
Figure 5: Variance convergence speed on SVHN. x-axis: epochs, y-axis: lnσ. We see that the shared
σ-VAE which optimizes the variance with gradient descent has an initial period of convergence when
the variance converges to the region of the optimal value. In contrast, σ-VAE with analytical (optimal)
variance quickly learns a good estimate of the variance, which leads to better performance. The unit
variance Gaussian β-VAE can be intepreted as having a constant variance determined by β, shown
here. Since the variance doesn’t change throughout training, it achieves suboptimal performance.

A Additional experimental results450

In this section, we provide more qualitative results as well as a graph showing the convergence451

properties of the variance for different models.452

B Experimental details453

Table 4: ELBO on discretized data. All distributions ex-
cept categorical have scalar scale parameters. The σ-VAE
performs well on the discretized ELBO metric, performing
similarly to a discrete distribution parametrized as a dis-
cretized Gaussian or discretized Logistic. Full categorical
distribution attains highest likelihood due to having the most
statistical power.

CIFAR VAE

− log pdf ↓ − log p ↓ FID ↓
Categorical VAE < 10673 137.6
Gaussian VAE < 740.5 < 15131 212.7
Gaussian σ-VAE < −896.1 < 11120 136.7
Disc. Gaussian σ-VAE < 11117 136.9
Disc. Logistic σ-VAE < 11103 136.7

For the image VAE models, the en-454

coder has 3 convolutional layers fol-455

lowed by a fully connected layer,456

while the decoder has a fully con-457

nected layer followed by 3 convolu-458

tional layers. The β was tuned from459

100 to 0.0001 for β-VAE. The number460

of channels in the convolutional layers461

starts with 32 and increases 2 times in462

every layer, except on the CIFAR data,463

where it starts with 128. The dimen-464

sion of the latent variable is 20. Adam465

[24] with learning rate 1e-3 is used466

for optimization. Batch size of 128467

was used and all models were trained468

for 10 epochs. Unit Gaussian prior469

and Gaussian posteriors with diagonal470

covariance were used. For the SVG471

models, the original hyperparameters for the SVG-LP model were used. We use the standard472

train-val-test split for all datasets. All models were trained on a single high-end GPU.473
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Figure 6: Samples from the σ-VAE (left) and the Gaussian VAE (right) on the SVHN dataset. The
Gaussian VAE produces blurry results with muted colors, while the σ-VAE is able to produce accurate
images of digits.

Figure 7: Samples from the σ-VAE (left) and the Gaussian VAE (right) on the CelebA dataset, images
cropped to the face for clarity. The Gaussian VAE produces blurry results with indistinct face features,
while the σ-VAE is able to produce accurate images of faces.
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Figure 8: Samples from the σ-VAE (top) and the Gaussian VAE (bottom) on the BAIR dataset.
Sampled sequences conditioned on two initial frames are shown, and the ground truth sequence is
shown at the top. The Gaussian VAE produces blurry robot arm texture and the arm often disappears
towards the end of the sequence, while the σ-VAE is able to produce sequences with realistic motion
and model the details of the arm texture, such as the gripper.
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Figure 9: Samples from the σ-VAE (left) and the Gaussian VAE (right) on the challenging CIFAR
dataset. The Gaussian VAE produces blurry results with muted colors, while the σ-VAE models the
distribution of shapes and colors in the CIFAR data more faithfully.

C Alternative Decoder Choices474

We describe the alternative decoders evaluated in Table 2: using the Beta, the bitwise-categorical,475

and the logistic mixture distributions.476

Beta VAE Previously described continuous distributions such as Gaussian had positive density on477

the whole real line, (−∞,∞). This might be undesirable since pixel intensity values lie in a finite478

range, usually scaled to [0, 1]. These continuous distributions therefore assign positive densities to479

impossible intensity values, potentially leading to poor likelihood and invalid samples. We therefore480

evaluate a continuous distribution that is defined on the [0, 1] range, specifically, the Beta distribution.481

We parametrize the Beta distribution with the two concentration parameters produced per pixel and482

channel. We experimented with alternative location-scale parametrizations, however, we found that483

the parametrization via concentration parameters allows to enforce that the distribution is defined on484

the inclusive interval [0, 1], by restricting both concentration parameters to be higher than 1. This is485

harder to enforce with location-scale parametrizations. In our experiments, we found that the Beta486

distribution does not outperform the σ-VAE decoder, as the Gaussian σ-VAE decoder can ensure487

that the values outside of the [0, 1] range have small density values by setting the variance to be488

small. However, we expect the Beta distribution to be useful for enforcing that the model only assigns489

positive densities to values in a certain range.490

Bitwise-categorical VAE While the 256-way categorical decoder described in Section 3.2 is491

very powerful due to the ability to specify any possible intensity distribution, it suffers from high492

computational and memory requirements. Because 256 values need to be kept for each pixel and493

channel, simply keeping this distribution in memory for one 3-channel 1024× 1024 image would494

require 3 GiB of memory, compared to 0.012 GiB for the Gaussian decoder. Therefore, training deep495

neural networks with this full categorical distribution is impractical for high-resolution images or496

videos. The bitwise-categorical VAE improves the memory complexity by defining the distribution497

over 256 values in a more compact way. Specifically, it defines a binary distribution over each bit in498

the pixel intensity value, requiring 8 values in total, one for each bit. This distribution can be thought499

of as a classifier that predicts the value of each bit in the image separately. In our implementation500

of the bitwise-categorical likelihood, we convert the image channels to binary format and use the501

standard binary cross-entropy loss (which reduces to binary log-likelihood since all bits in the image502

are deterministically either zero or one). While in our experiments the bitwise-categorical distribution503

did not outperform other choices, it often performs on par with our proposed method. We expect504

this distribution to be useful due to its generality as it is able to represent values stored in any digital505

format by converting them into binary.506
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Logistic mixture VAE For this decoder, we adapt the discretized logistic mixture from Salimans507

et al. [44]. To define a discrete 256-way distribution, it divides the corresponding continuous508

distribution into 256 bins, where the probability mass is defined as the integral of the PDF over509

the corresponding bin. [26] uses the logistic distribution discretized in this manner for the decoder.510

Salimans et al. [44] suggests to make all bins except the first and the last be of equal size, whereas511

the first and the last bin include, respectively, the intervals (−∞, 0] and [1,∞). Salimans et al. [44]512

further suggests using a mixture of discretized logistics for improved capacity. Our implementation513

largely follows the one in Salimans et al. [44], however, we note that the original implementation is514

not suitable for learning latent variable models, as it generates the channels autoregressively. This will515

cause the latent variable to lose color information since it can be represented by the autoregressive516

decoder. We therefore adapt the mixture of discretized logistics to the pure latent variable setup517

by removing the mean-adjusting coefficients from [44]. In our experiments, the logistic mixture518

outperformed other discrete distributions.519
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