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Introduction
 Current offline RL methods require a large amount of training data to achieve reasonable performance and offer
limited generalizability in out-of-distribution (OOD) regions due to conservative data-related regularizations.
* We propose a highly sample-efficient offline RL algorithm (TELS) that learns optimized policy within the latent
space regulated by the fundamental T-symmetry in the dynamical systems.
 QOur approach achieves amazing sample efficiency and OOD generalizability, significantly outperforming existing
offline RL methods in various small-sample tasks, even using as few as 1% of the data samples in D4RL datasets.

T-symmetry Enforced Latent State-Stitching (TELS)
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 TS-IDM: Learns well-behaved latent representations that address OOD generalization challenges and enhance action
inference efficiency.

* Latent Space Offline Policy Optimization: Learns a latent state-value function and T-symmetry-regularized guide-
policy to generate valuable and reliable next latent states, enabling TS-IDM’s inverse dynamics to infer optimal actions.

Main Results

Table 1: Average normalized scores on reduced-size D4RL datasets. The scores are taken over the final 10
evaluations with 5 seeds. 20
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Task | Size (ratio) | BC TD3+BC CQL IQL DOGE IDQL POR TSRL TELS 100k Antmaze-m-d dataset <
Hopper-m | 10k (1%) | 2974117 4014186  43.1424.6 467465 4424102 4424121 464+17 620437  77.3+10.7 with multiple deletion areas 8
Hopper-mr \ 10k (2.5%) \ 12.1+£5.3 7.31+6.1 23+1.9 13.443.1 17.9 4.5 21.7£7.0 174 +6.2 21.848.2 43.2 +£3.5 >
Hopper-me | 10k (0.5%) | 27.84+10.7 17.8+£7.9 29.94+4.5 34.348.7 50.5 £ 252 43.2+4.4 379 £6.1 50.94+8.6 100.9 = 6.8
Halfcheetah-m \ 10k (1%) \ 26.4+7.3 16.44+10.2 35.84+3.8 29.940.12 36.2 £ 34 36.4+1.5 33.343.2 38.443.1 40.8 + 0.6
Halfcheetah-mr | 10k (5%) | 14.347.8 17.949.5 81494  227+64  234+36 267410 275436 281435 332+ 1.0 Deletion ¥
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Antmaze-u | 10k (1%) | 447+ 42.1 0712 0.1£00 651+194 563+L244 675=£124 6.1 £7.3 76.1 £ 156  88.7 7.7
Antmaze-u-d \ 10k (1%) \ 241 +£222 1627164 05401 346+185 41.7+£189 5514368 42.14+142 5224221 60.9+169
Antmaze-m-d \ 100k (10%) \ 0.0 0.0 0.0 48+59 0.0 9.0£34 0.0 0.0 472+ 17.3 . Start point Dalation :_};?“a :3
Antmaze-m- 100k (10%) 0.0 0.0 0.0 125+54 0.0 94+ 147 0.0 0.0 62.9 +17.8 .
P | 0) | <7 : End point o ratio: 100% 8 :
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£ 20 e | Figure 3: Left: Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross
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S0 ’—h |+\ S 09 | denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data
0 . . . 0 deletion regions. Right: Visualization of the training dataset and policy rollout trajectories generated by trained
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We randomly remove samples within 5 critical regions
along the critical paths from the start to the goal locations.
Only TELS consistently learns optimal policy even with 70%
and 100% deletion rates.

Figure 4: Left: The performance of IQL and TD3+BC on 10k datasets with or without using the representation
from TS-IDM. Right: Performance of TELS with different representation models on 10k datasets, error bars
indicate the normalized scores over 5 random seeds.

Table 2: Ablation results on the design components of TS-IDM.

O/V+ hine  + hywa Bros T + Lode 1 + lrgym 1 These highlight the OOD generalization capability of TELS
Hopper-me 172 £ 7.0 35,5+ 7.3 61.4 4 23.7 100.9 + 6.8 . . .
Halfcheetah-me 29.7 + 3.6 313 £ 1.1 312+£12  407+12 in extremely challenging low-data regimes.
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Figure 6: Performance of TELS with different 7 5k (05%) .

Figure 5: Impact of /1.4m on policy optimization
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