definiton of vy, is unchanged; h3(#) = min { (1 + ‘11 p2> V1=, ha(d )}

Ipl

When |p| > 0.7544, the boundary is:

max{vmm()ﬁ/lf( 1|pl>(1—19)} if 9 <
ha(9) if 9 >

=

Nl= =

Case 6. Whenv' > —L
1—1p|

1—219 1

\ﬁ " 1p2,h(19)}

\/;:max{\/l— +

where the curve h(®) is defined as

; _ _1=lpl
Vi T i if 0 < 1= S
1- ||

o] _ 1=l _
2+1+\p\+ 1-9 if9 >1 ;

h(9) =

l—p

To sum up all the six cases, the lowest phase curve over the six cases in given in Equation (50)
when p > 0. When p < 0, the optimal curve is too complicated, but an upper bound is given by

Equation (5T).
I PROOF OF THEOREM/[/]

The key is to analyze the random-design setting and show that its minimax rate of Hamming error is
only determined by E[X’X] = 3. Then, when we switch to the fixed-design case of X’ X = ¥, the
same minimax rate holds. For the random-design setting, we proceed by deriving a lower bound and
an upper bound of the minimax Hamming error separately.

First, we derive a lower bound for the minimax Hamming error. Let G = X’X denote the Gram
matrix of the random-design model. Fixing any two subsets Vp, V4 C {1,2,...,p}, we write
V = VoUWV, Letny € {0,1}® be an arbitrary binary vector. We consider two binary vectors

w0, u(l € {0, 1}? where p(o) = pg ) = =1, for j ¢ V, and restricted on V', Supp(u (0)) Vo and
Supp(uv ) = Vi. Let 7, = 4/2rlog(p). Consider the testing problem
Hy:8= Tpu(o), v.S. H,:8= Tpu(l). (53)
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For a test T', let R(T") be the sum of type I and type II errors. Any selector B can be converted to a
test 7'(/3), where we reject the null hypothesis if Supp(8) # V;. It is seen that R(T'(8)) = P{S =

7o, Supp(B) # Vo}+P{8 = ), Supp(B) = Vo)} < 32 {P(B; = 0, B # 1) +P(5; =
Tp, B; = 0)}. It follows that
E[H (Bv, Bv)|X] = R(T(8)) = inf R(T) = R*(Vo, Va1, X). (54)
We can compute the right hand side using the Neyman-Pearson lemma. Define
a=a(Vo,V1,X) = (@ — uMyG(u® — ). (55)

The likelihood ratio test for (53)) is equivalent to using the test statistic Z = a~1/2 (™) —p () X’ (y—
7, X (). Then, Z ~ N(0,1) under Hy, and Z ~ N(a'/?7,,1) = N(y/2arlog(p), 1), under Hj.
By Neyman-Pearson lemma,

R*(Vo, Viin, X) = igf{e;,Vo‘ PN(0,1) > t) + Vil PN (y/2ar log(p), 1) < t)}

= inf Lyp~Vol?=a 4 Lpp—\vlw—(m—ﬁ)i}
t=1/2qlog(p)
Lyp "V, (56)

where

h(Vo, V1, X) = rgggc(min{wo\z? +q, V1|9 + (Var — \/(})i})

In the second line of (56)), we have used the Mills’ ratio of N (0, 1) (e.g., see [Ke et al[(2014) for a
similar use of the Mills’ ratio). Let 3 be the covariance matrix, parameterized by p. We define the
following quantities:

a*(Vo, Vi, p) = (' — My s(u® — p®),
(Vo Vi ) = ma(min{ [Vold + g, Vil9 + (Var = )t }). 57

Below, we show that h(1p, V1, X) is sufficiently close to h*(Vj, V1, p). The key is showing that &
and G are sufficiently close on the diagonal block restricted to V. We use Theorem 5.39 and Remark

5.40 of |Vershynin| (2012) with ¢t = O(y/|V|log(p)). It follows that, when |V| < n, with probability
1—o(p~® V),

IGv.y — Zvv| < ClZvy|vn 1V |log(p); here, C aconstant independent of |V|.
We note that | Xy, || < ||X]| < C. For any finite integer m > 1, the total number of size-m subset V
is () = O(p™). We then apply the probability union bound to get that, with probability 1 — O(p~*),
max |Gvy —Zyv| < Cv/ntlog(p). (58)

ViVI<m

Since |a(Vo, Vi, X) — a*(Vo, Vi, p)| < [|Gvy = Svv|l - [uM) = @2 < |Gy = Svv| - V],
we immediately know that

la(Vo, V1, X) — a*(Vo, Vi, p)| < Cy/n~1log(p) here, C depends on m. (59)
Write h = h(Vy, Vi, X) and h* = h*(Vp, V4, p) for short, and let (R*, a*) be the shorthand notations
defined similarly. Then, h = max, g(g¢, a) and h* = max, f(g,a*), for f(g,a) = min{|Vy|d +
q,|Va|9 + (Var — \/g)%}. Let g and ¢* be the two maximizers. It is seen that h = f(g,a) <
f(q,a*)+max, |f(g,a)— f(g,a*)| < h*+max, |f(g,a)— f(g,a*)|. Similarly, we can also derive
that h < h*+max, |f(¢,a*)— f(g, a)|. Combining them gives |h—h*| < max, |f(g,a*)— f(g, a)|.
We plug in the expression of f(g,a) to get

|h(‘/0aV17X) - h*(V(),Vl,P)| < |ﬁ_ v G*T‘ < C\/ n=1 IOg(p)

We now combine all the results, and note that has a maximum over all V' = V U V;. It follows
that, with probability 1 — O(p~3),

|h(‘/0a Vl’X) - h*(VO’Vlvp” < C\/ n-! log(p)‘ (60)

max
(Vo,Vh):|VouVi |<m
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We plug it into (56). Note that L,p~" = L,p~""-p""~"_Inline of (€0, p" ~" is a multi-log(p) term,
ie., L,p~" = L,p~"". We then combine it with (54). It yields that, with probability 1 — O(p~3),
E[H(Byv, By)|X] > Lyp~ " (Vo:V1£) simultaneously for all (Vp, V1) with [Vo U V1| < m.  (61)

Given V, we further take a maximum over (Vj, V1) on the right hand side. It follows that

E[H(Bv,Bv)|X] > Lyp™ V), where h**(v,p):(wgr;igo . h*(Vo, Vi, p).  (62)
VouVi =V

Write {1,2,...,p} = Uj[i/lﬂVj, where V; = {25 — 1,25} for j < p/2and V; = {p} for j > p/2
(this happens only if p is odd). It follows that, with probability 1 — O(p~3),
EHQB A)IX]= Y. EH@Bv,B)IX]> > Lp " V0
1<5<[p/2] 1<5<[p/2]
When p is even, h**(V}, p) are all equal. When p is odd, h**(V;, p) are all equal, except for one V;
but this one has a negligible effect on the right hand side above. Let h**(p) be the common value of
h**(Vj, p). Since h**(p) also depends on (¢, ), we write it as h**(p; 9, r) to reflect this dependence.
We immediately have that, with probability 1 — O(p~2),
E[H(B, 8)|X] = Lyp' " 771,

On the event that the above inequality does not hold, the Hamming error is at most p. The contribution
of this event to the expected Hamming error is at most p - O(p~2) = O(p~2), which is negligible to

L,p* =" (#i%:7) 1t follows that
E[H (3, 8)] > Lyp*~ """ (p0m), for any method §. (63)
This gives a lower bound for the minimax Hamming error.

Next, we give an upper bound for the minimax Hamming error. We will consider a specific B Let the

partition {1,2,...,p} = U]D;/f]vj be the same as above. For any subset U C {1,2,...,p}, let 1y
be the binary vector such that its jth entry is 1 if 7 € U and 0 otherwise. Additionally, let X;; be the
submatrix of X restricted to columns in U. For each V;, define

N . 1
05 = argmin{ - [ly — 7, X 1u/|1> + 9 log(p) U }. (64)
vcv; \2

Define /i € {0, 1}” such that for any i € V}, ji; = 1if i € U, and ji; = 0 otherwise. The estimator

is B = 7, [1. We now calculate the expected Hamming error of this estimator. Let S be the support of
B. Fix V; and write V' = V/ for short. Given any two subsets Uy and U, of V' such that Uy # Uy, we
consider the event

Supp(Bv) = U, Supp(Bv) =Ui,  [S]<2p"". (65)
On this event, it is true that

1 1

3y = X1y, 1> + 9og(p)|Uo| > = ly — 7 X 1o, ||* + 9 log(p) UL |- (66)
Note thaty = X5 + z = 7, X1y, + 7, X 1snve + 2. We can re-write (60) as
1 1
Sl + Tp X Lgnve|| + 9log(p)|Us| > Iz + 7 X1save) — X (Lo, — 1y,)|I* + 9 log(p)| U7 |-

Let F' = U() N Ul, Eo = U()\F and E1 = Ul \F Then, Uo‘ = |F| + ‘E0| and |U1‘ = |F| + ‘E1|
We plug it into the above inequality and re-arrange the terms. It gives

T, 9 log(p

™ (10, ~ 10, G(Lo, ~ 103) ~ Voo Gl ~ 10) + DB 1y ).
2

Leta = a(Uy, Uy, X) = (1y, — 1y,)' G(1y, — 1y, ). We note that this definition is indeed the same

as that in (33)). Let Z = 2’ X (1y, — 1y,)/+/a. The above can be written equivalently as

Z > +/2log(p) \/;Ta - 1ISQVCG(\}? —1u,) + 19(E21|\/;T1E0|) ,  where Z|(X,5) ~ N(0,1).
(67)

22/)((]_U1 — 1U0) Z
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We bound |15, G (1, — 1y, )|. Since Xy ey is a zero matrix, we immediately have 1,2 (1¢, —
1y,) = 0. It follows by the triangle inequality that

|1{S'ﬂV°G(1U1 - 1U0)| < |1{S‘HVC (G - E)(]-Ul - 1U0)‘
< VI max|e (G — E)1savel. (68)

Fork € V,ej (G —X)Llsnve = >0 > pegnved X (6, k) X (4, €) — E[X (i, k) X (4, £)] }. We recall
that {1,2,...,p} = U[p/ ]V is a partition. It induces a partition on S N V¢, which we denote by

SNnve= ﬁzls Each S, contains at most 2 indices and |S N V°|/2 < N, < [S N V°|. Write

(G — ) Lgnye = }:ZXEjunk ) — B[X (i, k)X (i, O]}
i=1 m=1 ¢€S,,
The right hand side is a sum of n.N,, independent variables, where each variable has a zero mean and

a sub-exponential norm bounded by n ! K, for a constant K > 0. We apply the Bernstein inequality
(Vershynin, 2012 Proposition 5.16) to get that, for every ¢ > 0,

, 2 nt
P(lel(G —X)1gaye| > t) < 2exp(—cm1n{Kn27Np, %})7

where ¢ > 0 is a universal constant. By letting t = C'y/n~1 N, log(p) for a properly large constant
C, we have that, with probability 1 — O(p~3),

lew(G — ) 1gnye| < Cy/n~1N,log(p) < Cy/n~1S|log(p)

We plug it into (67)) and apply the probability union bound. We also note that | S| = O(pl’ﬁ) on the
event (63)); also, n = p* with w > 1 — 4. It follows that, on this event, with probability 1 — O(p~—3),

|s5mvG (Lo, = 1g,)| < Cp~ @712 log(p). (69)
We plug (69) into (67) to get:

2b,log(p), whereb, = {

V7@ (B - |B)
2 2y/ra
Moreover, let a* = a*(Uy, U1, p) = (1y, — 1u,)' E(1y, — 1y, ), which is the same as the definition

in (57). By (39), the replacement of a by a* only yields a difference of L,p~ “=** in the expression
of b,. We further have:

w1492
— Lyp~ 2 ] .

Vra* 19(|E1| — |Eo|)
2 2V/ra*
(70)

First, what (70) says is that, conditioning on (X, By, Bv<), if ||B]lo0 < Cp'~?, then except for an
event of probability O(p~3), Supp(fy) = U, implies Z > +/2b, log(p). Second, under our model,
(X, Bve) are independent of Sy, and P(Supp(8y) = Up) = L p‘ﬁw‘]' = L,p YUFI+IEoD | Last,
P(||Byvello < 2p'~7) = 1 — O(p~?) (this is seen by noticing that || 3y<||o is the sum of independent
Bernoulli variables and by applying the Bernstein’s inequality). We combine the above to get

P(Supp(Bv) = Up, Supp(By) = Uy, |S| < 2p*~7)
wawprz %u%@)+af%

E3 I9(| B E
(| Fl+|Bol)— [ 5= + 20E1 = 1ZaD ]

14972
—|—Lpp7w ;+9] .

2b, log(p), where Z|(X, ) ~ N(0,1) and b, = [

IA

< Lpp

By elementary calculations, we have
{\/m* L B - IEoD}2
2 2¢/ra* +

I(|F| + | Eol) +

1 Ei| — |E 2
> 19|F|—|—max{|E0|,|E1\}19—|—f(\/ra*—7“‘ il 0|)|)
4 ra* +
1 Uil — |U 2
- max{|Uo\7\U1|}19+Z(\/m*—M) = h*(Uo,Un,p),
ra +
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where h*(Uy, Uy, p) is the same as that defined in (the last equality above follows by solving ¢
in (57)). We combine the above to get

P(Supp(Bv) = Uy, Supp(By) = Uy, |S] < 2p*~7) < Lp="" Vo:lrr), (71)

On the above event, the Hamming error contributed by Sy is |Eo| + |E1| < |V| < 2. Moreover,
h*(Uy, U1, p) = h**(p; ¥, 1), where the latter is defined in (62)). It follows that

E[H(Bv,Bv)] = Y 2-P(Supp(By) = Us, Supp(By) = Uy, |S| < 2p' ") + O(p~*)
(Uo,Un)

< L Z p —h*(Uo,Us,p) <L oD h**(P§19>T).
(Uo,Ux)

The above is true for every V' = V; in the partition {1,2,...,p} = U(p /21 (except for the last V; in
the case that p is odd; but this smgle V; has a negligible effect on the rate of the Hamming error). We
immediately have

EH(B,8)]= Y. EHQBv,Bv)] < Lyp " »P7 forthe B in @A), (72)
1<j<[p/2]
This gives an upper bound for the minimax Hamming error.

Last, we use (63) and (72) to show the claim. By combining these two inequalities, we know that, for
the random design,

inf E[H (8, B)] = Lpp' " #7).
B

A key observation is that the exponent h**(p; ¥, r) is only related to X, not the realization of X'X.
Now, we can mimic all the above derivations to get the same conclusion when the Gram matrix is
fixed at X (the proof is very similar, except that we now have G = X). Therefore, the minimax rates
of the Hamming errors under two settings are exactly the same. O
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