
Table 7: GPT-3 1.3B 0-shot evaluation results. The first column is the results of the original OpenAI
GPT-3 1.3B model [7]. All the other columns are in the same order as the rows in main paper Tab. 3.
OpenAI results are not directly comparable to ours because the training data are different.

(8) (15)
(5) (6) CL (10) (13) CL

(2) (3) (4) CL CL seqtru CL CL seqtru
(0) (1) CL CL CL seqtru seqres (7) +voc (9) seqtru (11) (12) seqtru (14) +voc

Case OpenAI baseline seqtru seqres voc +voc +voc rLTD +rLTD baseline +voc rLTD baseline +voc rLTD +rLTD
Train tokens 300B 300B 300B 300B 300B 300B 300B 300B 300B 200B 200B 200B 150B 150B 150B 150B

Avg. 47.9 42.5 43.4 43.0 42.3 43.6 43.0 43.7 43.8 41.9 42.7 43.1 42.0 42.6 42.7 42.8

(0) HellaSwag 54.7 51.9 52.3 52.4 51.8 52.7 52.2 54.1 54.3 50.9 52.0 52.9 49.9 50.6 51.6 52.1
(1) LAMBADA 63.6 62.0 61.2 61.7 60.6 61.9 61.1 62.9 62.3 59.8 61.4 62.3 59.5 59.6 61.3 61.7
(2) TriviaQA 19.7 7.0 7.91 7.63 6.66 7.65 6.07 7.9 7.55 6.15 6.46 7.54 5.9 7.2 6.37 7.42
(3) WebQs 4.63 1.38 1.62 2.07 2.56 1.38 2.02 3.15 2.17 2.46 1.67 2.31 1.03 2.26 2.66 3.2
(4) Winogrande 58.7 55.6 59.1 58.2 57.1 58.9 56.9 58.5 58.4 54.9 58.2 59.1 56.6 57.1 57.1 57.5
(5) PIQA 75.1 71.4 71.0 72.1 70.8 71.4 72.1 71.2 71.5 70.7 71.4 72.3 71.4 71.9 70.5 72.0
(6) ARC Challenge 35.5 29.4 29.6 29.3 28.8 30.1 28.9 28.7 30.1 28.5 28.2 29.7 27.2 27.0 28.7 27.6
(7) ARC Easy 53.8 53.7 54.3 55.0 54.0 55.2 55.0 54.4 56.4 53.5 53.2 52.7 52.7 53.7 54.1 54.0
(8) ANLI R1 33.4 31.6 33.3 30.7 33.4 33.5 31.6 33.0 31.6 31.6 29.8 31.9 33.0 32.9 32.1 33.7
(9) ANLI R2 33.3 33.7 33.8 32.8 33.0 33.3 32.9 32.5 31.5 30.4 33.2 34.8 31.8 33.9 34.6 33.6
(10) ANLI R3 33.4 33.1 35.2 33.5 33.2 33.3 33.9 33.4 35.2 33.7 35.8 35.3 32.4 34.8 34.9 35.0
(11) OpenBookQA 46.8 32.4 31.8 32.0 31.2 34.0 34.6 34.0 34.0 31.0 33.0 33.8 30.4 32.4 33.6 32.4
(12) RACE-h 40.9 35.2 34.2 35.7 35.3 35.3 34.3 35.4 36.4 34.6 33.9 35.0 34.3 34.2 34.6 34.9
(13) BoolQ 62.4 62.4 63.1 62.5 60.2 62.7 63.6 61.9 63.6 62.0 62.8 61.0 61.2 59.6 61.5 61.9
(14) Copa 77.0 72.0 70.0 75.0 72.0 73.0 77.0 76.0 75.0 71.0 74.0 73.0 72.0 75.0 71.0 71.0
(15) RTE 56.0 54.2 58.1 54.9 52.0 56.0 54.2 55.0 54.5 55.2 54.9 54.2 59.2 55.6 55.2 54.5
(16) WSC 61.5 36.5 42.3 36.5 34.6 43.3 36.5 43.3 40.4 36.5 37.5 36.5 36.5 36.5 37.5 36.5
(17) MultiRC 13.6 1.05 2.1 1.47 3.15 0.944 0.944 0.839 2.41 0.839 0.839 0.839 0.839 1.68 1.05 1.15
(18) ReCoRD 85.2 83.3 83.7 83.5 83.2 83.8 83.3 84.7 84.3 82.8 82.4 84.0 82.5 82.6 83.6 83.6

Table 8: GPT-3 1.3B 10-shot evaluation results. The first column is the results of the original OpenAI
GPT-3 1.3B model [7]. All the other columns are in the same order as the rows in main paper Tab. 3.
OpenAI results are not directly comparable to ours because the training data are different. Note that
OpenAI used different number of shots for each task, while we use the same 10 shots for all tasks.

(8) (15)
(5) (6) CL (10) (13) CL

(2) (3) (4) CL CL seqtru CL CL seqtru
(0) (1) CL CL CL seqtru seqres (7) +voc (9) seqtru (11) (12) seqtru (14) +voc

Case OpenAI baseline seqtru seqres voc +voc +voc rLTD +rLTD baseline +voc rLTD baseline +voc rLTD +rLTD
Train tokens 300B 300B 300B 300B 300B 300B 300B 300B 300B 200B 200B 200B 150B 150B 150B 150B

Avg. 49.0 44.0 44.8 44.5 44.5 44.9 44.4 44.9 45.1 44.0 44.5 44.8 42.7 43.7 43.5 44.0

(0) HellaSwag 54.9 52.4 52.7 52.6 52.0 52.7 52.8 54.7 55.1 51.2 52.2 53.4 50.5 50.9 52.2 53.0
(1) LAMBADA 57.0 57.6 56.0 57.0 55.7 57.0 57.6 59.5 59.6 55.1 56.4 58.4 54.2 55.7 57.5 58.9
(2) TriviaQA 32.1 13.5 14.0 13.9 13.2 14.7 13.0 13.5 13.7 12.6 12.9 12.4 11.5 12.0 11.5 12.3
(3) WebQs 19.6 11.8 11.9 12.0 12.9 12.6 12.5 12.5 13.8 12.1 11.5 12.0 10.0 11.6 10.2 12.1
(4) Winogrande 59.1 57.4 56.7 58.9 58.2 60.0 58.2 58.7 58.1 55.9 59.2 59.0 56.8 58.0 58.4 58.4
(5) PIQA 74.3 71.5 71.4 71.5 71.4 71.5 72.3 71.6 72.6 71.1 72.0 71.9 71.2 71.7 71.4 71.4
(6) ARC Challenge 36.7 32.8 32.2 33.4 32.7 32.8 32.5 32.8 34.6 32.3 32.7 33.4 31.7 31.2 30.5 31.7
(7) ARC Easy 59.1 63.5 65.2 64.6 64.7 64.7 64.4 64.2 65.9 63.2 63.9 62.5 61.5 63.0 61.7 63.0
(8) ANLI R1 32.5 29.8 31.6 31.4 31.7 31.6 32.7 32.3 32.7 31.3 32.5 30.7 32.0 30.8 33.0 32.4
(9) ANLI R2 31.4 34.4 34.6 33.0 31.2 33.7 31.9 32.4 32.6 34.0 32.9 31.9 31.0 32.0 34.0 34.0
(10) ANLI R3 36.0 33.6 34.1 33.1 33.4 33.8 33.8 32.8 33.8 31.9 33.9 33.9 32.7 31.7 35.2 35.2
(11) OpenBookQA 50.6 32.4 34.0 34.6 34.0 35.4 35.2 33.6 32.6 33.0 33.2 33.2 33.4 33.4 32.2 29.8
(12) RACE-h 41.4 34.5 36.6 35.4 35.3 36.7 35.5 37.1 36.7 35.7 34.4 35.3 35.5 34.2 35.9 34.6
(13) BoolQ 64.1 60.8 63.5 59.4 63.1 62.1 63.1 64.2 64.0 62.8 62.1 63.8 58.8 63.4 58.2 62.0
(14) Copa 77.0 76.0 74.0 79.0 76.0 76.0 74.0 73.0 74.0 74.0 77.0 76.0 69.0 70.0 71.0 70.0
(15) RTE 50.9 48.0 55.2 50.5 53.8 52.7 49.1 53.1 52.0 56.0 54.5 55.6 48.0 56.0 48.4 51.2
(16) WSC 49.0 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
(17) MultiRC 20.8 5.88 7.24 5.35 6.93 5.77 5.98 6.19 5.35 4.51 5.67 6.72 4.51 6.19 5.67 6.4
(18) ReCoRD 84.0 83.0 83.4 83.3 82.4 83.6 83.2 84.6 84.0 82.3 82.7 83.9 82.2 82.4 83.8 83.3

A Appendix617

A.1 GPT-3 pretraining experimental setup and detailed results618

For GPT-3 pretraining, we set some of the hyperparameters the same as the original OpenAI work [7]:619

seqlen 2K, batch size 512, learning rate 2e-4 (batch size 256 and learning rate 3e-4 for the GPT-3620

MoE 6.7B model since we use 350M as the base model). We set other hyperparameters differently:621

(1) OpenAI pretrains GPT-3 on 300B tokens. To evaluate data efficiency techniques, we pretrain622

with 9 different total training tokens: 300B, 200B (67%), 150B (50%), 96B (32%), 48B (16%), 24B623

(8%), 12B (4%), 6B (2%), 3B (1%). (2) When using less than 300B training tokens, we increase the624

peak learning rate proportionally (e.g., 2x LR when using 50% data). This is similar to the traditional625

learning rate scaling when using different batch sizes. However, when using extremely small amount626

14



Table 9: GPT-3 1.3B 0-shot evaluation results when pretraining with 1%, 2%, 4%, 8%, 16%, and
32% of data.

(2) (4) (6) (8) (10) (12)
CL CL CL CL CL CL

seqtru seqtru seqtru seqtru seqtru seqtru
(1) +voc (3) +voc (5) +voc (7) +voc (9) +voc (11) +voc

Case baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD
Model size 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B
Train tokens 3B 3B 6B 6B 12B 12B 24B 24B 48B 48B 96B 96B

Avg. 34.5 35.0 36.3 36.8 37.2 38.4 38.8 40.2 39.8 41.2 41.5 42.2

(0) HellaSwag 28.7 29.3 30.8 33.2 35.4 38.1 39.0 42.7 43.5 46.9 47.8 49.9
(1) LAMBADA 28.9 32.0 38.0 41.4 43.5 49.5 50.3 53.9 54.3 58.0 57.8 60.4
(2) TriviaQA 1.18 1.4 1.58 1.56 1.79 1.89 2.28 3.91 3.5 4.82 6.29 6.16
(3) WebQs 0 0.148 0.443 0.738 1.03 0.935 0.984 0.984 1.08 2.36 2.21 2.51
(4) Winogrande 51.3 50.8 52.2 51.0 49.5 51.8 50.7 54.1 53.5 54.9 53.3 56.5
(5) PIQA 62.1 61.6 62.5 63.5 64.9 66.6 66.8 68.5 68.6 69.6 70.1 71.3
(6) ARC Challenge 22.2 22.9 24.9 23.0 24.7 24.6 24.1 26.2 26.7 26.6 28.5 28.2
(7) ARC Easy 38.8 38.4 40.5 41.0 44.1 45.2 46.4 47.7 48.6 50.7 51.2 52.7
(8) ANLI R1 33.3 33.3 32.6 33.3 31.5 31.5 31.7 32.7 33.2 33.7 33.4 33.0
(9) ANLI R2 33.2 34.6 35.8 32.7 31.7 32.8 32.6 33.6 33.1 34.0 34.1 34.4
(10) ANLI R3 32.8 33.9 35.4 32.9 34.4 34.9 35.4 34.5 32.2 35.1 33.7 33.5
(11) OpenBookQA 25.6 24.4 26.2 27.2 28.2 28.0 28.8 29.6 30.4 31.6 32.2 31.6
(12) RACE-h 27.1 28.5 28.9 29.4 30.0 31.2 32.2 32.5 31.8 33.5 34.5 35.2
(13) BoolQ 58.4 56.4 53.3 56.8 56.0 57.3 59.2 62.0 58.7 60.3 61.9 60.1
(14) Copa 61.0 64.0 66.0 71.0 68.0 69.0 70.0 72.0 69.0 69.0 70.0 71.0
(15) RTE 52.7 52.3 53.4 53.1 53.4 54.2 54.2 53.4 52.3 53.1 53.4 55.6
(16) WSC 36.5 36.5 39.4 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
(17) MultiRC 0.839 0.839 1.15 0.839 1.47 0.839 0.839 0.839 0.839 1.36 0.839 1.47
(18) ReCoRD 60.6 63.4 66.6 70.3 71.5 75.6 75.8 78.8 78.7 81.3 81.4 82.3

Table 10: GPT-3 1.3B 10-shot evaluation results when pretraining with 1%, 2%, 4%, 8%, 16%, and
32% of data.

(2) (4) (6) (8) (10) (12)
CL CL CL CL CL CL

seqtru seqtru seqtru seqtru seqtru seqtru
(1) +voc (3) +voc (5) +voc (7) +voc (9) +voc (11) +voc

Case baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD baseline +rLTD
Model size 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B 1.3B
Train tokens 3B 3B 6B 6B 12B 12B 24B 24B 48B 48B 96B 96B

Avg. 33.9 35.0 35.6 36.6 37.3 38.8 38.8 40.7 40.7 42.3 43.0 43.2

(0) HellaSwag 28.9 29.5 31.3 33.2 35.2 38.2 39.3 43.1 43.6 47.0 47.9 50.3
(1) LAMBADA 24.5 27.5 32.2 36.2 37.6 44.9 44.0 50.7 47.0 53.2 51.8 57.0
(2) TriviaQA 0.804 1.36 1.75 3.05 3.21 4.93 5.27 6.96 7.51 9.45 10.6 11.0
(3) WebQs 1.08 1.72 2.17 2.9 3.44 5.22 4.87 6.94 7.73 8.66 10.4 11.4
(4) Winogrande 51.6 51.0 52.2 50.2 51.8 54.0 51.7 55.2 57.0 55.1 57.0 56.1
(5) PIQA 60.9 62.0 62.1 63.9 65.3 66.5 66.0 67.9 68.8 69.7 69.8 71.1
(6) ARC Challenge 21.9 23.2 24.0 24.3 24.8 24.9 26.5 27.7 28.0 29.8 31.5 32.1
(7) ARC Easy 38.7 41.9 44.9 47.1 50.0 52.4 54.1 55.6 56.4 59.8 60.6 62.5
(8) ANLI R1 31.7 33.5 33.4 32.8 34.1 32.6 35.2 33.0 31.6 33.7 33.0 31.2
(9) ANLI R2 33.1 35.0 30.3 34.7 35.6 34.4 34.2 31.0 33.6 34.4 32.4 32.5
(10) ANLI R3 33.9 34.8 35.1 33.2 33.5 34.2 33.4 33.2 34.5 33.2 34.2 32.8
(11) OpenBookQA 25.0 26.0 27.2 28.4 28.8 26.0 27.2 28.6 29.2 31.2 32.6 33.0
(12) RACE-h 26.9 27.8 29.1 28.9 29.1 30.5 32.3 31.9 32.0 34.3 34.4 35.0
(13) BoolQ 49.1 50.0 45.6 49.1 45.4 56.2 48.0 56.3 55.6 60.2 62.1 58.3
(14) Copa 62.0 66.0 70.0 66.0 69.0 67.0 71.0 70.0 66.0 70.0 72.0 72.0
(15) RTE 53.1 49.5 47.3 50.2 48.4 48.7 48.0 56.3 55.6 50.9 54.2 49.1
(16) WSC 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5
(17) MultiRC 5.25 4.72 4.41 4.3 5.35 4.3 5.14 3.88 5.04 5.56 5.67 6.93
(18) ReCoRD 59.8 63.0 66.0 69.6 70.8 75.0 74.6 78.7 77.8 80.9 80.7 82.1

of data (e.g., 1% data), we find that using too larger learning rate (e.g., 100x) could lead to divergence.627

In such case we keep halving learning rate until the training succeed. (3) We do not use OpenAI’s628

batch size warmup method because our GPT-3 125M model pretraining experiments show that it does629

not help on model quality under the same total training tokens. And the smaller batch sizes prevent630

us to pretrain on large number of GPUs at the beginning, which leads to longer training wall-clock631

time; (4) Since we don’t use the batch size warmup, our training has more tokens at early steps.632

Thus we increase the linear learning rate warmup duration from OpenAI’s 375M tokens to 3B tokens633

(except when using 3B tokens in total, where we use first 1.5B tokens for warmup); (5) OpenAI uses634

a single cycle cosine learning rate decay over 260B tokens, and the min learning rate is 10% of peak635

learning rate. However, based on our experiments and related works [57, 20], we changed the decay636

duration to always equal to total training token and the min learning rate to always equal to 1e-6,637

which provide better model quality. When calculating the total consumed training token, we take CL638

15



Table 11: GPT-3 MoE 6.7B 0-shot evaluation results.

(2)
CL

seqtru
(1) +voc

Case baseline +rLTD
Model size 6.7B 6.7B
Train tokens 300B 300B

Avg. 42.8 43.5

(0) HellaSwag 53.0 53.3
(1) LAMBADA 60.1 59.6
(2) TriviaQA 11.0 9.31
(3) WebQs 2.95 2.31
(4) Winogrande 56.0 56.8
(5) PIQA 72.0 71.8
(6) ARC Challenge 28.9 28.9
(7) ARC Easy 54.5 54.2
(8) ANLI R1 33.6 30.8
(9) ANLI R2 32.8 34.1
(10) ANLI R3 33.6 35.5
(11) OpenBookQA 33.6 32.4
(12) RACE-h 33.8 35.0
(13) BoolQ 61.5 57.5
(14) Copa 71.0 74.0
(15) RTE 54.5 55.2
(16) WSC 36.5 51.0
(17) MultiRC 1.89 1.78
(18) ReCoRD 82.4 82.6

and random-LTD (which change number of tokens on certain steps) into consideration. For CL and639

random-LTD hyperparameters, we use the low-cost tuning strategy described in Sec. 3.640

To evaluate the quality of pretrained GPT-3 models, we perform 0-shot and 10-shot evaluations on 19641

tasks used by original OpenAI work: HellaSwag [59], LAMBADA [35], TriviaQA [22], WebQs [4],642

Winogrande [44], PIQA [5], ARC Challenge/Easy [11], ANLI R1/R2/R3 [34], OpenBookQA [32],643

RACE-h [27], BoolQ [10], Copa [1], RTE [12], WSC [28], MultiRC [56], and ReCoRD [60]. Since644

there is no additional training involved in 0/10-shot evaluations, it’s impossible to try multiple seeds645

thus each task only has one accuracy result. We then take the average accuracy over the 19 tasks.646

Tab. 7 and 8 present the 0-shot and 10-shot accuracy results for each task achieved by the pretrained647

GPT-3 1.3B models. Tab. 9 and 10 present the 0-shot and 10-shot accuracy results for the same648

GPT-3 1.3B model but pretrained with even less data as discussed in main paper Fig. 2, Sec. 1, and649

Sec. 4.1. Tab. 11 presents the 0-shot accuracy results for each task achieved by the pretrained GPT-3650

MoE 6.7B models, as discussed in main paper Sec. 4.1.651

A.2 BERT-large pretraining experimental setup and detailed results652

For BERT-large pretraining, we set some of the hyperparameters the same as the Megatron-LM653

work [46] since it achieves better model quality than original BERT: seqlen 512, batch size 1024,654

learning rate 1e-4 with linear warmup up at first 10000 steps and then linearly decay to 1e-5. We655

set other hyperparameters differently: (1) Megatron-LM pretrains over 2M steps (1049B tokens).656

To evaluate data efficiency techniques, we pretrain with 3 different total training tokens: 1049B,657

703B (67%), and 524B (50%). (2) When using less than 1049B training tokens, we increase the peak658

learning rate proportionally. (3) Megatron-LM decays the learning rate over 2M steps. Since our659

techniques could change the number of tokens at some steps, we change the decay to token-based660

and set the decay duration always the same as total training tokens. For CL and random-LTD661

hyperparameters, we use the low-cost tuning strategy described in Sec. 3.662

To evaluate the quality of pretrained BERT-large models, we finetune the models for 8 tasks from663

the GLUE benchmark [52]: MNLI, QQP, QNLI, SST-2, CoLA, STS-B, MRPC, RTE. We follow the664

finetuning hyperparameters from the original BERT work [14]: 3 epochs, batch size 32. For learning665

rate we test 5e-5, 4e-5, 3e-5, 2e-5 on the baseline and find that 3e-5 provides the best average GLUE666

score, thus we select LR=3e-5 for the comparison between baseline and proposed work. We perform667

finetuning on 5 seeds (1234 to 1238) and take the median/std on each task, then we take the average668

of the median scores as the average GLUE score, and take the average of std scores as the overall std.669

Tab. 12 presents the finetuning results for each task achieved by the pretrained BERT-large models.670

16



Table 12: BERT-large finetuning results. The first row is the results of the original BERT-large
model [14]. All the other rows are in the same order as the rows in main paper Tab. 4. Original
BERT results are not directly comparable to ours because the training data and total training token
are different.

Case Train tokens Average MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE

(0)original 43B 82.1 86.7 85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1
(1)baseline 1049B 87.29±0.53 88.54±0.16 89.25±0.13 92.1±0.07 94.12±0.15 94.33±0.48 64.36±1.59 90.43±0.21 89.32±0.81 83.2±1.16
(2)CL_seqtru 1049B 87.31±0.57 89.03±0.14 89.35±0.24 92.21±0.03 94.12±0.11 94.68±0.1 62.08±2.06 90.72±0.27 89.58±0.52 83.98±1.64
(3)CL_seqreo 1049B 87.48±0.61 88.81±0.16 89.27±0.19 92.2±0.12 93.99±0.28 94.79±0.42 62.86±1.85 90.51±0.25 89.32±0.85 85.55±1.34
(4)CL_voc 1049B 87.36±0.64 88.64±0.23 89.24±0.16 92.32±0.05 94.03±0.09 95.14±0.31 63.34±1.82 90.07±0.18 89.84±1.06 83.59±1.83
(5)CL_seqtru_voc 1049B 87.6±0.34 88.9±0.1 89.29±0.17 92.26±0.05 94.26±0.19 95.25±0.4 64.6±0.6 90.38±0.25 90.62±0.22 82.81±1.05
(6)CL_seqreo_voc 1049B 87.06±0.52 88.73±0.13 88.91±0.26 92.32±0.07 93.92±0.08 94.91±0.25 61.05±1.15 90.36±0.23 89.32±1.13 83.98±1.34
(7)random-LTD 1049B 88.17±0.48 88.74±0.25 89.18±0.21 92.27±0.1 94.32±0.21 95.02±0.38 67.3±1.5 90.65±0.15 90.1±0.63 85.94±0.89
(8)CL_seqtru_voc+random-LTD 1049B 87.69±0.32 88.79±0.13 89.26±0.04 92.34±0.08 94.21±0.23 95.14±0.36 65.46±0.68 90.44±0.19 89.58±0.56 83.98±0.59
(9)baseline 703B 87.19±0.49 88.75±0.18 89.11±0.19 92.13±0.08 93.99±0.16 95.14±0.46 62.07±1.44 90.08±0.31 89.84±0.68 83.59±0.87
(10)CL_seqtru_voc 703B 87.29±0.62 88.96±0.07 89.15±0.25 92.21±0.09 94.23±0.08 95.25±0.33 62.19±1.75 89.92±0.21 90.1±0.55 83.59±2.25
(11)random-LTD 703B 87.99±0.38 88.86±0.1 88.79±0.12 92.01±0.12 94.25±0.17 94.68±0.32 67.1±0.9 90.55±0.19 89.32±0.39 86.33±1.12
(12)baseline 524B 86.61±0.5 88.53±0.14 88.77±0.17 92.04±0.11 93.93±0.19 95.02±0.25 61.05±1.22 89.88±0.25 88.28±1.08 82.03±1.13
(13)CL_seqtru_voc 524B 86.9±0.33 88.66±0.14 89.25±0.21 92.08±0.05 93.99±0.26 95.02±0.17 63.34±0.52 89.96±0.25 88.54±0.22 81.25±1.14
(14)random-LTD 524B 87.32±0.48 88.81±0.15 88.9±0.13 91.96±0.04 94.28±0.14 94.91±0.43 64.41±1.32 90.39±0.25 89.06±0.18 83.2±1.67
(15)CL_seqtru_voc+random-LTD 524B 87.44±0.46 88.9±0.19 88.9±0.13 92.19±0.09 94.17±0.12 94.68±0.35 65.97±1.09 90.31±0.22 89.06±0.79 82.81±1.13

A.3 GPT-2 finetuning experimental setup671

Due to the lack of published training recipe, we first perform a hyperparameter search for the baseline672

case (256 combinations of batch size, LR schedule, number of epochs). Then using the combination673

that provides best baseline validation perplexity, we apply CL and random-LTD (each with 16674

different combinations of their two hyperparameters) to verify if they could further improve the model675

quality.676

For GPT-2350M finetuning on PTB [30], we use an already-pretrained GPT-2350M model checkpoint677

and an example script 2 from Huggingface. Given the much smaller training cost (about 38min on678

a single V100 for 5 epochs), we focus on improving the model quality under the same amount of679

data. Due to the lack of published training recipe, we first perform a hyperparameter search for the680

baseline case: we tried 256 combinations of batch size (4, 8, 16, 32), learning rate (2e-5, 3e-5, 5e-5,681

10e-5), learning rate warmup (0% and 10% linear warmup steps), learning rate decay (no decay,682

linear decay), and number of epochs (2, 3, 5, 10). For this sweep we only use one seed (1234) due to683

the number of combinations. Results show that the best combination among the 256 cases is: batch684

size 4, learning rate 10e-5, 0% learning rate warmup, linear learning rate decay, and 5 epochs. Results685

also show that for this task using more epochs (5 or 10) leads to better validation perplexity than less686

epochs (2 or 3).687

Then using this combination that provides best baseline validation perplexity, we apply CL and688

random-LTD (each with 16 different combinations of their two hyperparameters) to verify if they689

could further improve the model quality. For CL we test 5 metrics (seqtru, seqres, voc, seqtru_voc,690

seqres_voc), each with 16 different combinations of its two hyperparameters: start difficulty ds691

(8, 32, 128, 512 for seqtru/seqres, and 1%, 10%, 30%, 50% for voc) and total CL steps Tc (10%,692

30%, 50%, 70% of the baseline’s total steps). Results show that the seqres metric provides the693

best model quality, and its best hyperparameter combination is ds = 32, Tc = 70% of baseline694

steps. For random-LTD we test 16 different combinations of its two hyperparameters: start seqlen695

rs (8, 32, 128, 512) and total steps Tr (10%, 30%, 50%, 70% of the baseline’s total steps). Results696

show that the best hyperparameter combination is rs = 128, Tr = 30% of baseline steps. For697

CL+random-LTD composed case, we re-tuned the combination of Tc and Tr (CL will first adjust698

seqlen before random-LTD. To have a meaningful composition, it essentially requires Tc < Tr) and699

the best combination is ds = 32, rs = 128, Tc = 10%, Tr = 30% of baseline steps. At last, for the700

best case of baseline, CL, random-LTD, and CL+random-LTD, we run another 4 seeds (1235 to 1238)701

and then calculate the median/std of the validation perplexity.702

2https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_clm_no_trainer.py

17

https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm_no_trainer.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm_no_trainer.py


Table 13: Comparing random-LTD (w/o MSLG) and TokenBypass under various constant dropping
schedule. Baseline achieves a perplexity of 16.11±0.04.

Token saving ratio 1.88% 12.75% 23.72% 34.59% 45.45% 56.43%

random-LTD (w/o MSLG) 16.15±0.01 16.83±0.06 17.95±0.08 20.02±0.05 23.35±0.16 30.65±0.78
TokenBypass 16.4±0.04 17.3±0.06 18.59±0.19 23.09±0.23 28.56±0.24 35.91±0.26

A.4 ViT finetuning experimental setup703

We apply random-LTD to the vision transformer (ViT) [15] on finetuning tasks to demonstrate the704

broader applications of our method across different domains. We use the pretrained models published705

in [54] and test on two small image recognition benchmarks— CIFAR10 and CIFAR100 [26], and one706

large-scale dataset—ImageNet [13]. For ImageNet (CIFAR10/100), we use the 12-layer (24-layer)707

pretrained ViT with an input resolution 224 × 224 in which each patch of size 16 × 16 such that708

the sequence length becomes 196 + 1 (the extra token is for position). ImageNet (CIFAR10/100)709

is trained on 8-GPU (1-GPU) and the batch size is 32 (128) images per GPU. The training budget710

for all three datasets is 14 epochs and a small constant learning rate is used based on grid search.711

Particularly, the best learning rate for ImageNet (CIFAR) is 5e-5 (1e-4). For ImageNet (CIFAR),712

when applying random-LTD the sequence length is started with 66 (32) and linearly reaches to the713

197 full sequence length at 80% of the total baseline training iterations, equivalent to a 1.3x (1.4x)714

data saving.715

A.5 Comparing random-LTD with the TokenBypass work716

In main paper Sec. 4.2 we demonstrate that random-LTD achieves 2x data saving while maintaining717

model quality for BERT pretraining, greatly surpassing the 1.3x data saving achieved by the state-of-718

the-art TokenBypass work [21]. In this section we provide additional discussion and evaluation to719

compare random-LTD with TokenBypass.720

We include the illustration of the comparison between baseline, TokenBypass, and random-LTD721

in Fig. 7. First, the takeaway from TokenBypass can be summarized into (1) drop unimportant722

tokens starting from an intermediate layer of the model, (2) the dropping schedules is a fixed constant723

function (drop half of the tokens), and (3) the dropping criterion based on the “accumulated masked724

language modeling loss” (which is referred to as “token loss” since it needs each token’s loss)725

However, TokenBypass have several limitations (1) only tested on BERT pretraining (we find that726

it’s less effective in GPT pretraining and finetuning), (2) the bypass layer starting only from an727

intermediate layer (e.g., 6L for BERT-base), and (3) the dropping criterion based on “token loss” may728

not be accessible for some tasks, like classification problems.729

Acknowledging that we are inspired by their excellent work and trying to solve their limitations, we730

believe random-LTD consists of three differences: (1) drop tokens starting from the 2nd layer of the731

model, (2) propose a linear increasing dropping schedule to close the training and inference discrep-732

ancy, and (3) the new random dropping criterion (which has lower overhead and can be easily applied733

to tasks without “token loss”, such as vision transformer). Next, we provide more direct comparisons734

between random-LTD and TokenBypass on GPT-2 finetuning and GPT-3 pretraining tasks. Note that735

because this study was performed in parallel with other experiments, the hyperparameter choices are736

different from the experiments in main paper.737

GPT-2 finetuning on PTB with various constant dropping schedule. To better demonstrate the738

benefit of random selection per layer, we provide a study with various constant dropping schedule.739

Particularly, from the second layer to the last second layer, we use one of the sequence lengths from740

921, 819, 716, 614, 512, 409, of which the corresponding token saving ratio are shown in Tab. 13.741

We finetune GPT-2350M (24 layers) on the PTB dataset with constant learning rate 5e-5 and Adam742

optimizer for 15 epochs (batch-size 8). The results are the best validations (average of three runs and743

one standard deviation) of random-LTD (without Monotonic Sequence Length Growth, MSLG) and744

TokenBypass.745

As shown in Tab. 13, for all cases random-LTD has better performance than TokenBypass, even746

without one of the key contributions, Monotonic Sequence Length Growth (MSLG). This further747

verifies the conjecture we made in the main paper: “However, several works [50, 31, 51] have shown748

that MHA focuses on different tokens at different layer depths and the attention map aligns with the749

dependency relation most strongly in the middle of transformer architectures. Therefore, TokenBypass750

18



Figure 7: Illustration of the transformer model for the baseline training (left), TokenBypass training
(right) and random-LTD training (middle). Compared to TokenBypass, random-LTD requires no
criterion on the dropped tokens and trains well for all middle layers. The box with dash line is a
repeated block. For both (a) and (b), the block is repeated by l − 2 times, while for (c), the block is
repeated by l/2. In the box, “Output tokens of layer i” is the same as “Input tokens of layer i+ 1”.

Table 14: Comparing random-LTD and TokenBypass (both with our proposed MSLG applied) under
various token saving ratios. Baseline achieves a perplexity of 16.11±0.04.

Token saving ratio 8% 16% 24% 32% 40% 47% 52% 55%

random-LTD 15.91±0 15.86±0.06 15.86±0.01 15.85±0.02 16.05±0.06 17.02±0.05 18.41±0.04 20.01±0.06
TokenBypass (w/ MSLG) 16.1±0.02 16.09±0.05 16.21±0.03 16.54±0.01 17.06±0.04 18.64±0.04 23.12±0.22 25.77±0.57

used in [21], i.e., fully skipping middle layers, may hinder the learnability/generalization of the751

architecture during pretraining/inference.”752

GPT-2 finetuning on PTB with our proposed MSLG. We are also curious if MSLG can help boost753

the performance of TokenBypass. Therefore, we also perform the comparison between random-LTD754

(with MSLG) and TokenBypass (with MSLG) on GPT-2 finetuning. We start at sequence length755

from 128 and linearly increase to full sequence 1024, with a different total steps to achieve different756

token saving ratios shown in Tab. 14. The rest of the hyperparameters are the same as the previous757

experiment.758

Note that under MSLG it is hard to control the overall token saving ratio to be the same759

as constant dropping schedule case. But comparing Tab. 14’s 24%/47%/55% with Tab. 13’s760

23.72%/45.45%/56.43%, we can clearly see the benefit of MSLG. Meanwhile, comparing the761

results of random-LTD and TokenBypass (with MSLG), it is clear that random-LTD still has better762

performance than TokenBypass for all cases. This shows that the other components of random-LTD,763

particularly the layerwise dropping mechanism, has its unique advantage over accumulated token764

loss for auto-regressive generative models.765

GPT-3 pretraining. To directly compare the two techniques on pretraining tasks, we pretrain a766

GPT-3 350M model with 30B tokens. Due to limited time and resource, this is a smaller model and767

10% of data compared to our other GPT-3 pretraining experiments. And due to the same reason we768

only compare the validation loss at the end of pretraining, but our experience shows that this metric769

has strong correlation with downstream task zero/few-shot evaluation performance. Based on the last770

GPT-2 finetuning experiment, here we again apply MSLG to TokenBypass. Results in Tab. 15 shows771

that under the same token saving ratio, random-LTD provides significantly better model quality than772

TokenBypass.773

19



Table 15: Comparing random-LTD and TokenBypass (both with our proposed MSLG applied) on
GPT-3 pretraining.

Validation loss

baseline 8.22
random-LTD (37.76% token saving) 8.26
TokenBypass (w/ MSLG, 37.76% token saving) 9.62

Other downstream tasks. TokenBypass cannot be easily extended to various downstream tasks. The774

reason is that the TokenBypass criterion is based on the “token loss”, but downstream tasks, e.g.,775

classification and regression (GLUE benchmark), do not have “token loss”. Therefore, we did not776

find an easy way to apply TokenBypass on those tasks.777

20


	Appendix
	GPT-3 pretraining experimental setup and detailed results
	BERT-large pretraining experimental setup and detailed results
	GPT-2 finetuning experimental setup
	ViT finetuning experimental setup
	Comparing random-LTD with the TokenBypass work


