
A Experimental Details

General details. We use DenseICNN architecture [37, Appendix B.2] for ψθ with 2 hidden layers
and vary the width of the model depending on the task. We use Adam optimizer with learning rate
decreasing with the number of JKO steps. We initialize the ICNN models either via pretraining to
satisfy ∇ψθ(x) ≈ x or by using parameters θ obtained from the previous JKO step.

For bDual JKOe, we used the implementation provided by the authors with default hyper-parameters.
For bEM PRe we implemented the Proximal Recursion operator following the pseudocode of [16]
and used the default hyper-parameters but we increased the number of particles for fair comparison
with the vanilla bEMe algorithm. Note we limited the number of particles to N = 104 because of the
high computational complexity of the method. For bSVGDe, we used the official implementation
available at

https://github.com/dilinwang820/Stein-Variational-Gradient-Descent

In particle-based simulations bEMe, bBBFe and bEM PRe we used the particle propagation timestep
dt = 10−3.

We estimate the SymKL (12) using Monte Carlo (MC) on 104 samples. In our method, MC estimate is
straightforward since the method permits both sampling and computing the density. In particle-based
methods, we use kernel density estimator to approximate the density utilizing scipy implementation
of gaussian_kde with bandwidth chosen by Scott’s rule. In bDual JKOe, we employ importance
sampling procedure and normalization constant estimation as detailed in [24].

We set β to be equal to 1 throughout our experiments.

A.1 Converging to Stationary Distribution

D M l w

2 5 10 256
4 6 10 384
6 7 10 512
8 8 10 512
10 9 10 512
12 10 10 1024
13 10 10 512
32 10 6 1024

Table 3: Hyper-parameters
in the convergence exp.

As the stationary measure ρ∗ we consider random Gaussian mixture
1
Np

∑M
m=1N (µm, ID), where µ1, . . . , µM ∼ Uniform

(
[− l

2 ,
l
2]D
)
.

We set the width w of used ICNNs ψθ depending on dimension D.
The parameters are summarized in Table 3.

Each JKO step uses 1000 gradient descent iterations of Algorithm 1. For
dimensions D = 2, 4, . . . , 12 the first 20 JKO transitions are optimized
with lr = 5 · 10−3 and the remaining steps use lr = 2 · 10−3. For
qualitative experiments in D = 13, 32 we perform 50 and 70 JKO
steps with step size h = 0.1. The learning rate setup in these cases is
similar to quantitative experiment setting but has additional stage with
lr = 5 · 10−4 on the final JKO steps. The batch size is N = 512.

A.2 Modeling Ornshtein-Uhlenbeck Processes

Matrices A ∈ RD×D are randomly generated using sklearn.datasets.make_spd_matrix. Vec-
tors b ∈ RD are sampled from standard Gaussian measure. All ICNNs ψθ have w = 64 and we train
each of them for 500 iterations per JKO step with lr = 5 · 10−3 and batch size N = 1024.

A.3 Unnormalized Posterior Sampling Dataset w lr iter batch K

covtype 512 2 · 10−5 104 1024 6
german 512 2 · 10−4 5000 512 5
diabetis 128 5 · 10−5 6000 1024 16
twonorm 512 5 · 10−5 5000 1024 7
ringnorm 512 5 · 10−5 5000 1024 2
banana 128 2 · 10−4 5000 1024 5
splice 512 2 · 10−3 2000 512 5
waveform 512 5 · 10−5 5000 512 2
image 512 5 · 10−5 5000 512 5

Table 4: Hyper-parameters we use in Bayesian logistic
regression experiment.

To remove positiveness constraint on α we
consider [w, log(α)] as the regression model
parameters instead of [w,α]. To learn the
posterior distribution p(x|Strain) we use JKO
step size h = 0.1. Let iter denote the num-
ber of gradient steps over θ per each JKO
step. The used hyper-parameters for each
dataset are summarized in Table 4.

To estimate the log-likelihood and accuracy
of the predictive distribution on Stest based

15

https://github.com/dilinwang820/Stein-Variational-Gradient-Descent

on p(x|Strain), we use straightforward MC
estimate on 212 random parameter samples.

B Nonlinear Filtering Details

For k = 1, 2, . . . we progressively obtain access to samples (and their un-normalized density) from
predictive distribution ptk,X(x|Y1:k) for step k given k observations Y1, . . . , Yk.

First, at each step k, we access ptk,X(x|Y1:k) through ptk−1,X(x|Y1:k−1). To do this, we use our
Algorithm 1 to model a diffusion on [tk−1, tk] with initial distribution ptk−1,X(x|Y1:k−1). We perform
nk JKO steps of size hk = tk−tk−1

nk
and obtain ICNNs ψ(k)

1 , . . . , ψ
(k)
nk (approximately) satisfying

µptk,X(x|Y1:k−1) = [∇ψ(k)
nk
◦ · · · ◦ ∇ψ(k)

1]]µptk−1,X(x|Y1:k−1) (15)

Here µp(·) is the measure with density p(·). We define Bk
def
= ∇ψ(k)

nk ◦ · · · ◦ ∇ψ
(k)
1 .

Let xk ∈ RD and sequentially define xi−1 = B−1
i (xi) for i = k, . . . , 1. We derive

ptk,X(xk|Y1:k)
(14)∝

p(Yk|Xtk = xk) · ptk,X(xk|Y1:k−1)
(15)
=

p(Yk|Xtk = xk) · [det∇Bk(xk−1)]−1 · ptk−1,X(xk−1|Y1:k−1)
(14)∝
. . .

k∏
i=1

p(Yi|Xti = xi) · [
k∏
i=1

det∇Bi(xi−1)]−1 · pt0,X(x0) (16)

where we substitute (14) sequentially for k, k − 1, . . . , 1. As the result, from (16) we obtain the
unnormalized density of predictive distribution ptk,X(xk|Y1:k). To sample from the predictive
distribution (to train the next step k+1) we use Metropolis-Hastings algorithm [57]. For completeness,
we recall the algorithm 2 below. The algorithm builds a chain x(1), x(2), . . . converging to the
distribution given by unnormalized density π(·). As input, the algorithm also takes a family of
proposal distributions qx(·) for x ∈ RD. The value α(·, ·) is called the acceptance probability.

Algorithm 2: Metropolis-Hastings algorithm

Input :Unnormalized density π(·); family of proposal distributions qx(·) (x ∈ RD
Output :Sequence x(1), x(2), x(3), . . . of samples from π
Select x(0) ∈ RD
for j = 1, 2, . . . do

Sample y ∼ qx(j−1) ;

Compute α(x(j−1), y) = min
(

1,
π(y)qy(x(j−1))

π(x(j−1))q
x(j−1) (y)

)
With probability α(x(j−1), y) set x(j) ← y; otherwise set x(j) ← x(j−1)

To sample from ptk,X(xk|Y1:k) we use Algorithm 2 with π equal to unnormalized density (16).
We note that computing π(xk) for xk ∈ RD is not easy since it requires computing pre-images
xk−1, . . . , x0 by inverting Bk, Bk−1, . . . , B1. As the consequence, this makes computation of
acceptance probability α(·, ·) hard. To resolve this issue,we choose special x-independent proposals

q = qx
def
= (Bk ◦Bk−1 ◦ · · · ◦B1)]µp0,X . (17)

In this case, all det terms in α(x, y) vanish simplifying the computation (we write x = xk, y = yk):

π(y)qy(x)

π(x)qx(y)
=
π(y)q(x)

π(x)q(y)
=

16

p0,X(y0)
k∏
i=1

pti,Y (Yi|Xti = yi)
k∏
i=1

det∇Bi(xi−1) · p0,X(x0)
k∏
i=1

det∇Bi(yi−1)

p0,X(x0)
k∏
i=1

pti,Y (Yi|Xti = xi)
k∏
i=1

det∇Bi(yi−1) · p0,X(y0)
k∏
i=1

det∇Bi(xi−1)

=

k∏
i=1

pti,Y (Yi|Xti = yi)

k∏
i=1

pti,Y (Yi|Xti = xi)

(18)

To compute (18) one needs to know preimages xk−1, . . . , x0 and yk−1, . . . , y0 of points y = yk and
x = xk respectively. They can be straightforwardly computed when sampling from q happens (17).

Experimental details. To obtain the noise observations Yk = Xtk + vk from the process, we
simulate a particle X0 randomly sampled from the initial measureN (0, 1) by using Euler-Maruyama
method to obtain the trajectory Xt. At observation times t1 = 0.5, . . . , t9 = 4.5 we add random
noise vk ∼ N (0, 1) to obtain observations Y1, . . . , Y9.

We utilize Chang and Cooper [19] numerical integration method to compute true p(Xtfin |Y1:9).
We construct regular fine grid on the segment [−5, 5] with 2000 points and numerically solve the
SDE with timestep dt = 10−3. At observation times tk, k ∈ 1, . . . 9 we multiply the obtained
probability density function ptk,X(x|Y1:k−1) by the density of the normal distribution p(Yk|Xtk = x)
estimated at the grid which results in unnormalized ptk,X(x|Y1:k). After normalization on the grid,
ptk,X(x|Y1:k) can be used in the new diffusion round on time interval [tk, tk+1]. At final time tfin we
estimate SymKL between the true distribution and ones obtained via other competitive methods by
numerically integrating (12) on the grid.

We implement bBBFe following the original article [27]. Particle propagation performed via Euler-
Maruyama method with timestep dt = 10−3. The final distribution p(Xtfin |Y1:9) is estimated using
kernel density estimator as described in Appendix A.

For bDual JKOe we use the code provided by the authors with the default hyper-parameters.

In our method, we use JKO step size h = 0.1 and model it by ICNN with width w = 256. Each JKO
step takes 700 optimization iterations with lr = 5 · 10−3 and batch size N = 1024. At observation
times tk, k ∈ 1, 2, . . . 9 we use the Metropolis-Hastings algorithm 2 with acceptance probability α
calculated by (18). Starting from the randomly sampled x(1) we skip the first 1000 values of the
Markov Chain generated by the algorithm which allows the series to converge to the distribution
of interest ptk,X(x|Y1:k). We take each second element from the chain in order to decorrelate the
samples. To simultaneously sample the batch of size N , we run N chains in parallel. To compute
SymKL, we normalize the resulting distribution p(Xtfin |Y1:9) on the Chang-Cooper support grid.

C Additional Experiments

In Figure 5, we compare the true distribution ρt with the predicted distribution via the competitive
methods when modelling Ornstein-Uhlenbeck processes (M4.2). The comparison is given for time
t = 0.1, 0.2, . . . , 1.0.

17

2 4 6 8 10 12
D, dimension

4

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(a) Time t = 0.1

2 4 6 8 10 12
D, dimension

4

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(b) Time t = 0.2

2 4 6 8 10 12
D, dimension

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(c) Time t = 0.3

2 4 6 8 10 12
D, dimension

3

2

1

0

1

2

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(d) Time t = 0.4

2 4 6 8 10 12
D, dimension

3

2

1

0

1

2

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(e) Time t = 0.5

2 4 6 8 10 12
D, dimension

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(f) Time t = 0.6

2 4 6 8 10 12
D, dimension

4

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(g) Time t = 0.7

2 4 6 8 10 12
D, dimension

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(h) Time t = 0.8

2 4 6 8 10 12
D, dimension

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(i) Time t = 0.9

2 4 6 8 10 12
D, dimension

3

2

1

0

1

lo
g 1

0S
ym

KL

[Dual JKO]
[EM] 1K
[EM] 10K

[EM] 50K
[EM PR] 10K
Ours

(j) Time t = 1.0

Figure 5: SymKL values between the computed measures and the true measure at t = 0.1, 0.2, . . . , 1
in dimensions D = 1, 2, . . . 12. Best viewed in color.

18

	Experimental Details
	Converging to Stationary Distribution
	Modeling Ornshtein-Uhlenbeck Processes
	Unnormalized Posterior Sampling

	Nonlinear Filtering Details
	Additional Experiments

