

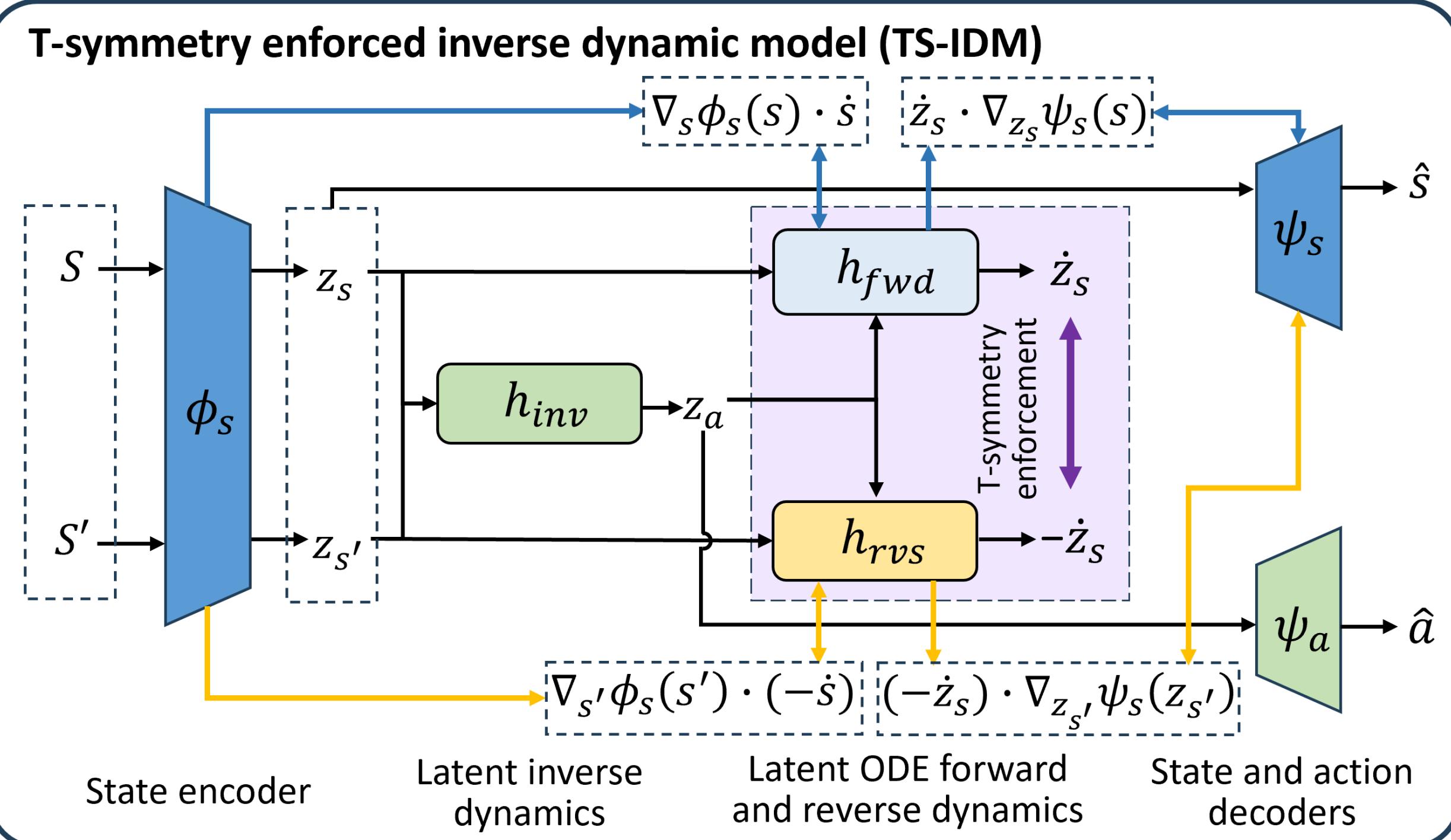
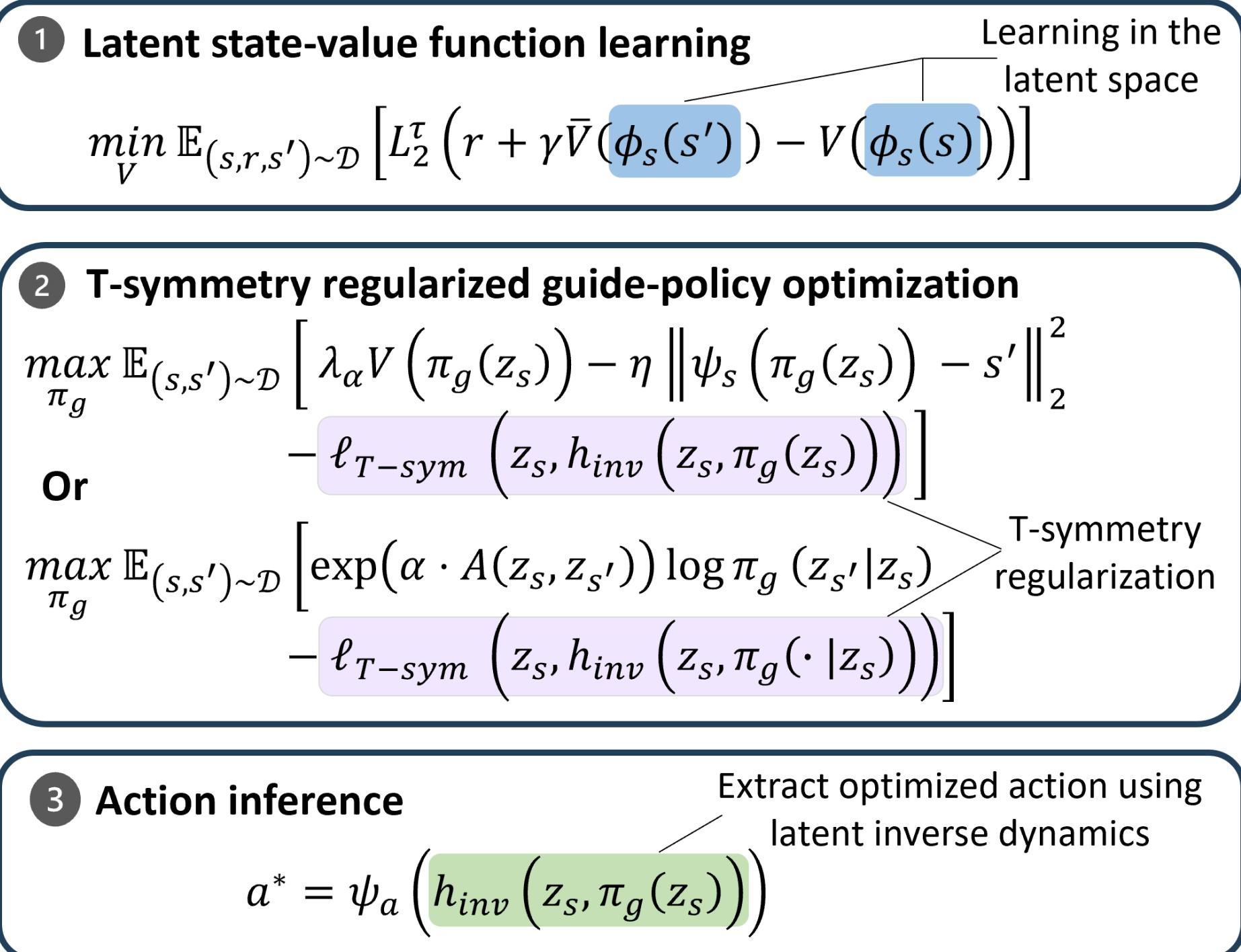
Sample Efficient Offline RL via T-symmetry Enforced Latent State-Stitching

Peng Cheng, Zihao Wu, Jianxiong Li, Ziteng He, Haoran Xu, Wei Sun, Youfang Lin, Xianyuan Zhan

Introduction

- Current offline RL methods require a large amount of training data to achieve reasonable performance and offer limited generalizability in out-of-distribution (OOD) regions due to conservative data-related regularizations.
- We propose a **highly sample-efficient offline RL algorithm (TELS)** that learns optimized policy within the latent space regulated by the fundamental T-symmetry in the dynamical systems.
- Our approach achieves amazing sample efficiency and OOD generalizability, significantly outperforming existing offline RL methods in various small-sample tasks, even **using as few as 1% of the data samples** in D4RL datasets.

T-symmetry Enforced Latent State-Stitching (TELS)



- TS-IDM:** Learns well-behaved latent representations that address OOD generalization challenges and enhance action inference efficiency.
- Latent Space Offline Policy Optimization:** Learns a latent state-value function and T-symmetry-regularized guide-policy to generate valuable and reliable next latent states, enabling TS-IDM's inverse dynamics to infer optimal actions.

Main Results

Table 1: Average normalized scores on reduced-size D4RL datasets. The scores are taken over the final 10 evaluations with 5 seeds.

Task	Size (ratio)	BC	TD3+BC	CQL	IQL	DOGE	IDQL	POR	TSRL	TELS
Hopper-m	10k (1%)	29.7 ± 11.7	40.1 ± 18.6	43.1 ± 24.6	46.7 ± 6.5	44.2 ± 10.2	44.2 ± 12.1	46.4 ± 1.7	62.0 ± 3.7	77.3 ± 10.7
Hopper-mr	10k (2.5%)	12.1 ± 5.3	7.3 ± 6.1	2.3 ± 1.9	13.4 ± 3.1	17.9 ± 4.5	21.7 ± 7.0	17.4 ± 6.2	21.8 ± 8.2	43.2 ± 3.5
Hopper-me	10k (0.5%)	27.8 ± 10.7	17.8 ± 7.9	29.9 ± 4.5	34.3 ± 8.7	50.5 ± 25.2	43.2 ± 4.4	37.9 ± 6.1	50.9 ± 8.6	100.9 ± 6.8
Halfcheetah-m	10k (1%)	26.4 ± 7.3	16.4 ± 10.2	35.8 ± 3.8	29.9 ± 0.12	36.2 ± 3.4	36.4 ± 1.5	33.3 ± 3.2	38.4 ± 3.1	40.8 ± 0.6
Halfcheetah-mr	10k (5%)	14.3 ± 7.8	17.9 ± 9.5	8.1 ± 9.4	22.7 ± 6.4	23.4 ± 3.6	26.7 ± 1.0	27.5 ± 3.6	28.1 ± 3.5	33.2 ± 1.0
Halfcheetah-me	10k (0.5%)	19.1 ± 10.7	26.5 ± 10.8	10.5 ± 8.8	26.7 ± 6.6	38.8 ± 1.9	34.7 ± 2.6	39.9 ± 21.1	40.7 ± 1.2	
Walker2d-m	10k (0.5%)	10.8 ± 14.1	7.4 ± 13.1	18.8 ± 3.8	22.5 ± 3.8	45.1 ± 10.2	31.7 ± 14.2	22.2 ± 3.6	49.7 ± 10.6	42.5 ± 5.3
Walker2d-mr	10k (3.3%)	1.4 ± 1.9	5.7 ± 5.8	8.5 ± 2.19	10.7 ± 11.9	13.5 ± 8.4	12.2 ± 10.5	14.8 ± 4.2	26.0 ± 11.3	54.8 ± 6.0
Walker2d-me	10k (0.5%)	21.7 ± 8.2	7.9 ± 9.1	19.1 ± 14.4	26.5 ± 8.6	35.3 ± 11.6	21.8 ± 14.5	20.1 ± 8.6	46.4 ± 17.4	87.4 ± 13.3
Antmaze-u	10k (1%)	44.7 ± 42.1	0.7 ± 1.2	0.1 ± 0.0	65.1 ± 19.4	56.3 ± 24.4	67.5 ± 12.4	6.1 ± 7.3	76.1 ± 15.6	88.7 ± 7.7
Antmaze-u-d	10k (1%)	24.1 ± 22.2	16.27 ± 16.4	0.5 ± 0.1	34.6 ± 18.5	41.7 ± 18.9	55.1 ± 36.8	42.1 ± 14.2	52.2 ± 22.1	60.9 ± 16.9
Antmaze-m-d	100k (10%)	0.0	0.0	0.0	4.8 ± 5.9	0.0	9.0 ± 3.4	0.0	0.0	47.2 ± 17.3
Antmaze-m-p	100k (10%)	0.0	0.0	0.0	12.5 ± 5.4	0.0	9.4 ± 14.7	0.0	0.0	62.9 ± 17.8
Antmaze-l-d	100k (10%)	0.0	0.0	0.0	3.6 ± 4.1	0.0	16.1 ± 8.4	0.0	0.0	39.8 ± 14.1
Antmaze-l-p	100k (10%)	0.0	0.0	0.0	3.5 ± 4.1	0.0	9.7 ± 8.5	0.0	0.0	47.3 ± 13.1

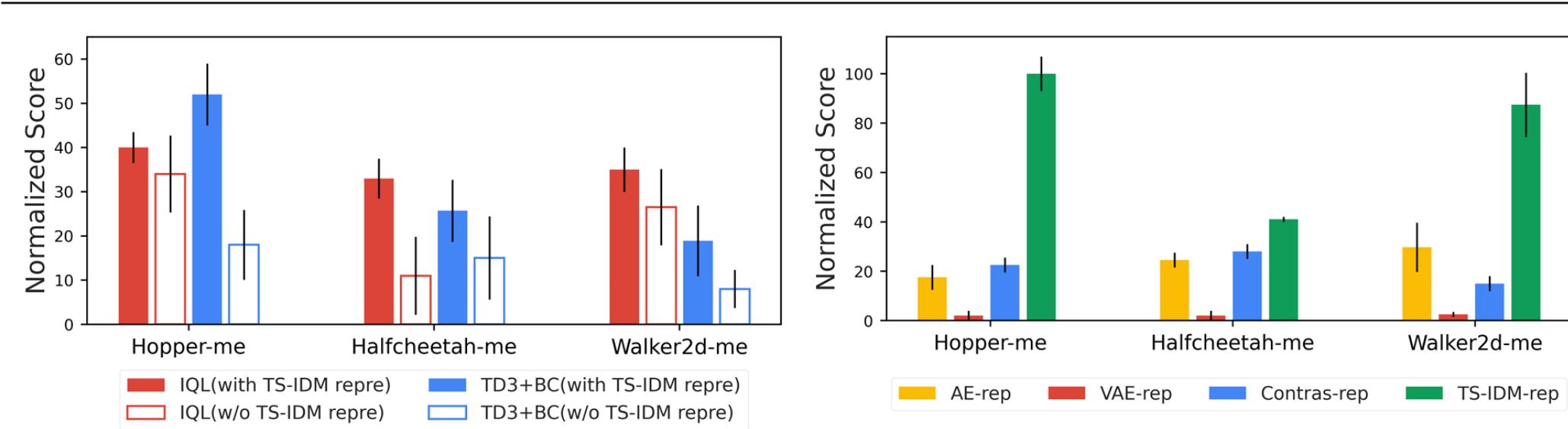


Figure 4: **Left:** The performance of IQL and TD3+BC on 10k datasets with or without using the representation from TS-IDM. **Right:** Performance of TELS with different representation models on 10k datasets, error bars indicate the normalized scores over 5 random seeds.

Table 2: Ablation results on the design components of TS-IDM.

	$\phi/\psi + h_{inv}$	$+ h_{fwd}, h_{rvs} \uparrow$	$+ \ell_{ode} \uparrow$	$+ \ell_{T\text{-sym}} \uparrow$
Hopper-me	17.2 ± 7.0	35.5 ± 7.3	61.4 ± 23.7	100.9 ± 6.8
Halfcheetah-me	29.7 ± 3.6	31.3 ± 1.1	31.2 ± 1.2	40.7 ± 1.2
Walker2d-me	24.5 ± 10.1	33.6 ± 9.2	58.5 ± 18.1	87.4 ± 13.1

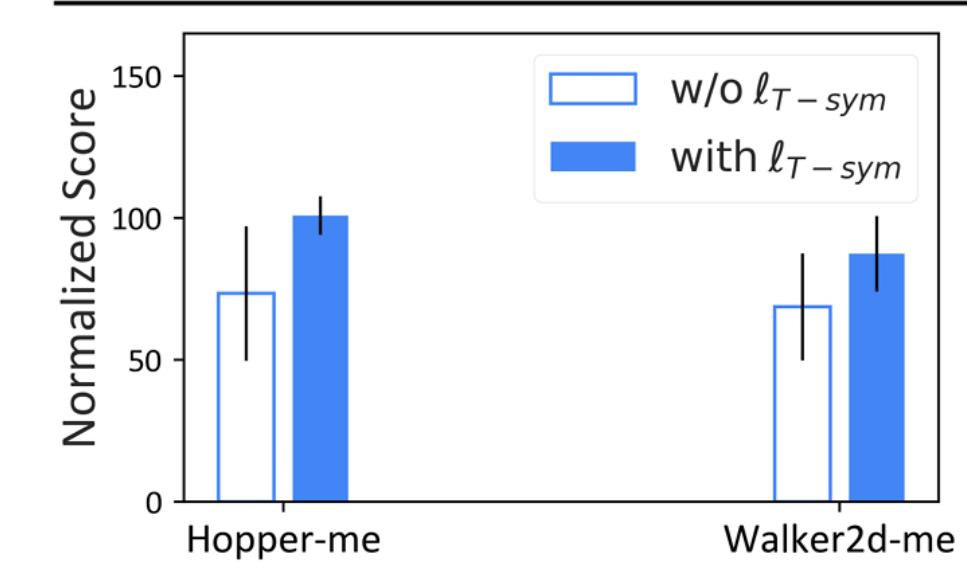
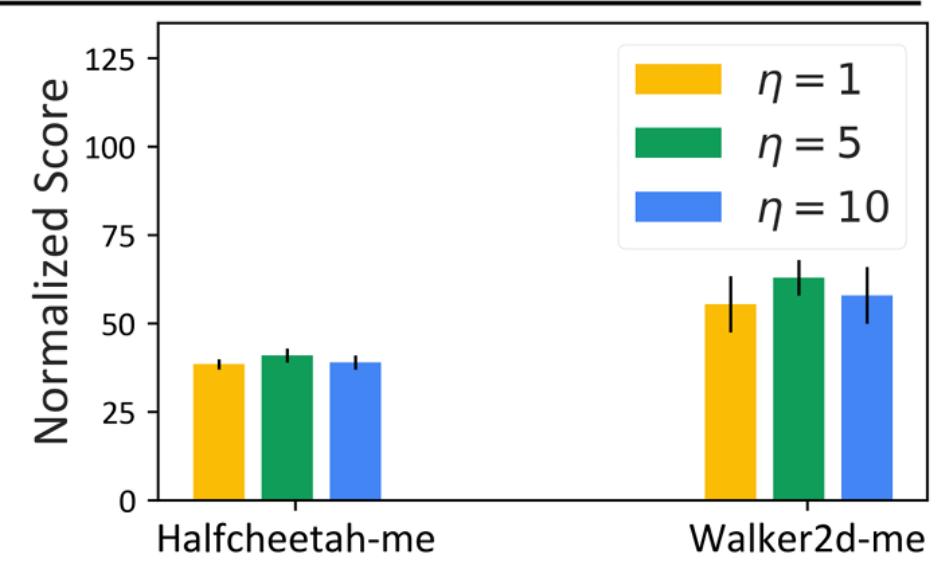


Figure 5: Impact of $\ell_{T\text{-sym}}$ on policy optimization

Figure 6: Performance of TELS with different η

Out-of-Distribution Generalizability of TELS

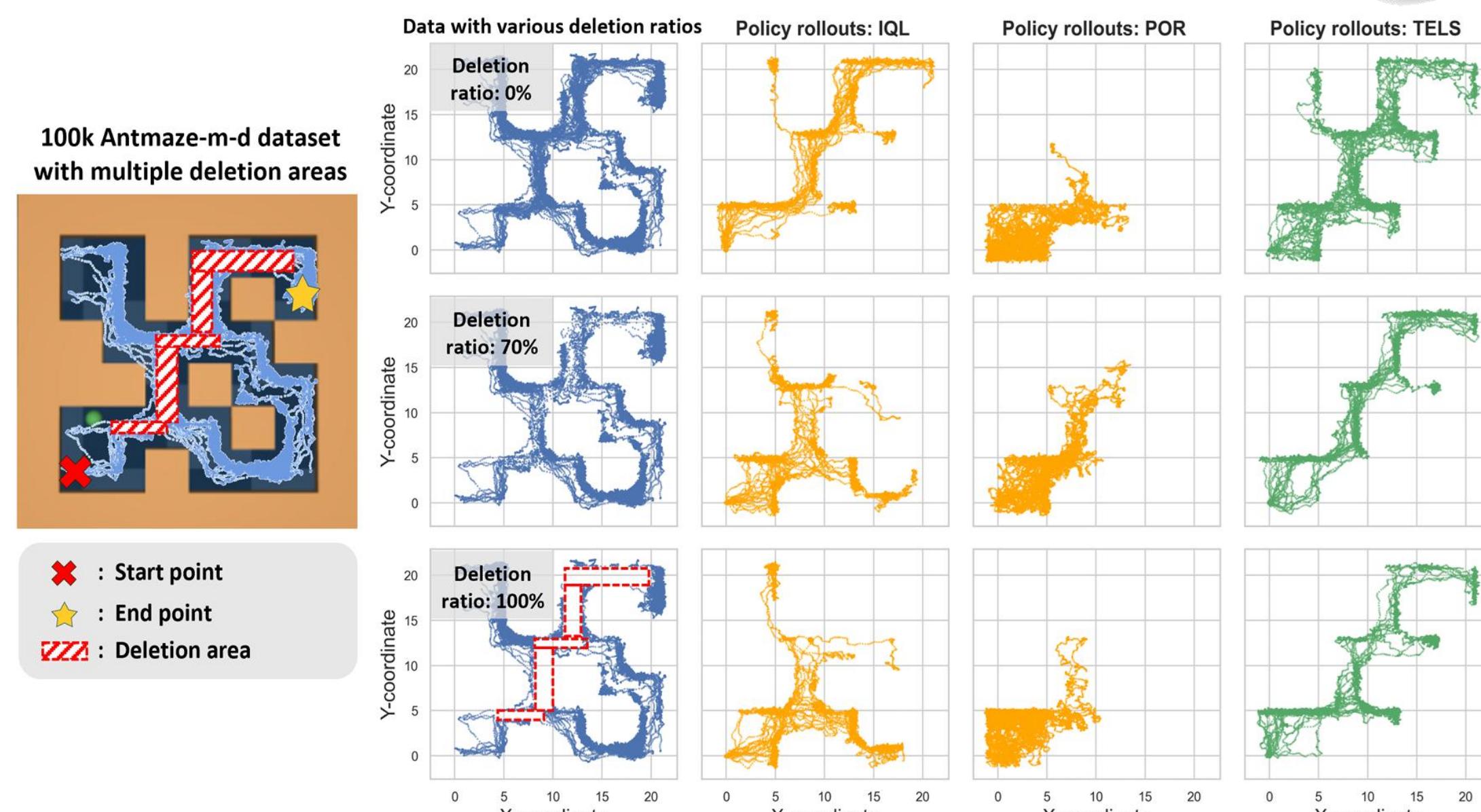
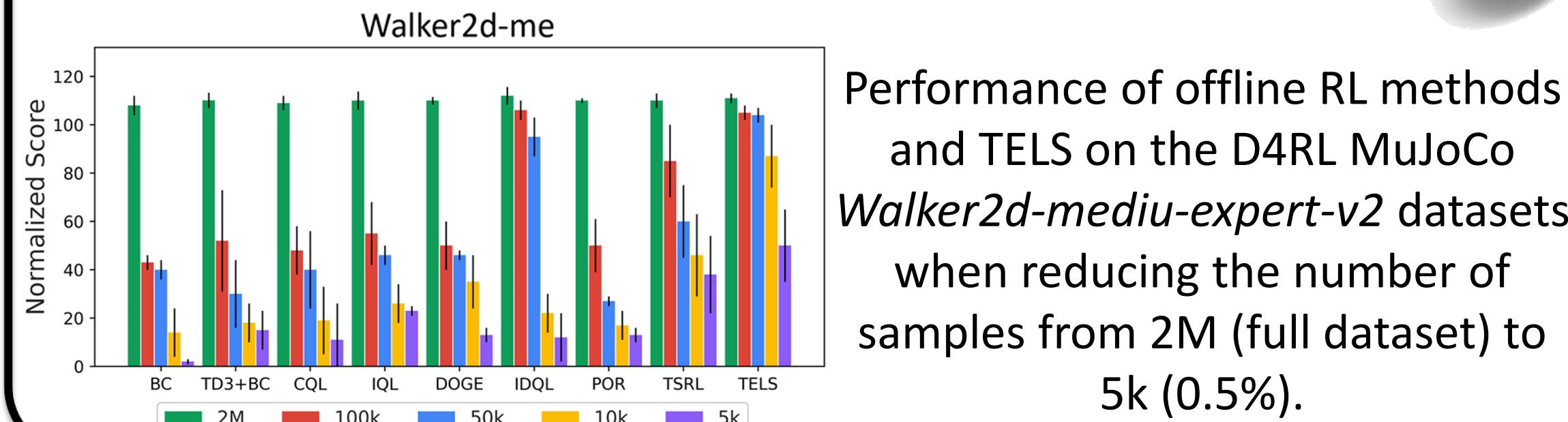


Figure 3: **Left:** Illustration of the 100k Antmaze-m-d task with multiple deletion areas, where the red cross denotes the start point, the yellow star denotes the goal locations, and the red shaded areas denote the data deletion regions. **Right:** Visualization of the training dataset and policy rollout trajectories generated by trained policies from various algorithms under varying deletion ratios.

- We randomly remove samples within 5 critical regions along the critical paths from the start to the goal locations.
- Only TELS consistently learns optimal policy even with 70% and 100% deletion rates.**
- These highlight the OOD generalization capability of TELS in extremely challenging low-data regimes.

Offline RL under Various Data Size



Performance of offline RL methods and TELS on the D4RL MuJoCo *Walker2d-medium-expert-v2* datasets when reducing the number of samples from 2M (full dataset) to 5k (0.5%).