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Abstract
Confidence estimation is crucial for reflect-001
ing the reliability of large language models002
(LLMs), particularly in the widely used closed-003
source models. Utilizing data augmentation004
for confidence estimation is viable, but dis-005
cussions focus on specific augmentation tech-006
niques, limiting its potential. We study the007
impact of different data augmentation methods008
on confidence estimation. Our findings indicate009
that data augmentation strategies can achieve010
better performance and mitigate the impact of011
overconfidence. We investigate the influential012
factors related to this and discover that, while013
preserving semantic information, greater data014
diversity enhances the effectiveness of augmen-015
tation. Furthermore, the impact of different016
augmentation strategies varies across different017
range of application. Considering parameter018
transferability and usability, the random combi-019
nation of augmentations is a promising choice.020
Our codes and data are available at: https:021
//anonymous.4open.science/r/ceda.022

1 Introduction023

Although LLMs (Chowdhery et al., 2023; OpenAI,024

2023) exhibit remarkable capabilities in general-025

ization across various natural language processing026

(NLP) tasks, their tendency to generate non-factual027

responses (Ji et al., 2023) raises significant con-028

cerns. It is essential to assess the reliability of their029

generalization results. As black-box LLMs become030

more prevalent, accessing their internal information031

is challenging, which increase the difficulty of eval-032

uate the reliability. Confidence estimation (Tian033

et al., 2023; Xiong et al., 2024; Zhang et al., 2024)034

has emerged as a popular solution, facilitating risk035

assessment and error checking.036

There is a wide variety of methods (Lin et al.,037

2024; Liu et al., 2024; Xie et al., 2024) for confi-038

dence in white-box LLMs, but there are few types039

of methods for black-box LLMs, where the com-040

mon methods are Bayesian methods (Xiong et al.,041

2024; Ling et al., 2024), particularly in sampling 042

strategy (Si et al., 2023). It inputs the original text 043

into the LLM and samples for predictions. In ad- 044

dition to that, some researchers (Hashimoto et al., 045

2024; Xiong et al., 2024; Gao et al., 2024) using 046

data augmentation for confidence estimation. Ar- 047

guably, it is a promising strategy for LLM’s con- 048

fidence estimation, especially for black-box ones 049

with inaccessible parameters. However, they either 050

operate only on white-box small models or engage 051

in very limited discussions regarding augmenta- 052

tion methods, relying on weak augmentation or 053

uncontrollable augmentation. Therefore, we hope 054

to conduct a comprehensive evaluation of confi- 055

dence estimation based on data augmentation to 056

verify its impact. 057

In this study, we explore common augmenta- 058

tion strategies (Wei and Zou, 2019; Sennrich et al., 059

2016) and discuss typical automated augmentation 060

methods (Cubuk et al., 2020; Ren et al., 2021) to 061

validate the effectiveness of combining augmenta- 062

tion techniques. In particular, we investigate the 063

following research questions: 064

• Q1: What impact does data augmentation 065

have on confidence estimation? 066

• Q2: What factor contributes to this impact? 067

• Q3: Is the range of applications for different 068

data augmentation techniques consistent? 069

Comprehensive experiments on benchmark 070

datasets show that data augmentation is effective 071

for confidence estimation and mitigates the impact 072

of LLMs’ overconfidence. The best data augmenta- 073

tion method reduces the average ECE across three 074

models from 11.50% to 5.97% in GSM8K. We 075

perform further analysis of the experimental re- 076

sults to explore which factors impact the results of 077

data augmentation strategies on confidence estima- 078

tion. Our findings indicate that data diversity and 079

semantic consistency are key. While maintaining 080

semantic information, higher data diversity leads 081
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to improved confidence estimation. Notably, Ran-082

dAugment (Cubuk et al., 2020) demonstrates better083

performance and exhibits significant potential for084

cross-model transfer. Moreover, our study reveals085

that different data augmentation methods have dif-086

ferent ranges of applicability. A mild augmentation087

strategy is more appropriate for mathematical data088

about complex logical reasoning. Therefore, when089

addressing downstream tasks that are unknown, it090

is advisable to use RandAugment to compute confi-091

dence. We believe this will contribute to enhancing092

the reliability of generalization in LLMs.093

2 Related Works094

Confidence Estimation for Black-Box LLMs.095

The confidence estimation of black-box models096

is divided into four categories by common meth-097

ods. Single deterministic methods (Lin et al., 2022;098

Tian et al., 2023) rely on verbal descriptions, which099

are hard to align with the model’s internals (Ku-100

mar et al., 2024). Ensemble methods (Zhang et al.,101

2023) based on multiple LLMs diverge from our102

focus on a single model, so we won’t explore103

this. While Bayesian methods (Xiong et al., 2024;104

Zhang et al., 2024) are common, LLMs’ overconfi-105

dence undermines their effectiveness. In the meth-106

ods that use augmentation, the weak augmenta-107

tion (Gao et al., 2024) struggles to enhance text108

diversity. Paraphrasing method (Xiong et al., 2024)109

lacks controllability. This makes it difficult to miti-110

gate overconfidence.111

Data Augmentation. Data augmentation (Wei and112

Zou, 2019; Feng et al., 2021) is widely used in NLP,113

primarily includes insertion, deletion, replacement,114

and swapping. Back-translation (Sennrich et al.,115

2016) is useful in low-resource domains. With116

the rise of LLMs, paraphrasing method (Piedboeuf117

and Langlais, 2023) using LLMs rewrite the text,118

but ensuring quality can be difficult and expensive.119

Besides, automated augmentation has gained atten-120

tion. Text AutoAugment (Ren et al., 2021) uses121

automated augmentation in NLP, while RandAug-122

ment (Cubuk et al., 2020) reduces retrieval costs.123

In subsequent experiments, we examine traditional124

and automated augmentation, revealing their poten-125

tial in confidence estimation.126

3 Methodology127

3.1 Confidence Estimation128

We utilize data augmentation strategies to com-129

pute confidence. Specifically, given a sample X ,130
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Figure 1: Overview of a confidence estimation frame-
work utilizing data augmentation. Each sample X is
subjected to n augmentations, yielding a more diverse
array of augmented instances X ′. The LLM performs
predictions Y on these augmented samples, and confi-
dence is derived through aggregation.

it undergoes augmentation n times to generate n 131

augmented samples S = [X ′
1, X

′
2, ..., X

′
n], where 132

X ′
i = si(X) and si(·) is the i-th data augmenta- 133

tion for the sample. These augmented samples S 134

are input into the LLM f to produce predictions 135

A = [Y1, Y2, ..., Yn], i.e., Yi = f(X ′
i). Subse- 136

quently, a consistency strategy (Si et al., 2023) is 137

applied to aggregate the answers. The confidence 138

C about X is the consistency of answer Ȳ in A, 139

C =
1

n

n∑
i=1

I{Yi = Ȳ }, (1) 140

where Ȳ is the most frequently predicted answer 141

and I is indicator function. 142

3.2 Data Augmentation Methods 143

The selection of augmentation strategy is important 144

in our confidence computation. We believe that 145

an effective augmentation strategy should be con- 146

trollable and simple. Consequently, we choose the 147

straightforward method from the four most com- 148

mon categories of traditional augmentation tech- 149

niques: synonym replacement, random swap, 150

random deletion, and random insertion. Each 151

method enables control over the degree of aug- 152

mentation by adjusting the magnitude. Besides, 153

we discuss a popular data augmentation technique, 154

back-translation (Sennrich et al., 2016). 155

To examine the synergistic effects of traditional 156

augmentation strategies, we discuss two automated 157

augmentation methods: RandAugment (Cubuk 158

et al., 2020) and Text-AutoAugment (TAA) (Ren 159

et al., 2021). RandAugment randomly combines 160

traditional augmentation strategies, while TAA ap- 161

plies a fixed set of augmentation to each sample. 162
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Method StrategyQA Professional Law GSM8K AVG
Qwen2 Llama3 Gemma2 Qwen2 Llama3 Gemma2 Qwen2 Llama3 Gemma2

Sampling 27.00 28.25 22.14 42.04 39.32 33.22 12.94 12.14 9.41 25.16
Paraphrase 33.57 35.33 39.42 48.46 46.22 45.54 46.13 61.44 67.46 47.06

Synonym Replacement 23.72 26.01 20.21 38.98 36.41 30.86 5.38 8.56 4.72 21.65
Random Swap 23.81 29.38 20.76 35.58 36.96 30.39 6.75 10.48 25.09 24.36
Random Deletion 20.46 20.81 16.28 37.65 36.56 29.73 8.74 7.81 13.04 21.23
Random Insertion 26.66 28.37 20.61 38.41 37.29 32.30 13.44 14.36 11.15 24.73
Back-Translation 24.13 27.94 22.20 46.67 44.59 38.03 8.05 8.36 6.14 25.12

RandAugment 20.55 26.73 16.46 33.13 36.85 26.92 6.55 7.17 6.15 20.05
TAA 18.98 27.38 20.61 38.17 34.96 31.05 7.65 19.27 15.38 23.72

Table 1: Confidence estimation of 3 models (metrics are given by ×102). The evaluation metric is ECE(↓). The best
results are marked in bold and the second-best marked in underline.

Method StrategyQA Professional Law GSM8K AVG
GPT-3.5 GPT-4o-mini GPT-3.5 GPT-4o-mini GPT-3.5 GPT-4o-mini

Sampling 18.62 18.45 30.77 29.36 8.94 3.83 18.33

Synonym Replacement 19.59 16.05 31.92 28.54 7.33 3.81 17.87
Random Deletion 16.68 10.86 27.86 26.72 4.84 3.75 15.12

RandAugment 18.68 16.73 25.42 22.97 7.11 7.02 16.32

Table 2: Further experiments about the best method from each category for the closed-source model (metrics are
given by ×102). The evaluation metric is ECE(↓).

They need to find the best parameters in the valida-163

tion set and use them for the test set. More details164

are described in the Appendix.165

4 Experiments166

4.1 Experimental Setup167

To discuss the impact of data augmentation on con-168

fidence estimation, we conduct experiments using169

Llama-3-8b (AI@Meta, 2024), Gemma-2-9b (Riv-170

ière et al., 2024), and Qwen-2-7b (Yang et al.,171

2024). We use GPT-3.5, and GPT-4o-mini for fur-172

ther experimental verification. The implementation173

details are in the Appendix B.174

Datasets. We evaluate the quality of confi-175

dence estimates across three datasets: 1) Strate-176

gyQA (Geva et al., 2021) from BigBench (Ghazal177

et al., 2013) , which is about commonsense rea-178

soning ; 2) Professional Law (Prf-Law) from179

MMLU (Hendrycks et al., 2021), which is about180

professional knowledge ; 3) GSM8K (Cobbe et al.,181

2021) is about math word problems.182

Baselines. We select representative strategies183

from two categories. The baselines utilize Eq.(1)184

for aggregation. For the Bayesian method, we use185

sampling strategy (Si et al., 2023) that inputs the186

original text into the LLM, with responses sam-187

pled at a high temperature. Besides, we use a188

paraphrasing-based method, which paraphrases 189

questions using LLMs (Xiong et al., 2024). 190

Evaluation Metric. To assess the alignment 191

between confidence and accuracy, we introduce 192

Expected Calibration Error (ECE) (Naeini et al., 193

2015). It calculates the difference between the 194

average confidence and the accuracy of the model. 195

4.2 Results 196

Answer for Q1: Data augmentation is beneficial 197

for confidence estimation, which mitigates the 198

impact of LLMs’ overconfidence. As shown 199

in Table 1, the average ECE of all augmentation 200

strategies outperforms the sampling method. The 201

top three performing augmentation strategies are 202

RandAugment, Random Deletion, and Synonym Re- 203

placement. In GSM8K, Synonym Replacement 204

reduces the average ECE across three models from 205

11.50% to 5.97%. Additionally, there are decreases 206

of 6.61% and 5.89% in StrategyQA and Profes- 207

sional Law, respectively. In Table 2, the average 208

ECE of data augmentation methods still demon- 209

strates performance advantages. 210

The hallucinations of LLMs often lead to over- 211

confidence in incorrect predictions. We compare 212

the confidence of three optimal augmentation strate- 213

gies on incorrect samples to further investigate the 214
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Method StrategyQA Prf-Law GSM8K

Sampling 0.89 0.84 0.44

Synonym Replacement 0.85 0.79 0.36
Random Deletion 0.79 0.76 0.35

RandAugment 0.79 0.72 0.34

Table 3: Mean confidence for Qwen2, Llama3, and
Gemma2. The table presents the average confidence (↓)
of incorrectly predicted samples.

impact of data augmentation. Ideally, the confi-215

dence for incorrect samples should be 0. However,216

as shown in Table 3, the sampling method exhibits217

high confidence, particularly in StrategyQA and218

Professional Law, where the confidence reaches219

up to 0.89 and 0.84. Based on data augmentation220

strategies, the overconfidence of LLMs is allevi-221

ated, and the confidence is reduced to 0.79 and222

0.72. It shows that data augmentation holds signifi-223

cant potential for confidence estimation.224

Answer for Q2: Data diversity and semantic225

consistency are important. While maintaining226

semantic integrity, the more diverse the samples227

are, the better the outcomes will be. Based on228

the analysis of Table 1, the degradation of semantic229

information, such as random swap, results in poorer230

outcomes. Similarly, random insertion introduces231

noisy information that can affect the judgments of232

LLMs. Moreover, over-focusing on semantic con-233

sistency and ignoring sample diversity can also be234

detrimental to confidence estimation, as seen with235

back-translation techniques. We speculate that the236

effectiveness of random deletion is from the LLM’s237

inherent ability to infer missing tokens, allowing238

it to extract meaningful information from diverse239

augmented samples. RandAugment ranks high-240

est in average ECE in Table 1 because its random241

combinations of individual strategies enhance sam-242

ple diversity. In contrast, the fixed augmentation243

combinations used in TAA result in lower diversity244

compared to RandAugment, which is why TAA245

performs worse than RandAugment.246

We conduct a further analysis of RandAugment247

and find that it demonstrates cross-model adapt-248

ability. Specifically, the augmentation combina-249

tions learned by a model can be transferred to other250

models. In Tables 4, we apply the best parameters251

from Qwen2 to Llama3 and Gemma2, resulting252

in performance improvements in most cases com-253

pared to the sampling method. In StrategyQA, the254

best parameters from Llama3 and Qwen2 are the255

Model Method StrategyQA Prf-Law GSM8K

Llama3
Sampling 28.25 39.32 12.14

RandAugment 26.73 36.85 7.17
+ Parameters 26.73 36.27 15.61

Gemma2
Sampling 22.14 33.22 9.41

RandAugment 16.46 26.92 6.15
+ Parameters 19.62 24.97 9.33

Table 4: Apply the RandAugment parameters from the
smallest model, Qwen2-7b, to the larger models, Llama-
3-8b and Gemma-2-9b, as indicated in grey. The evalu-
ation metric is ECE(↓). Metrics are given by ×102.

same, so they achieve the same results. 256

Answer for Q3: Different data augmentation 257

techniques have different ranges of applications. 258

Moderate strategies are recommended only for 259

math data that requires complex reasoning. In 260

Table 1 and Table 2, RandAugment and random 261

deletion, which can introduce more diverse sam- 262

ples, generally achieve favorable outcomes across 263

a range of datasets. However, relatively mild aug- 264

mentation strategies often demonstrate significant 265

dataset-specific biases. Back-translation perform 266

better on GSM8K compared to StrategyQA and 267

Professional Law. While back-translation results 268

underperforms on Professional Law, it reduces the 269

ECE on GSM8K from 11.50% to 7.52%. For 270

a math dataset that prioritizes logical reasoning, 271

the complexity of the questions and the require- 272

ment for logical reasoning make the dataset more 273

sensitive to sample diversity. Thus, milder aug- 274

mentation strategies remain effective. However, 275

for StrategyQA and Professional Law, the strong 276

common-sense reasoning and extensive domain 277

knowledge in LLMs render overly cautious aug- 278

mentation strategies ineffective. 279

5 Discussion 280

LLMs are sensitive to prompts (Sclar et al., 2024), 281

making responses from diverse views align better 282

with their cognition, leading to the effectiveness of 283

data augmentation in confidence estimation. Given 284

the different applicability of augmentation strate- 285

gies, we recommend using RandAugment for con- 286

fidence calculation in unknown downstream tasks. 287

This is due to its cross-model adaptability and us- 288

ability. We are confident that the confidence estima- 289

tion based on data augmentation will beneficial for 290

the reliability of LLM generalization, supporting 291

the development of safer and reliable NLP systems. 292
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Limitation293

While we conduct experiments and validate the ef-294

fectiveness of data augmentation in confidence esti-295

mation, there is a limitation that should be acknowl-296

edged. Regarding the data augmentation strate-297

gies, due to resource limitations, we don’t discuss298

all possible augmentation techniques; instead, we299

only consider five typical traditional augmentation300

strategies and two basic automatic augmentation301

strategies. We acknowledge the possibility that302

some augmentation methods that we don’t discuss303

may be more suitable in certain contexts than others304

that we have considered.305

Ethical Considerations306

In this study, we utilized existing datasets that have307

already addressed ethical considerations. Addition-308

ally, the data augmentation methods employed are309

safe and reliable, making it unlikely that toxic sen-310

tences will be generated. This has been validated311

by numerous previous studies. Additionally, our312

manual reviews did not reveal any issues.313
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A Additional Experimental Results 583

Transferability across datasets. We discuss 584

the adaptability of RandAugment across different 585

datasets. It is evident that, in most cases, the pa- 586

rameters obtained from other datasets maintain rel- 587

atively stable performance on the target dataset. 588

This adaptability is particularly noteworthy when 589

the target dataset is StrategyQA or Professional 590

Law, demonstrating strong cross-dataset compati- 591

bility. 592

Target Dataset Source Dataset Qwen2 Llama3 Gemma2

StrategyQA
StrategyQA 20.546 26.726 16.463

Prf-Law 20.813 27.467 18.713
GSM8K 21.564 26.167 16.463

Prf-Law
StrategyQA 32.840 37.001 24.424

Prf-Law 33.129 36.852 26.919
GSM8K 36.587 34.713 24.424

GSM8K
StrategyQA 16.61 10.571 6.149

Prf-Law 9.314 17.750 32.724
GSM8K 6.547 7.170 6.149

Table 5: Apply the parameters of source dataset to target
dataset.

B Implementation Details 593

We follow prior work (Xiong et al., 2024) to set 594

the augmentation times to n = 5 and keep the 595

sampling quantity of the baseline consistent with 596

it. The model temperature is 0 for the paraphras- 597

ing methods, and 0.7 for the sampling-based and 598

our method. The validation set to test set ratio is 599

1:1. Augmentation magnitude can be selected from 600

{0.1, 0.2, 0.3}. Automated augmentation retrieval 601

process assesses the quality of augmentation com- 602

binations based on ECE, excluding model training. 603

For all experiments, we run three times and report 604

the averaged results. 605

B.1 Traditional Data Augmentation 606

We provide supplementary information about tradi- 607

tional data augmentation: 608

• Synonym Replacement (SR). SR (Wei and 609

Zou, 2019) randomly selects words from the 610

sentence. It then substitutes each of these 611

words with a randomly chosen synonym. 612
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Dataset Prompt

StrategyQA & Prf-Law

Read the question, analyze step by step, provide your answer.
Use the following format to answer:
“‘Explanation: [insert step-by-step analysis here]
Answer: [ONLY the option letter; not a complete sentence]”’
Only give me the reply according to this format, don’t give me any other words.

GSM8K

Read the question, analyze step by step, provide your answer.
Use the following format to answer:
“‘Explanation: [insert step-by-step analysis here]
Answer: [ONLY the number; not a complete sentence]”’
Only give me the reply according to this format, don’t give me any other words.

Table 6: Prompt templates for each dataset.

• Random Swap (RS). RS (Wei and Zou, 2019)613

randomly swaps the positions of two words614

K times.615

• Random Deletion (RD). RD (Wei and Zou,616

2019) randomly deletes each word based on a617

probability of p.618

• Random Insertion (RI). RI (Wei and Zou,619

2019) finds a random synonym of a random620

word in the sentence that is not a stop word621

and inserts that synonym into a random posi-622

tion in the sentence K times.623

• Back-Translation. It (Sennrich et al., 2016)624

typically translates text from the original lan-625

guage to a second language, and then back626

to the original language. Here, we choose627

French as the second language.628

In the experiment, aside from back-translation,629

which does not require an augmentation magni-630

tude, the remaining four augmentation strategies631

that need to be tested on the validation set should632

determine the optimal augmentation magnitude be-633

fore being applied to the test set.634

B.2 Automated Augmentation635

We describe the details of the automated augmenta-636

tion strategies:637

• RandAugment. It is necessary to determine638

the optimal augmentation combination on the639

validation set before applying it to the test set.640

The key parameters are the number of augmen-641

tation transformations Nr and the magnitude642

of augmentation M . For each sample, Nr643

augmentation transformations are randomly644

selected from five traditional augmentation645

operations and then applied sequentially to646

the sample, each applied with a magnitude647

of M . The range of values for the number 648

of augmentation transformations Nr is {1, 2, 649

3}. The magnitude M can take values from 650

{0.1, 0.2, 0.3}. A grid search should first be 651

conducted on the validation set to determine 652

the optimal values for Nr and M , which will 653

then be applied to the test set. 654

• TAA. It also requires determining the optimal 655

augmentation combination first. A augmenta- 656

tion combination consists of Nt policies, with 657

each policy P = {O1, O2, ..., OT } contain- 658

ing T editing operations O. Each editing op- 659

eration includes an augmentation transforma- 660

tion, a probability of calling a transformation, 661

and a magnitude. Each sample requires exe- 662

cuting all editing operations in a policy, i.e., 663

s = OT ◦ ... ◦O2 ◦O1. 664

In TAA, the number of policies is Nt = 4, and 665

the number of editing operations is T = 2, with 666

the top three optimal combinations retained, i.e., 667

3 ∗Nt. We set the number of iterations to 50. 668

B.3 Additional Implementation Details 669

To ensure that the LLM thoroughly understands 670

the questions and accurately demonstrates its capa- 671

bilities while minimizing the occurrence of hallu- 672

cinations, we employ zero-shot Chain-of-Thought 673

(CoT) (Kojima et al., 2022). 674
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