Balancing Pipeline Parallelism with Vocabulary Parallelism

A QUANTITATIVE ANALYSIS OF
VOCABULARY LAYERS

Following the calculations of Narayanan et al. (2021) and
neglecting insignificant terms, we present the computational
and memory expenses in relation to a single transformer
layer in Table 4. In this table we denote the microbatch
size as b, sequence length as s, hidden dimension as h and
vocabulary size as V. It is worth noting that the activation
memory is excluded from this analysis, as it typically has a
transient nature for vocabulary layers.

Table 4. Compute and memory cost of vocabulary and transformer
layers

LAYER TYPE CoMPUTE FLOPS PARAM MEMORY
TRANSFORMER bsh(72h + 12s) 24h?
INPUT 3bsh 2hV
OUTPUT 6bshV 2hV

B MORE ANALYSIS OF INTERLACED
PIPELINE

B.1 Memory Analysis

One concern of interlaced pipeline is that the peak activation
memory of 1F1B is raised to 1.5 times of its original value.
This increase in memory consumption can be analyzed using
the framework introduced in Qi et al. (2024). As shown in
Figure 15, the interlaced schedule enlarges the lifespan of
1F1B’s building block from 3p to approximately 4.5p where
p is the number of devices, resulting in 1.5x peak activation
memory consumption.

Lifespan

(a) Building block of 1F1B

Lifespan

B

(b) Building block of interlaced pipeline parallel. The red vertical
lines indicate synchronization introduced by TP of vocabulary
layers.

Figure 15. Comparison between building blocks of 1F1B and In-
terlaced PP.

B.2 Overhead of Tensor Parallel Communication

In practice, tensor parallel is only used for intra-node par-
allelism due to its high communication volume. The inter-
laced pipeline has introduced a tensor parallel style paral-
lelization for the vocabulary layers, which creates additional
pipeline bubbles for each microbatch during the tensor par-
allel communication. To quantify the size of the bubbles, we
conduct an ablation study by training a 21.5B model using
32 GPUs. We remove the synchronous all-reduce communi-
cations in the vocabulary layers, and measure the speedup
in end-to-end iteration time. Note that the all-reduce com-
munications that are overlapped with the computation are
still kept.

By removing the synchronous all-reduce communications,
the end-to-end iteration time improved by 10.95%. This
shows that the synchronous all-reduce communications con-
tributed to approximately 11% of the idle time when training
using an interlaced pipeline. We conclude that the interlaced
pipeline is undesirable for multi-node training.

C VOCABULARY PARALLELISM FOR THE
INPUT LAYER

While the output layers involve complex dependencies and
communications, input layer computation can be completed
independently before and after the transformer layer passes.
The only required communications are an all-reduce com-
munication after the forward pass, and a broadcast commu-
nication before the backward pass. These communications
can be overlapped with the transformer layer computation,
and can be scheduled well-ahead or after.

We schedule the input layer passes as follows:

* During the warm-up forward passes, we insert the in-
put layer forward pass one microbatch before the first
transformer layer forward pass. This allows time for
gathering the input layer outputs.

* In the stable phase, we piggyback the input layer for-
ward pass with the output layer passes, scheduled as
least one repeating interval beforehand. Similarly, the
input layer backward passes are piggybacked at least
one repeating interval afterwards, allowing enough
time to broadcast the output gradient to all devices.

* During the cool-down backward passes, we insert the
input layer backward pass one microbatch after the last
transformer layer backward pass.

This schedule ensures that each device is holding the input
layer outputs for at most two microbatches at any instant,
reducing the memory pressure.

Balancing Pipeline Parallelism with Vocabulary Parallelism

D V-Half PIPELINE SCHEDULING

Following the scheduling methodology in section 5.2, we
show the building block for the V-Half schedule in Figure
16.

. Interval1 . Interval2
s Lt o "
s T s i T
s T B I
S T B w

Figure 16. Modified building block for the V-Half schedule.

E CORRECTNESS EVALUATION

Our implementation is based on the open-source Megatron-
LM project (Narayanan et al., 2021). We compare the con-
vergence curves of our implementation to that of the original
Megatron-LM codebase to verify our implementation’s cor-
rectness. The configurations follow the 4B model in section
6.2 with a vocabulary size of 256K, trained with 8 GPUs.
Additionally, we verify that our implementation also works
correctly with tensor parallelism, by using a pipeline parallel
size of 4 and a tensor parallel size of 2.

The convergence curves are shown in Figure 17. It is shown
that our implementation maintains correctness, albeit with
some small numerical differences.

PP =28 TP =2 PP=4
T : : - - - - -
1 —— Original | Original
12 7;. Vocab Parallel || 12 || Vocab Parallel ||
10 - 4 10t R
n
K
8 8 8 8
sl T, e i 6l g, —— i
Il Il Il Il Il V\ Il Il Il Il Il 4‘\
0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step

Figure 17. Convergence curves of our implementation against the
original Megatron-LM codebase

F DETAILED EXPERIMENT DATA

For Sections 6.3 and 6.4, we present the detailed experi-
mental data in Tables 5 and 6 respectively. The following
metrics are computed:

e MFU: The FLOPs utilization of the training system.
We follow Narayanan et al. (2021)’s derivation to
compute the FLOPs of the model.

* Peak Memory: The maximum peak memory across all
devices.

Balancing Pipeline Parallelism with Vocabulary Parallelism

Table 5. Comparison of Methods on 1F1B.

MFU (%) PEAK MEMORY (GB)
SETUP METHOD | 350 64k 128k 256K | 32K 64k 128K 256K
BASELINE 46.16 40.48 33.11 2523 | 14.86 16.32 19.25 25.64
REDIS 46.01 4637 4422 3891 | 1486 1632 19.25 25.64
8GPU, SEQ LENGTH 2048 | VOCAB-1 | 50.42 5028 49.93 50.12 | 15.63 16.02 16.84 18.59
VOCAB-2 | 5023 50.18 49.82 49.69 | 14.83 1523 16.04 17.78
INTERLACED | 51.18 50.94 50.97 50.92 | 17.20 17.57 18.43 20.17
BASELINE | 47.05 4187 35.00 2675 | 21.39 22.85 2578 31.64
REDIS 46.93 4678 47.44 43.01 | 21.39 22.85 2578 31.64
8GPU, SEQ LENGTH 4096 | VOCAB-1 | 50.98 50.98 50.83 50.66 | 24.04 24.47 25.41 27.34
VOCAB-2 | 50.93 5075 50.56 50.40 | 22.44 22.89 23.80 25.73
INTERLACED | 51.41 51.82 51.32 5138 | 27.20 27.64 28.60 30.53
BASELINE | 45.66 40.09 32.44 2421 | 24.03 2598 2992 38.71
REDIS 4556 42.82 38.65 36.98 | 24.03 2598 2992 3871
16GPU, SEQ LENGTH 2048 | VOCAB-1 | 49.02 50.62 50.54 50.66 | 24.37 24.63 25.14 2626
VOCAB-2 | 48.90 5049 5046 50.46 | 23.57 23.83 24.35 25.47
INTERLACED | 48.94 48.97 49.19 49.52 | 29.23 29.47 29.97 31.10
BASELINE | 47.56 4121 33.88 2533 | 36.99 3894 4285 50.90
REDIS 4741 43.07 43.15 4015 | 36.99 38.94 42.85 50.90
16GPU, SEQ LENGTH 4096 | Vocas-1 | 5093 50.97 5071 51.22 | 39.46 39.73 4031 41.53
VOcAB-2 | 50.97 50.80 50.68 5090 | 37.89 38.18 38.77 39.92
INTERLACED | 49.52 49.53 4977 49.84 | 49.16 49.44 50.05 51.28
BASELINE | 42.81 37.28 28.97 2086 | 33.45 35.89 41.17 52.16
REDIS 4348 3729 3632 29.16 | 33.45 3589 41.17 52.16
32GPU, SEQ LENGTH 2048 | VOCAB-1 | 45.85 45.92 45.90 46.11 | 33.38 33.55 33.86 34.51
VOCAB-2 | 45.54 45.86 45.86 46.16 | 32.72 32.88 33.20 33.84
INTERLACED | 42.40 42.43 4275 4325 | 42.94 43.09 43.40 44.07
BASELINE | 43.68 38.11 30.05 21.63 | 54.97 5741 6229 73.05
REDIS 44.01 38.12 37.87 31.03 | 54.97 57.41 6229 73.05
32GPU, SEQ LENGTH 4096 VocaB-1 46.41 46.44 46.68 46.83 | 57.41 57.56 57.88 58.58
VOCAB-2 | 46.23 4635 46.55 46.84 | 56.09 56.26 56.61 57.31
INTERLACED - - - - - - - -
Table 6. Comparison of Methods on V-Half.
MFU (%) PEAK MEMORY (GB)
SETUP METHOD | 3, g4k 128k 256K | 32k 64K 128K 256K
BASELINE | 4641 38.52 2875 19.99 | 1557 19.77 28.55 46.77
16GPU. SEQLENGTH 2048 | yo0up.1 | 52.82 5311 53.41 52.89 | 13.20 13.46 13.98 15.02
BASELINE | 50.01 41.17 3136 21.90 | 21.22 2561 34.56 53.11
16GPU. SEQLENGTHA096 | 'yocxp | | 58.69 58.56 58.44 57.59 | 20.14 20.41 20.96 22.06
BASELINE | 51.07 43.13 3238 22.54 | 23.94 29.12 3998 61.71
24GPU. SEQLENGTH2048 | yocap-1 | 5670 56.50 55.72 54.86 | 21.08 2129 21.72 22.57
BASELINE | 54.53 4506 34.99 2431 | 33.60 3897 49.90 72.60
24GPU, SEQ LENGTHA096 | Gooap 1 | 60.09 60.09 59.42 58.22 | 32.55 3278 33.22 34.12
BASELINE | 52.80 4556 3569 - | 34.11 4028 5322 -
32GPU, SEQLENGTH 2048 | G oap 1 | 5770 57.62 57.69 57.80 | 30.85 31.04 31.42 32.18
BASELINE | 56.06 48.17 37.85 - | 48.84 5519 68.12 -
32GPU, SEQ LENGTHA096 | Goap 1 | 60.10 60.14 6072 59.82 | 47.99 48.19 48.59 49.38

Balancing Pipeline Parallelism with Vocabulary Parallelism

G ARTIFACT APPENDIX
G.1 Abstract

This section will outline the setup and experimental work-
flow of Balancing Pipeline Parallelism with Vocabulary
Parallelism conducted on a single server equipped with 8
A100 GPUs.

G.2 Artifact check-list (meta-information)

* Algorithm: Vocabulary Parallelism, Online Softmax
* Program: Not used

¢ Compilation:
container

Nvidia nvee version 12.4, already in the

» Transformations: Not used

e Binary: will be compiled on a target platform

* Data set: Customized C4 hosted in Huggingface
* Binary: will be compiled on a target platform.

¢ Run-time environment: Ubuntu 20.04.6. Needs docker.
Requires root.

* Hardware: Server with 8 Nvidia A100 GPUs 80GB HBM.
* Run-time state: Server is idle.

* Execution: Takes at least 4 hours to complete.

* Metrics: Peak Memory, MFU

* Output: The data printed on console. The output of Quick
Experiment is the key result.

» Experiments: Elaborated in the Installation and Experiment
workflow sections.

* How much disk space required (approximately)?: 30 GB

* How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

* How much time is needed to complete experiments (ap-
proximately)?: 4 hours

* Publicly available?: Yes

* Code licenses (if publicly available)?: Apache License

Data licenses (if publicly available)?: odc-by
¢ Workflow framework used?: No
Archived (provide DOI)?:

G.3 Description
This experiment consists of 2 parts:
* Quick Experiment to quickly verify the result on a
specific case.
¢ Full Experiment to run all cases on an 8-GPU server.
The Full Experiment employs the settings in table 7 same
as the paper. The Quick Experiment focuses on a specific

case where the sequence length is 4096 and the vocabulary
size is 256k. We use Megatron-LM on which all methods

are implemented to run training benchmarks.

Table 7. Artifact Settings used in experiments on 1F1B schedule.

PIPELINES (GPUs) 8
MODEL SIZE ~ 4B
LAYERS 32
ATTENTION HEADS 24
HIDDEN SIZE 3072
SEQUENCE LENGTH 2048 / 4096
MICROBATCH SIZE 1
NUMBER OF MICROBATCHES 128

VOCABULARY SIZE 32K/ 64K/ 128K /256K

G.3.1 How delivered

The code locates on https://github.com/
sail-sg/VocabularyParallelism. The dataset
will be automatically downloaded in experiment scripts.

G.3.2 Hardware dependencies

The tests should be conducted in a server with 8 Nvidia
A100 GPUs, 80GB HBM.

G.3.3 Software dependencies
* CUDA Driver Version: 535.54.03
* CUDA Version 12.2
* Docker

¢ NVIDIA Container Toolkit

G.3.4 Data sets

The dataset is customized from C4 hosted in Huggingface
https://huggingface.co/datasets/
mtyeung/vocab_parallel_ sample_dataset
supporting various sequence length. It will be automatically
downloaded in experiment scripts.

G.4 Installation

Run a container:

docker run —--name vocab_torch24 \
-—network=host -d \
—-runtime=nvidia --gpus all \
——ipc=host --ulimit memlock=-1 --ulimit
stack=67108864 \
——privileged=true \
nvcr.io/nvidia/pytorch:24.03-py3 sleep
infinity

https://github.com/sail-sg/VocabularyParallelism
https://github.com/sail-sg/VocabularyParallelism
https://github.com/sail-sg/VocabularyParallelism
https://github.com/sail-sg/VocabularyParallelism
https://huggingface.co/datasets/mtyeung/vocab_parallel_sample_dataset
https://huggingface.co/datasets/mtyeung/vocab_parallel_sample_dataset
https://huggingface.co/datasets/mtyeung/vocab_parallel_sample_dataset
https://huggingface.co/datasets/mtyeung/vocab_parallel_sample_dataset
https://huggingface.co/datasets/mtyeung/vocab_parallel_sample_dataset

Balancing Pipeline Parallelism with Vocabulary Parallelism

Get inside the container, and clone the codes:

Enter the container

docker exec -1t vocab_torch24 bash

Clone the codes

git clone https://github.com/sail-sg/
VocabularyParallelism.git

cd VocabularyParallelism

Note that all the following commands should be run inside
the VocabularyParallelism directory.

G.5 Experiment workflow

G.5.1 Quick Experiment

The quick experiment runs all the methods (baseline, redis,
interlaced, vocab-1, vocab-2) on a specific setting in the

paper:
» Sequence Length: 4096
* Vocabulary Size: 256k

The experiment will show 2 key results:

¢ Peak Memory
« MFU

Run all the methods one by one:

bash artifact/quick_exp.sh run baseline
bash artifact/quick_exp.sh run redis

bash artifact/quick_exp.sh run interlaced
bash artifact/quick_exp.sh run vocab-1
bash artifact/quick_exp.sh run vocab-2

This will automatically download the dataset
from huggingface and run the training experi-
ments. The log containing the result will locate in
quick-logs/<method>/stdout.log. Each
method should take around 6 minutes to complete.

Then run this to collect the results:

bash artifact/quick_exp.sh show-result

G.5.2 Full Experiment

This will run all experiments on a single server with 8 A100
GPUs.

The whole experiment will take around 3 hours to complete.

bash artifact/full_exp.sh artifact/
exp_one_host.csv

Print results:

python artifact/show_result_full_exp.py

G.6 Evaluation and expected result

The output of Quick Experiment should show similar
result as

https://github.com/sail-sg/
VocabularyParallelism/blob/main/artifact/
example-results/quick-exp.txt

The expected output of Full Experiment is located in
https://github.com/sail-sg/
VocabularyParallelism/blob/main/artifact/
example-results/full-exp.txt

The result should also roughly match the 2 rows in Table 5.
Comparison of Methods on 1F1B in the paper:

* 8GPU, SEQ LENGTH 2048
* 8GPU, SEQ LENGTH 4096

The result shows that the throughput and peak memory of
vocab-1 and vocab-2 are significantly better than baseline
and redistribution. The throughput of interlaced is slightly
better than vocab-1 and vocab-2. But the peak memory of
interlaced is worse than our approach.

G.7 Experiment customization

User can customize the settings by changing the scripts
quick_exp.sh, full_exp.sh, show_result_full_exp.py under un-
der artifact/.

https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/quick-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/quick-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/quick-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/quick-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/quick-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/quick-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/full-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/full-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/full-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/full-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/full-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/example-results/full-exp.txt
https://github.com/sail-sg/VocabularyParallelism/blob/main/artifact/

