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Appendices

A EXPERIMENTAL SETUP

This appendix describes experimental setups in detail, including data statistics, model architecture
and optimization strategy.

A.1 DATA DESCRIPTION

12 public datasets are adopted in this work for training. Besides, several test sets are additionally used
only for zero-shot evaluation. The statistics of these datasets are in Table 6. Datasets adoption for
each task is described in Table 7. Note some datasets are adopted by more than one task.

Table 6: Data statistics
Dataset Type Annotation Volume (hrs)

Training

LibriLight (Kahn et al., 2020) speech - 60k
LibriTTS (Zen et al., 2019) speech text 1k
MLS (Pratap et al., 2020) speech - 20k
AudioSet (Gemmeke et al., 2017) sound - 5.8k
AudioCaps (Kim et al., 2019) sound text description 500
WavCaps (Mei et al., 2023) sound text description 7k
Million Song Dataset (McFee et al., 2012) music text description 7k
OpenCPOP (Wang et al., 2022) singing text, MIDI 5.2
OpenSinger (Huang et al., 2021a) singing text, MIDI 50
AISHELL3 (Shi et al., 2020) speech text 85
PromptSpeech (Guo et al., 2023) speech text, instruction 200
openSLR26,openSLR28 (Ko et al., 2017) room impulse response - 100

Test

LibriSpeech test-clean Panayotov et al. (2015) speech text 8
VCTK (Veaux et al., 2017) speech text 50
TUT2017 Task1 (Mesaros et al., 2017) Noise - 10
Cloth (Drossos et al., 2020) Sound text description 3
MusicCaps (Agostinelli et al., 2023) Music text description 15
M4Singer(Zhang et al., 2022) singing text, MIDI 1

Table 7: Dataset adoption of all tasks
Task Training dataset Test set Train Volume (hrs)

Training Stage

TTS Librilight LibriSpeech clean-test 60k
VC Librilight VCTK 60k
SE MLS, Audioset TUT2017 Task1, VCTK 20k
TSE MLS Libri2Mix test set 10k
Sound AudioCaps, WavCaps Cloth test set 7k
Music MSD MusicCaps 7k
Singing OpenCPOP, OPenSinger, AISHEELL-3 M4Singer test set 150

Fine-Tuning Stage

I-TTS PromptSpeech PromptSpeech test set 200
Speech dereverberation LibriTTS, openSLR26, openSLR28 LibriTTS test set 100
Speech edit LibriTTS LibriTTS test set 100
Audio edit AudioCaps, WavCaps AudioCaps test set 500

Sum - - 166k

A.2 MODEL CONFIGURATION

The model configuration of the proposed multi-scale Transformer is described in Table 8.
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Table 8: Model configuration (with nq = 3)
Hyper-parameter Global Transforemr Local Transformer

#layer 24 8
#Attention dim 1536 1536
#Attention head 12 12
#Feed-Forward dim 6144 6144
#Params (M) 744 238
Max context length (in #tokens) 3,000 3
Causality Yes Yes

A.3 OPTIMIZATION

The optimization configurations adopted in both the training and fine-tuning stages are presented in
Table 9

Table 9: Optimization Configuration
Hyper-parameter Pre-training Fine-Tuning

Batch Size (#patches/GPU) 8k 8k
Peak Learning Rate 1e-4 1e-5
Warm-up Steps 10000 1000
Training Steps 800k 50k
Learning rate decay Noam (Vaswani et al., 2017) Noam (Vaswani et al., 2017)

B THE DETAILS OF EXPERIMENTS

This section presents detailed experimental results on each task. In the following, if the training set
and test sets come from different datasets, we label them as zero-shot settings.

B.1 TTS AND VC TASKS

For TTS tasks, UniAudio is compared with the many previous SOTA models, Table 10 presents the
results. For FastSpeech 2, we only conduct QMOS evaluation as its implementation adopts speaker
id as input 12. We can see that UniAudio obtains better performance in terms of WER, SIM than
YourTTS, VALL-E, NaturalSpeech 2 and Make-A-Voice. Compared with VoiceBox, UniAudio also
gets comparable performance in terms of objective metrics. From the MOS evaluation, we can see
that UniAudio can generate high-quality speech compared with previous SOTA works. Furthermore,
UniAudio realizes the best zero-shot clone ability (e.g. SMOS is 3.56 and SIM is 0.708). More
experiments, such as cross-lingual zero-shot TTS and Mandarin Chinese speech synthesis can be
found in demo page. For VC task, we conducted experiments on VCTK dataset, we randomly chose
200 audio pairs. PPG-VC and YourTTS are trained on small-scale datasets. Make-A-Voice and
LM-VC 13 are trained on large-scale datasets as the same as UniAudio. Compared with previous
work, UniAudio got better performance in voice conversion tasks.

B.2 SPEECH ENHANCEMENT AND TARGET SPEAKER EXTRACTION

For the SE task, we compare with previous SOTA methods, including discriminative methods (such as
FullSubNet and FullSubNet+) and generative methods (such as SGMSE+ and NADiffuSE). Note that
the CDiffuSE and NADiffuSE are both trained on the voicebank-demand dataset. Other models never
saw the VCTK dataset in the training stage. We obtain the inference results based on their open-source
models. Table 11 presents the results, we can see that UniAuido obtains the best DNSMOS score.
The PESQ and VISQOL scores are lower than other SOTA methods, we think these metrics may not

12https://github.com/ming024/FastSpeech2
13We seek help from the authors, they provide the inference results.
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Table 10: The performance comparison with previous SOTA methods in TTS and VC tasks. We
do not conduct MOS evaluation for VALL-E, SPEARTTS and VoiceBox due to the models are not
released.

Model Zero-shot SIM (↑) WER (↓) MOS (↑) SMOS (↑)

Text-to-Speech
GroundTruth - - 1.9 3.99±0.08 -
FastSpeech 2 (Ren et al., 2020) ✗ - - 3.81±0.10 -
YourTTS (Casanova et al., 2022) ✓ 0.337 7.7 3.66±0.07 3.02±0.07
VALL-E (Wang et al., 2023a) ✓ 0.580 5.9 - -
Make-A-Voice (TTS) (Huang et al., 2023b) ✓ 0.498 5.7 3.74±0.08 3.11±0.06
NaturalSpeech 2 (Shen et al., 2023) ✓ 0.620 2.3 3.83±0.10 3.11±0.10
SPEAR-TTS (Kharitonov et al., 2023) ✓ 0.560 / - -
VoiceBox (Le et al., 2023) ✓ 0.681 1.9 - -
UniAudio ✓ 0.708 2.0 3.81±0.07 3.56±0.10

Voice Conversion
GroundTruth - - 3.25 3.74±0.08 -
PPG-VC (Liu et al., 2021) ✗ 0.78 12.3 3.41±0.10 3.47±0.10
YourTTS (Casanova et al., 2022) ✓ 0.719 10.1 3.61±0.10 3.26±0.10
Make-A-Voice (VC) (Huang et al., 2023b) ✓ 0.678 6.2 3.43±0.09 3.47±0.10
LM-VC (Wang et al., 2023e) ✓ 0.820 4.91 3.41±0.08 3.17±0.09
UniAudio ✓ 0.868 4.8 3.54±0.07 3.56±0.07

accurately assess the performance of generative methods. The similar finding is also observed in
previous literature (Erdogan et al., 2023) that the signal-level evaluation metrics may not be suitable
for generative methods. In contrast, we recommend using DNSMOS and MOS scores as the main
metrics. UniAuido can get good results in extremely noisy environments, we recommend readers
refer to the demo page. For the TSE task, we conducted experiments on the LibriMix test set. The
popular TSE systems: VoiceFilter 14 and SpeakBeam15 are used as baseline systems. As Table 11
shows, we can see that UniAudio obtains the best performance in terms of DNSMOS and MOS.

Table 11: The performance of SE and TSE tasks comparison with previous SOTA methods.
Model Zero-shot PESQ (↑) VISQOL(↑) DNSMOS(↑) MOS(↑)

Speech Enhancement
CDiffuSE (Lu et al., 2022) ✗ 1.88 1.21 2.54 -
NADiffuSE (Wang et al., 2023b) ✗ 2.96 2.41 3.03 3.30±0.08
SGMSE+ (Richter et al., 2023) ✓ 3.21 2.72 3.29 3.56±0.08
FullSubNet (Hao et al., 2021) ✓ 3.21 2.77 3.37 3.61±0.10
FullSubNet+ (Chen et al., 2022) ✓ 3.41 2.99 3.34 3.42±0.08
UniAudio ✓ 2.63 2.44 3.66 3.68±0.07

Target Speaker Extraction
SpeakerBeam (Žmolíková et al., 2019) ✗ 2.89 2.25 3.18 3.68±0.1
VoiceFilter (Wang et al., 2018) ✗ 2.41 2.36 3.35 3.43±0.09
UniAudio ✓ 1.88 1.68 3.96 3.72±0.06

B.3 SINGING VOICE SYNTHESIS

Following Make-A-Voice, we conduct experiments on the M4Singer test set. We compare the
generated singing samples with other systems, including 1) Diffsinger; 2) Make-A-Voice, a two-stage
audio language model for singing voice generation. As illustrated in Table 12, we can see that
UniAudio gets comparable results with Make-A-Voice and Diffsinger.

B.4 TEXT-TO-SOUND AND TEXT-TO-MUSIC GENERATION

The text-to-sound generation task has attracted great interest in audio research. Following Diffsound
(Yang et al., 2023c), most of the methods evaluate their systems on the AudioCaps (Kim et al., 2019)

14https://github.com/Edresson/VoiceSplit
15https://github.com/BUTSpeechFIT/speakerbeam
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Table 12: Quality and style similarity of generated samples in singing voice synthesis.
Model MOS (↑) SMOS (↑)

Diffsinger (Liu et al., 2022) 3.94±0.02 4.05±0.06
Make-A-Voice (Huang et al., 2023b) 3.96±0.03 4.04±0.05
UniAudio 4.08±0.04 4.04±0.05

test set. However, we found that if the training data includes the AudioCaps data, the model is easy to
overfit with AudioCaps. As a result, the best performance can be obtained when the model only trains
on the Audiocaps. In this study, we conduct a zero-shot evaluation on the Cloth test set (Drossos
et al., 2020). Table 13 shows the results. We can see that UniAudio obtains better performance than
Diffsound and AudioLDM. Compared to recent SOTA models, such as Tango and Make-an-Audio
2, UniAudio also gets comparable performance. For the text-to-music task, we follow MusicGen
(Copet et al., 2023), evaluating our methods on MusicCaps (Agostinelli et al., 2023). Compared
with previous SOTAs, UniAudio gets a comparable performance with other models. From the MOS
evaluation performance, we can see that MusicGen is better than our current models. We speculate
one of the reasons is that MusicGen uses a large-scale high-quality dataset (20k hours).

Table 13: Text-to-sound and text-to-music evaluation. We report the subjective metrics including
FAD(↓), and KL(↓). Furthermore, we also conduct objective evaluation. Note that the training data
of AudioGen includes Cloth datatset, thus can not be seen as zero-shot setting.

Model Training Data (Hours) FAD KL OVL. REL.

Text-to-Sound Generation
Reference / / / 70.47±1.9 78.84±1.5
Diffsound 2k 7.8 6.53 - -
AudioGen 4k 2.55 2.5 63.84±2.1 72.12±1.8

Tango 3.3k 3.61 2.59 66.2±1.7 68.57±1.5
Make-an-Audio 2 8.7k 2.13 2.49 61.52±1.6 69.9±1.5

AudioLMD 9k 4.93 2.6 60.95±1.9 65.7±1.8
UniAudio 7k 3.12 2.57 61.9±1.9 66.1±1.5

Text-to-Music Generation
Riffusion - 14.8 2.06 - -
Mousai - 7.5 1.59 - -

MusicLM 280k 4.0 - - -
Noise2Music 280k 2.1 - - -

MusicGen 20k 4.52 1.41 73.28±1.5 71.28±1.7
UniAudio 8k 3.65 1.87 67.85±1.70 70.0±1.5

B.5 AUDIO EDIT

Audio edit aims to edit the original audio based on Human’s instruction. AUDIT (Wang et al.,
2023d) is the SOTA model in audio edit task, which designs a data simulation strategy to get triplet
training and test data (e.g., {audio, audio, text}). The authors set 5 different tasks, including adding,
dropping, replacing, inpainting and super-resolution, and simulated large-scale data for each task.
To validate that our pre-trained model can be fine-tuned with small-scale data, we choose adding,
dropping and super-resolution tasks to fine-tune simultaneously. To finish the fine-tuning process, we
define a new task label: Audit_task. The experimental results as Table 14 shows. We can observe
that: (1) UniAudio can get better performance with the previous SOTA model. (2) Fine-tuning
pre-trained UniAudio can get better performance than training it from scratch, which further validates
the effectiveness of pre-training a model on large-scale training data.

B.6 INSTRUCTED TTS

Using instruction to guide speech synthesis has received great attention (Guo et al., 2023; Yang et al.,
2023a). In this part, we fine-tune the UniAudio model on the PromptSpeech (Guo et al., 2023) dataset.
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Table 14: Audio edit task evaluation.
Type Model FD KL

Adding task
AUDIT 21.80 0.92

UniAudio (scratch) 20.2 0.99
UniAudio (fine-tune) 19.69 0.934

Dropping task
AUDIT 22.40 0.95

UniAudio (scratch) 27.76 1.38
UniAudio (fine-tune) 23.1 1.10

Super-Resolution task
AUDIT 18.14 0.73

UniAudio (scratch) 11.51 0.29
UniAudio (fine-tune) 10.54 0.289

Table 15: Quality and style similarity of generated samples for Instructed TTS task.
Model MOS (↑) SMOS (↑)

GT 3.77±0.07 3.85±0.08
UniAudio (scratch) 3.62±0.07 3.67±0.08
UniAudio (tuning) 3.61±0.09 3.71±0.09

Furthermore, we also try to train a UniAudio model from scratch with the PromptSpeech dataset.
Different from previous works that designed special style encoders to capture the style information
from text descriptions, we directly use the T5 text encoder to extract representations from text and
then combine it with the phoneme sequence input to the UniAudio, which is more convenient.16

Table 15 shows the results, we can see that UniAudio has good performance in terms of style control
and speech quality when compared with the ground truth samples.

B.7 SPEECH DEREVERBERATION

For the speech dereverberation task, we use the Room Impulse Response (RIR) data from the
openSLR26 and openSLR28 dataset, and the speech data from the LibriTTS clean part. We simulate
about 100 hours of training data and 1 hour of test data. We compare with previous SOTA systems,
such as FullSubNet, FullSubNet+ and SGMSE+. Table 16 presents the results. We can see that
UniAudio obtains the SOTA performance in speech dereverberation tasks with small-scale training
data in terms of DNSMOS metric. Similar with speech enhancement task, we speculate that PESQ
may not suitable for the generative methods.

Table 16: Results comparison with previous speech Dereverberation systems.
Model PESQ (↑) DNSMOS(↑)

SGMSE+ 2.87 3.42
FullSubNet 2.29 3.32
FullSubNet+ 2.27 3.25
UniAudio (scratch) 1.23 3.18
UniAudio (tuning) 2.13 3.51

16Note that the authors of PromptTTS (Guo et al., 2023) told us their objective metrics tools, checkpoints, and
generated samples have been lost due to the machine errors. Thus we cannot fairly compare with them.
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B.8 SPEECH EDIT

For the speech edit task, we use the LibriTTS dataset. In practice, we randomly choose some words
to mask in the training stage. We expect the model to recover the whole speech based on the phoneme
sequence. In the inference stage, we can mask the region that we want to update in the speech and
input the new words so that the model can edit the speech. For this task, we take the TTS system
that regenerates a complete waveform from the whole sentence to be edited as the baseline. In the
evaluation, we mainly validate three situations: (1) word replacement; (2) insert a new word; and (3)
delete a word. For each situation, we randomly chose 10 sentences from the LibriTTS test clean set.

C ABLATION STUDY

C.1 THE INFLUENCE OF MULTI-TASK TRAINING

In this part, we explore whether multi-task training can bring better performance than task-specific
training. To answer this question, we use the same model trained on different tasks, respectively.
Table 17 shows the experimental results, UniAudio (single) means that the model is trained on a
single task. We observe that multi-task training brings the gain over all of the tasks. In Appendix D,
we give some potential reasons why multi-task training can bring improvement.

Table 17: The ablation study of the effectiveness of multi-task training.
Task Model Objective Evaluation Subjective Evaluation

Metrics Results Metrics Results

Text-to-Speech UniAudio (Single) SIM(↑) / WER(↓) 0.64 / 2.4 MOS(↑)
/ SMOS(↑)

3.77±0.06 / 3.46±0.10
UniAudio 0.71 / 2.0 3.81±0.07 / 3.56±0.10

Voice
Conversion

UniAudio (Single) SIM(↑) / WER(↓) 0.84 / 5.4 MOS(↑)
/ SMOS(↑)

3.45±0.07 / 3.44±0.07
UniAudio 0.87 / 4.8 3.54±0.07 / 3.56±0.07

Speech
Enhancement

UniAudio (Single) PESQ(↑)
/ VISQOL(↑) / DNSMOS(↑)

2.35 / 2.30 / 3.45 MOS(↑) 3.65±0.08
UniAudio 2.63 / 2.44 / 3.66 3.68±0.07

Target Speaker
Extraction

UniAudio (Single) PESQ(↑)
/ VISQOL(↑) / DNSMOS(↑)

1.97 / 1.61 / 3.93 MOS(↑) 3.58±0.08
UniAudio 1.88 / 1.68 / 3.96 3.72±0.06

Singing Voice
Synthesis

UniAudio (Single) - - MOS(↑)
/ SMOS(↑)

4.14±0.07 / 4.02±0.02
UniAudio 4.08±0.04 / 4.04±0.05

Text-to-Sound UniAudio (Single) FAD (↓) / KL (↓) 3.84 / 2.7 OVL (↑)
/ REL (↑)

60.0±2.1 / 61.2±1.8
UniAudio 3.12 / 2.6 61.9±1.9 / 66.1±1.5

Text-to-Music UniAudio (Single) FAD (↓) / KL (↓) 5.24 / 1.8 OVL (↑)
/ REL (↑)

64.4±2.1 / 66.2±2.4
UniAudio 3.65 / 1.9 67.9±1.7 / 70.0±1.5

Audio Edit UniAudio (single) FD (↓) / KL (↓) 19.82 / 0.92 - -
UniAudio 17.78 / 0.77 -

Speech Dereverb. UniAudio (single) PESQ(↑) / DNSMOS(↑) 1.23 / 3.18 - -
UniAudio 2.13 / 3.51 -

Instructed TTS UniAudio (single) - - MOS(↑) / SMOS(↑) 3.62±0.07 / 3.67±0.08
UniAudio - 3.61±0.09 / 3.71±0.09

Speech Edit UniAudio (single) MCD (↓) 5.26 MOS(↑) 3.73±0.07
UniAudio 5.12 3.82±0.06

C.2 FINE-TUNING THE PRE-TRAINED MODEL ON THE NEW TASK WILL INFLUENCE THE
PERFORMANCE ON PREVIOUS TASKS?

In this part, we conduct experiments to explore whether fine-tuning the pre-trained model on new
tasks will influence the performance of previous tasks. We evaluate the pre-trained UniAudio model
(trained on 7 tasks) and fine-tuned UniAudio model (fine-tuned on 4 new tasks) on 7 tasks. Figure 3
shows the results. We can see that the performance does not significantly drop on previous training
tasks, which demonstrates that UniAudio has the potential to add new tasks continuously without
losing previous task knowledge.

C.3 THE INFLUENCE OF DATA QUANTITY

In this part, we conduct experiments to explore the influence of data quantity, we give three settings:
(1) using all of the data; (2) using 1/2 training data for each task; (3) using 1/4 training data for each
task. We present the results in Figure 4. Based on the experimental results, this work claims that
the data quantity is a key point to building a strong audio foundation model. In the future, we will
explore to use of more unlabeled data to help improve the performance.
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Figure 3: Performance comparison over 7 audio generation tasks before/after fine-tuning.
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Figure 4: Performance comparison over different data quantity.

D WHY UNIAUDIO CAN WORK WELL?

From the previous discussions, we can see that the universal modeling strategy brings improvement
for different tasks. In this part, we try to give some potential explanations.

(1) Deterministic latent space: we formulate different modalities into a deterministic latent space
(fixed vocabulary) by tokenization. Different tokens can be seen as specific ’words’, and we can use a
next-token prediction strategy to train the model. Similar to GPT-series (Radford et al., 2018; 2019),
such strategy creates the opportunity for the model to learn the intrinsic properties of audio and the
interrelationship between audio and other modalities.

(2) Shared information between different types of audio: Although multiple types of audio (speech,
sounds, music, and singing) present significant differences in the time domain or frequency domain,
neural audio codec models effectively capture their shared information (rethinking the working
principle of neural codecs, which similar information will be allocated the same token id). Due to the
shared information that exists in different types of audio, multi-task training can be seen as increasing
training data for each task.

(3) Data augmentation perspective: We speculate that multi-task training can be viewed as data
augmentation for some tasks. Considering the TTS and VC task’s definition:
TTS: <phoneme_sequence> <prompt> <audio_sequence>
VC: <semantic_token> <prompt> <audio_sequence>
We can see that the difference in task formulation for TTS and VC is that they use different ways to
denote the phonetic information. In essence, they carry the same phonetic information. The difference
is that semantic tokens include the duration information. Thus we can view the phoneme sequence as
a special semantic sequence that drops the duration information. Such dropping operation is widely
used as a data augmentation strategy (Park et al., 2019).

E THE DETAILS OF AUDIO CODEC MODELS

In this part, we give more details about our neural audio codec model in Section 2.1.1. We adopt a
similar encoder-decoder framework with the Encodec model, the difference includes: (1) we replace
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Table 18: Performance comparison between encodec and our universal neural codec. FPS: frame
per second; TPS: token per second. Perceptual evaluation of speech quality (PESQ↑); Short Term
Objective Intelligibility (STOI↑).

Type Speech (VCTK) Sound (cloth) Music (musiccaps) Sing (m4sing) Average
(Veaux et al., 2017) (Drossos et al., 2020) (Agostinelli et al., 2023) (Zhang et al., 2022) -

Model nq FPS TPS PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Encodec 8 75 600 2.18 0.79 2.23 0.48 1.86 0.57 1.95 0.76 2.05 0.65
Ours 3 50 150 2.96 0.85 2.42 0.49 1.99 0.57 3.13 0.85 2.62 0.69
Ours 4 50 200 3.11 0.86 2.5 0.51 2.08 0.59 3.27 0.86 2.73 0.71
Ours 8 50 400 3.36 0.88 2.67 0.54 2.31 0.65 3.49 0.89 2.95 0.74

the multi-scale STFT-based (MS-STFT) discriminator as our multi-scale Mel-based discriminator.
(2) We rewrite the vector quantization implementation 17 based on Encodec’s open-source version 18,
making it more suitable for DDP training. Figure 5 shows the details of the mel-based discriminator.
We combine the mel-spectrogram and log-mel-spectrogram features and then input them into a
network consisting of several convolutional layers. Our motivation is that the mel-spectrogram has
a strong intrinsic inductive bias, especially for sounds and music-related audio (the SOTA sounds
or music classification systems are based on the log-mel-spectrogram in the literature.). Thus, we
speculate that choosing a mel-spectrogram-based discriminator can better promote high-fidelity audio
reconstruction. In our experiments, we use 6 different discriminators with different configurations 19.
Specifically, we set the hidden_dim as {64, 128, 256, 512, 512, 512} and the hop length as {32, 64,
128, 256, 512, 1024}. We train the neural audio codec model based on the Librilight and AudioSet
datasets. Table 18 demonstrates that the neural codec model adopted in this work outperforms prior
Encodec (Défossez et al., 2022).
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Figure 5: The overview of a single Mel-based discriminator. In practice, we will use multiple
discriminators by setting different hop lengths and hidden dimensions.

F SUBJECTIVE EVALUATION

For TTS and VC tasks, we focus on speech quality (QMOS) and speaker similarity (SMOS). The
details are as follows. For speech quality evaluation, we conduct the MOS (mean opinion score) tests
and explicitly ask the raters to focus on examining the audio quality and naturalness, and ignore the
differences of style (timbre, emotion, and prosody. The testers present and rate the samples, and each
tester is asked to evaluate the subjective naturalness on a 1-5 Likert scale.

For speaker similarity evaluation, we ask the raters to focus on the similarity of the speaker identity
(timbre) to the reference, and ignore the differences in content, grammar, or audio quality. We paired
each synthesized utterance with a reference utterance to evaluate how well the synthesized speech
matched that of the target speaker.

17Please refer to our source code to find the details.
18https://github.com/facebookresearch/encodec/blob/main/encodec/quantization/core_vq.py
19In our experiments, we find the mel-based discriminator brings better reconstruction performance when we

train a universal neural audio codec.
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（a）Speech Enhancement （b）Target Speaker Extraction

（c）Qverall quality of Audio （d）Relevance to the text input

（e）Speech quality MOS （f）Speech Similarity  MOS 

Figure 6: Screenshots of subjective evaluations.

For SE and TSE tasks, we write explicit instructions to ask the rater to assess the generated speech.
Refer to Figure 6 to see the details.

For SVS, we also conduct quality MOS (QMOS) and style similarity MOS (SMOS). Different from
TTS’s SMOS evaluation, we explicitly instruct the raters to focus on the similarity of the style (timbre,
emotion, and prosody) to the reference, and ignore the differences in content, grammar, or audio
quality.

For sound and music generation tasks, we follow AudioGen (Kreuk et al., 2022) and MusicGen
(Copet et al., 2023) to evaluate (1) overall quality (OVL), and (2) relevance to the text input (REL).

Our subjective evaluation tests are crowd-sourced and conducted by 20 native speakers via Amazon
Mechanical Turk. The screenshots of instructions for testers have been shown in Figure 6. We paid
about $500 on participant compensation. A small subset of speech samples used in the test is available
at https://uniaudio666.github.io/demo_UniAudio/.
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