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Abstract
Retrieval-augmented language models such as
Fusion-in-Decoder are powerful, setting the state
of the art on a variety of knowledge-intensive
tasks. However, they are also expensive, due to
the need to encode a large number of retrieved
passages. Some work avoids this cost by pre-
encoding a text corpus into a memory and retriev-
ing dense representations directly. However, pre-
encoding memory incurs a severe quality penalty
as the memory representations are not conditioned
on the current input. We propose LUMEN, a hy-
brid between these two extremes, pre-computing
the majority of the retrieval representation and
completing the encoding on the fly using a live
encoder that is conditioned on the question and
fine-tuned for the task. We show that LUMEN
significantly outperforms pure memory on multi-
ple question-answering tasks while being much
cheaper than FiD, and outperforms both for any
given compute budget. Moreover, the advantage
of LUMEN over FiD increases with model size.

1. Introduction
Retrieval-augmented language models such as Fusion-in-
Decoder (Izacard & Grave, 2021) achieve strong perfor-
mance on knowledge intensive tasks, often outperforming
much larger models (Izacard et al., 2022). They retrieve
related text passages and process the passages along with
the input to extract relevant context information. However,
encoding retrieved passages can be computationally expen-
sive. Recent work has found that with an optimized decoder
(Shazeer, 2019; de Jong et al., 2022a; Pope et al., 2022)
encoding retrieved passages makes up the bulk of total cost
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Figure 1. Exact match on Natural Questions dev set for LUMEN-
XXL as a function of proportion of live (fine-tuned and conditioned
on question) vs memory (pre-computed) encoder layers. LUMEN

closes the gap between pure memory and FiD approaches with a
fraction of live layers and therefore compute.

for finetuning and inference.

An increasingly common approach to reduce this encoding
cost is to retrieve and extract information from a memory
of pre-computed representations rather than raw text, amor-
tizing the encoding of a passage over every sample that
retrieves the passage entry from memory (Li et al., 2022;
de Jong et al., 2022b; Wu et al., 2022a; Zhong et al., 2022;
Chen et al., 2022; Wu et al., 2022b).1

However, memory approaches incur a large quality penalty
relative to retrieval-augmented models (Li et al., 2022), be-
cause the pre-encoded memory is not conditioned on the
task or on the particular input or question. Thus, the pre-
encoded representation must be sufficiently comprehensive
to answer any question, a challenging undertaking. The
human analogue is the difference between memorizing an
entire book and being quizzed afterwards compared to look-
ing up the answer to a question on the fly.

Memory-based approaches therefore need to massively scale

1Here we do not refer to pre-computing representations used
to select passages for retrieval (as is common practice for dense
retrieval methods), but rather pre-computing the actual representa-
tions to be retrieved and incorporated into the language model.
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Figure 2. Overview of the LUMEN architecture. Before fine-tuning, each passage in the corpus is encoded by a memory encoder. While
processing a sample, a question encoder first generates a representation of the question, which is then separately concatenated with each
pre-computed passage representation. A fine-tuned live encoder then updates the passage representations conditioning on the question,
which are finally fed into the decoder as in standard FiD. Frozen components are in orange, fine-tuned components in blue.

model size in order to achieve comparable performance. As
we will show, this leads to higher overall net FLOPs due
to cross-attention and decoding, as well as impractical in-
creases in pre-training, pre-computation, and storage costs.

We propose LUMEN (Live Update Memory Network), a mid-
dle ground between retrieval and memory. LUMEN divides
the task of encoding passages between a frozen memory
encoder that pre-computes passage memory representations,
and a fine-tuned live encoder that updates the memory repre-
sentations conditioned on the question. Figure 2 provides a
detailed overview of the architecture. As can be seen in Fig-
ure 1, a small proportion of live layers can already achieve
performance close to standard Fusion-in-Decoder.

We start with a set of experiments initializing LUMEN from
T5, partitioning the standard T5 encoder into a memory and
live encoder. We evaluate on question-answering datasets
Natural Questions (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017). LUMEN achieves significantly
stronger performance than FiD and FiD with memory given
the same computational budget, and the advantage increases
with model size. At T5-XXL size LUMEN performs com-
parably to FiD with only one third proportion of live layers
and FLOPs.

Next, we experiment with improvements to the standard
LUMEN setup, showing that the performance-compute trade-
off can be further improved relative to FiD by transferring
a trained memory and live encoder from a related task. In
particular, we find that transfer from Natural Questions
can close most of the gap in performance between LUMEN
and FiD with smaller live encoders or on small datasets.
Ultimately, LUMEN represents a desirable trade-off between
retrieval and memory-based approaches, achieving better

performance for any given computational budget.

2. Background
We are interested in achieving the best possible performance
for any given resource budget. However, there are different
types of computational resources, and varying algorithmic
approaches yield distinct trade-offs between those resources.
In this section we provide background on existing retrieval-
augmented models and describe the costs of those models
along different computational dimensions.

2.1. Computational resources for retrieval-augmented
models

The usual life-cycle of current models starts with pre-
training, followed by fine-tuning on multiple tasks. Finally,
the model is used for inference, either online or for batch
distillation to a smaller model. Each of these stages features
a different cost per sample. Let Npt , Nft and NI be the
number of processed samples for pre-training, fine-tuning
and inference, and Fpt , Fft and FI the compute cost per
sample for each stage, measured in FLOPs (floating point
operations). Then the compute costs for the model are

FLOPspre-train = NptFpt

FLOPsfine-tune = NftFft · number of tasks
FLOPsinference = NIFI

The methods proposed in this paper are agnostic to the
method used to select retrieved passages, so we do not
consider retrieval method in our comparison of computa-
tional cost. While FiD inference can be slower than what
FLOPs would indicate due to decoder memory bandwidth
constraints (Hofstätter et al., 2022; de Jong et al., 2022a),
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Figure 3. MAIN RESULT: LUMEN achieves performance close to FiD with fraction of live layers. The required fraction decreases
with scale. Exact match on Natural Questions (NaturalQ) and TriviaQA validation sets as a function of proportion of live encoder layers
for LUMEN Base, Large, XL, and XXL models.

modifying the decoder mitigates the gap (de Jong et al.,
2022a). Hence, we use FLOPs our measure of computation
cost in line with related work (Yu et al., 2022a; Varshney
et al., 2022). Appendix B contains additional evidence on
the relationship between FLOPs and latency.

For retrieval-augmented models there are additional costs.
The retrieval set must be stored and retrievals transmitted
to the accelerator. There may also be preprocessing over-
head for the retrieval set, such as pre-computing memory
representations. Let Nrs be the size of the retrieval set and
Fpc the FLOPs associated with preprocessing a retrieval
candidate. Then storage requirements and pre-computaton
costs are given by

Storage = Corpus size · Size of a single sample
FLOPsprecompute = Corpus size · Fprecompute

If retrieval representations are fine-tuned, then a different
version of the retrieval set must be pre-computed and stored
for each task. Required bandwidth for transmission is deter-
mined by the product of the number and size of retrieved
representations.

2.2. Fusion-in-Decoder

Fusion-in-Decoder (Izacard & Grave, 2021) consists of a
T5 encoder-decoder model. For each input, a number of rel-
evant text passages are retrieved, and the input is prepended
to each passage. The resulting passages are encoded sepa-
rately by the encoder, and the encoded representations are
then concatenated and attended to by the decoder to produce
a target output. For each model, fine-tuned components are
in blue and frozen components in orange.

G = Dec
[
Enc(Q;Passage1); . . .Enc(Q;Passagek)

]

Let ns be the number of source tokens, nt the number of
target tokens, L the number of layers, and d the dimension
of the model. Following the analysis from de Jong et al.
(2022a), the FLOPs for a single inference sample of FiD
(ignoring attention score computation) is given by2

FI = ns · L · 14d2︸ ︷︷ ︸
Encoder and cross-attention

+nt · L · 14d2︸ ︷︷ ︸
Decoder

Appendix A discusses the derivation of this complexity in
greater detail. Fpt and Fft equal 3FI due to the backward
step. For fine-tuning and inference ns � nt because of
the large number of tokens from the retrieved passages. As
such, FiD’s fine-tuning and inference FLOPs per sample
are significantly higher than for pre-training. In contrast,
storage and bandwidth requirements are low as the retrieval
set consists of passages of raw tokens. FiD has no pre-
computation costs.

2.3. Memory

An increasing number of works reduce the cost of retrieval-
augmented models by pre-computing dense representations
of retrieval candidates and storing them in a memory. One
such work modifies FiD by pre-computing passage encoder
representations and providing the input as a prefix to the
decoder (Li et al., 2022). We refer it as MemoryFiD:

G = Dec
[
Q;MemEnc(Passage1); ..MemEnc(Passagek)

]
MemoryFiD saves fine-tuning and inference compute at the
expense of increased pre-computation, storage, and band-

2We approximate the FLOPS of the MLP block as 8d2, the
FLOPs from the original Transformer MLP. The T5 MLP has
dimension between 2.5d and 3d and three matrix multiplication
operations including GEGLU, yielding total FLOPs close to 8d.
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Figure 4. MAIN RESULT: LUMEN uses significantly less compute than FiD for the same performance, and this advantage grows
with scale. TFLOPs as a function of exact match on Natural Questions (NaturalQ) and TriviaQA test sets. FLOPs are for single forward
step and exclude pre-computation. Compares FiD and LUMEN with live proportion 0.33 Large, XL and XXL models. Lower is better.

width requirements. Because MemoryFiD does not encode
retrieved passages on the fly, encoder costs are removed and
only cross-attention and other decoder compute are left:

FI = ns · L · 2d2︸ ︷︷ ︸
Cross-attention

+nt · L · 14d2︸ ︷︷ ︸
Decoder

Instead, it pre-computes passage representations, using

FLOPsprecompute = Corpus size · npL · 12d2

where np is the number of tokens in a single passage. Memo-
ryFiD stores the final layer representations for each passage
token, taking up

Storage = Corpus size · 2npd

To give an indication of the storage overhead, applying
MemoryFiD-XXL to Wikipedia requires approximately 16
terabytes. Holding model size fixed, MemoryFiD saves
compute as long as the retrieval corpus is not too large rel-
ative to the number of samples processed for fine-tuning
and inference. However, as passage representations are not
conditioned on the question, MemoryFiD incurs a signif-
icant performance penalty relative to normal FiD. There-
fore, in order to reach equivalent performance to standard
FiD, MemoryFiD must use a much larger model, which
incurs much larger cross-attention, decoder, pre-training,
pre-computation, storage and bandwidth costs. Li et al.
(2022) also fine-tune the memory encoder, which requires
pre-computing and storing a separate memory for each task.
This is intractable for real applications involving internet-
sized corpora, so for our main results we assume the memory
is pre-computed from a single model without fine-tuning
on individual tasks. Without fine-tuning, the performance
penalty is even higher. Figure 8 shows the effect of fine-
tuning memory; LUMEN results are qualitatively similar in
that setting.

Table 1. Model FLOPs per layer and storage bytes per token for
FiD, MemoryFiD and LUMEN.

Model FLOPs Storage

FID 14nsd
2 + 14ntd

2 10
MEMFID 2nsd

2 + 14ntd
2 2d

LUMEN (2 + 12α)nsd
2 + 14ntd

2 2d

3. LUMEN

Intuitively when reading a passage it is helpful to know
what information is needed and for what purpose. For
Fusion-in-Decoder, this is achieved by prepending the input
to retrieved passages and fine-tuning the passage encoder,
whereas MemoryFiD does not enjoy such an advantage.
With LUMEN, we explore the possibility that a similar ef-
fect can be achieved by a two-step process, in which a
large model generates a general representation for each pas-
sage that can be placed in memory, and a smaller model
transforms this general representation into an input-specific
representation by conditioning on the input and task. Figure
2 provides an overview of the LUMEN architecture.

3.1. Architecture

LUMEN is initialized from a pre-trained T5 encoder-decoder
model. The decoder functions the same as the standard
FiD decoder, but LUMEN features three encoders. The T5
encoder is divided into a large memory encoder which con-
tains the first 1− α proportion of layers, and a smaller live
encoder with the remaining α proportion of layers. The
memory encoder is applied offline to passages in the corpus
to pre-compute memory representations, which are later
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Figure 5. LUMEN achieves much better performance than MemoryFiD at any compute budget. Exact match performance on the
test set of Natural Questions as a function of TFLOPs per sample comparing LUMEN 1/3 Base, Large and XL models with MemoryFiD
Large, XL, and XXL models. FLOPs are for single forward step and exclude pre-computation. Note that axes are transposed relative to
Figure 4 as MemoryFiD requires too much compute to match LUMEN performance.

updated conditioned on input and task on the fly by the
fine-tuned live encoder. In order to ensure that memory
representations and input are compatible, LUMEN applies a
question encoder to the input before prepending the ques-
tion representation to the memory representation. The ques-
tion encoder shares its structure and initial weights with the
memory encoder, but is fine-tuned.

G = Dec
[
Q;LiveEnc(H1); . . .LiveEnc(Hk)

]
Hi =

[
QEnc(Q); MemEnc(Passagei)

]
Choosing α = 0 recovers MemoryFiD, while α = 1 yields
a model very close to FiD.

3.2. Computational analysis

During fine-tuning and inference LUMEN applies only a
proportion α of the layers, leading to a fraction α of FiD
reader FLOPs for any given model size.

FI = ns · αL · 12d2︸ ︷︷ ︸
Encoder

+ns · L · 2d2︸ ︷︷ ︸
Cross-attention

+nt · L · 14d2︸ ︷︷ ︸
Decoder

Pre-computation costs at the same model size are a factor
1− α of MemoryFiD pre-computation costs (without fine-
tuning the memory encoder). Storage and bandwidth costs
are the same as for MemoryFiD (at same model size and
without fine-tuning the memory encoder). Table 1 shows
a comparison of FLOPs and storage requirements of FiD,
MemoryFiD and LUMEN. As we will show, LUMEN can
match FiD performance with only a modest increase in size,
leading to a large decrease in computational cost without the
commensurate increases in pre-training, pre-computation,
and storage requirements incurred with MemoryFiD.

4. Experiments
4.1. Experiment Setup

Training procedure All experiments use models based
on the T5.1.1 architecture (Raffel et al., 2020). The main
experiments use models initialized from the public T5 check-
points (Google, 2022). FiD is trained according to the stan-
dard recipe (Izacard & Grave, 2021). For LUMEN, given pro-
portion of live layers α, the memory encoder and question
encoder are each initialized with the first 1 - α proportion of
layers of the T5 encoder, and the live encoder is initialized
with the last α proportion of layers of the T5 encoder.

Models are fine-tuned with the T5X framework (Roberts
et al., 2022) based on JAX (Bradbury et al., 2018) and FLAX
(Heek et al., 2020) using the Adafactor (Shazeer & Stern,
2018) optimizer with batch size 64 and learning rate 0.0001.
Test results are generated from checkpoints with the best
dev results. Experiments in Section 4.4 pre-train models
from scratch. Pre-training follows the standard T5 training
recipe except that we train for 500k steps, and disable the
Adafactor second moment update schedule and factoring.

Data We evaluate LUMEN on open-domain question-
answering datasets Natural Questions (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017), and WebQuestions (Be-
rant et al., 2013) (in Section 4.3). For all datasets, each sam-
ple is paired with the 20 most relevant 100-word Wikipedia
passages ranked by DPR (Karpukhin et al., 2020) score. For
FiD, the concatenated question and passage pairs are trun-
cated to 256 tokens. For LUMEN, the question and passage
are individually truncated to 48 and 208 tokens to provide a
fair comparison, as they are processed separately.
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tween MemoryFiD and FiD closed by LUMEN as a function of
model scale.

4.2. Main results

Figure 3 shows LUMEN performance as a function of live
proportion for varying model sizes. The first key observa-
tion is that a relatively small proportion of live layers is
sufficient to achieve quality close to FiD. The second key
observation is that as the model size increases, the required
live proportion to recover FiD performance decreases. This
pattern is further supported by results from Figure 6, which
explicitly measures how much of the gap between Mem-
oryFiD and FiD is closed by LUMEN and shows this gap
increases with scale.

Figure 4 compares FLOPs as a function of performance
for LUMEN and FiD, demonstrating that LUMEN achieves
similar performance at lower FLOPs for fine-tuning and in-
ference (assuming pre-computation is sufficiently amortized
to be effectively free). Moreover, the advantage becomes
more pronounced with larger model size, consistent with the
findings from Figure 3 and 6. Figure 5 shows that LUMEN
also has much stronger performance than MemoryFiD for
any FLOP value. Finally, Table 3 compares LUMEN with
published results in the literature.

4.3. Transfer

Since the memory encoder is not fine-tuned on each individ-
ual task, the live encoder must adapt the memory represen-
tations to the task in addition to conditioning on the input.
Especially for smaller live encoders, this may be difficult to
learn while fine-tuning on a single task. Here we evaluate
whether LUMEN can benefit from transferring from other
knowledge-intensive tasks.

In particular, we consider two transfer settings. In the Live
setting, we transfer the Live Encoder by training on Natural

Questions with frozen memory before transferring to the
target task. In the Memory setting, the model is trained on
Natural Questions with fine-tuned memory before transfer-
ring both the Live and Memory encoder to the target task.
The Memory setting follows the intuition that, although it
is infeasible to use a different memory for every task, it
may be possible to perform multi-task fine-tuning before
encoding memory.

Figure 7 shows the results of transfer from Natural Ques-
tions to TriviaQA and WebQuestions. We note several in-
teresting patterns. First, gains from transfer are higher for
smaller live proportion, with minimal gains for FiD and
large gains for LUMEN 1/8. Second, transferring memory
is only helpful for small live proportion, where the Live
Encoder does not contain sufficient layers to fully adapt the
memory to the task. Third, gains from transfer are signif-
icantly higher for WebQuestions, a task with a very small
amount of data.

4.4. Memory shape

In our main experiments we initialize LUMEN from public
T5 checkpoints to avoid costly pre-training and partition the
encoder into a memory encoder and live encoder. Can we
achieve a better a trade-off by pre-training a model with a
custom configuration? Fixing the output of the live encoder
to have low model dimension allows us to scale the memory
encoder without using more FLOPs, as the cross-attention
FLOPs are not affected by the size of the memory encoder.
Table 2 shows the effect of adding a memory encoder con-
sisting of 24 additional Base layers to an existing T5-Base
configuration, yielding increasing performance without in-
creasing compute. Taken to an extreme, these results suggest
that combining a large language model with a moderately
sized live encoder could yield strong results at modest cost.

Table 2. Adding memory to FiD leads to significant per-
formance gains without additional fine-tuning or inference
FLOPs. Exact match performance on Natural Questions and Triv-
iaQA for FiD-Base and LUMEN 1/3 with Base decoder and live
encoder, and memory encoder with 24 Base layers.

Model NQ TQA
FiD Base 47.3 64.4
LUMEN Base 24-12 48.9 65.4

4.5. Ablations

The two main differences between FiD, LUMEN, and Mem-
oryFiD are the extent to which retrieved passages are condi-
tioned on the input and the extent to which passage encoders
are fine-tuned on particular tasks. Our first ablation inves-
tigates how performance differences between LUMEN and

6



Pre-computed memory or on-the-fly encoding? A hybrid approach to retrieval augmentation makes the most of your compute

67 68 69 70 71

FiD

L1/3

L1/8 +1.0+1.0

+1.0

TriviaQA

40 42 44 46 48 50

FiD

L1/3

L1/8 +1.4+5.0

0.8+3.6

WebQuestions

Baseline Live Memory

Figure 7. Transferring memory and especially live encoder from a related dataset can partially close the gap with FiD, with
increased gains for lower live proportion and smaller final dataset. Exact match on TriviaQA and WebQuestions dev sets with and
without transfer from Natural Questions for FiD and LUMEN XL models with live proportion 1/3 and 1/8. Live keeps the memory encoder
frozen during training on Natural Questions while Memory also trains the memory on Natural Questions (still frozen after transfer). The
gains from transfer are much more pronounced for smaller live proportion and on WebQuestions, the smaller dataset.

0 0.1 0.2 0.3 0.4 0.5

40

45

50

Live proportion α

E
xa

ct
M

at
ch

NaturalQ

0 0.1 0.2 0.3 0.4 0.5

55

60

65

Live proportion α

TriviaQA

LUMEN Fine-tune memory Condition memory FiD
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MemoryFiD on the one hand and FiD on the other hand
result from conditioning on the input and fine-tuning. We
construct two ablation settings as intermediate models be-
tween LUMEN and FiD: fine-tuning the memory encoder,
and conditioning the memory encoder on the question (but
without fine-tuning it). Figure 8 compares performance as a
function of live proportion for these settings. Neither con-
ditioning memory on the input nor fine-tuning the memory
come close to recovering FiD performance by themselves:
both are necessary. However, it seems that conditioning may
be more helpful by itself than fine-tuning memory.

The LUMEN live encoder jointly processes concatenated
passage and input representations. The decoder therefore
receives passages conditioned on the input as well as the
input on the passage. In order to disentangle these condi-
tioning effects, we experiment with ablations that disallows
question tokens to attend to the passage (“no q2mem”) or

passage tokens to question (“no mem2q”). Figure 9 presents
results that show that conditioning the passage on the input
is critical, although the passage-conditioned question is still
helpful.

Finally, LUMEN also uses a fine-tuned question encoder to
generate a question representation that is optimized for the
live encoder to condition the passage memories on. Figure
10 compares performance between fine-tuning and freez-
ing this question encoder, demonstrating the importance of
adapting the question encoder to the task.

5. Related Work
Retrieval-augmented models There is a significant
amount of research on retrieval-augmented language mod-
els. Some notable approaches include REALM (Guu et al.,
2020), RAG (Lewis et al., 2020), kNN-LM (Khandelwal
et al., 2020), RETRO (Borgeaud et al., 2022), and Fusion-in-

7



Pre-computed memory or on-the-fly encoding? A hybrid approach to retrieval augmentation makes the most of your compute

0 0.2 0.4 0.6 0.8 1

40

45

50

Live proportion α

E
xa

ct
M

at
ch

LUMEN

no q2mem
no mem2q

Figure 9. The primary gains from the live encoder in LUMEN
result from updating memory representations conditioned on
the question. Exact match on Natural Question dev set as a func-
tion of the proportion of live encoder layers for LUMEN-Large and
two modifications with restricted encoder self-attention. In the ‘no
q2mem‘ setting question tokens cannot attend to passage tokens,
and vice versa for ‘no mem2q‘.

0 0.2 0.4 0.6 0.8 1

40

45

50

Live proportion α

E
xa

ct
M

at
ch

LUMEN

Frozen QEncoder
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as a function of the proportion of live encoder layers for LUMEN-
Large and a modification for which the question encoder is frozen
(so that the memory encoder and question encoder are shared).

Decoder (FiD) (Izacard & Grave, 2021). FiD in particular
has demonstrated state of the art performance across a range
of tasks (Izacard & Grave, 2021; Izacard et al., 2022; Yu
et al., 2022b). This work focuses on improving the efficiency
of FiD through a hybrid memory approach.

Efficient retrieval-augmented models Retrieval aug-
mentation can be expensive for training and inference, and
a large body of work investigates more efficient retrieval-
augmented models. The computational cost of retrieval-
augmented models can be partitioned into the cost from
reading retrieved passages, decoding, and long-range atten-
tion. Recent work has shown that FiD spends the majority of
inference time in the decoder (Hofstätter et al., 2022) due to
memory bandwidth constraints in cross-attention (de Jong
et al., 2022a). However, with the appropriate modifica-
tions (de Jong et al., 2022a) the constraint can be amelio-

Table 3. Comparison of LUMEN with published results on Natural
Questions and TriviaQA test sets. We focus on comparing with
FiD as other works enhance performance with improved retrieval
(such as ATLAS), which is orthogonal and complementary to our
contributions. LUMEN is agnostic to retrieval method, and can be
used with ATLAS retrieval.

Model NQ TQA
REALM (Guu et al., 2020) 40.4 -
RAG (Lewis et al., 2020) 44.5 56.8
RETRO (Borgeaud et al., 2022) 45.5 -
T5-XXL (Roberts et al., 2020) 35.2 51.9
ATLAS (Izacard et al., 2022) 60.4 79.8

FiD-L (Izacard & Grave, 2021) 51.4 67.6
FiD-XXL (ours) 57.3 73.0
LUMEN-XXL 57.1 73.1

rated, after which the majority of training and inference
costs result from reading retrieved passages.

The computational burden from encoding retrieved passages
can be reduced by reranking and making use of only the best
retrievals (Yu et al., 2022a; Wang et al., 2018; Mao et al.,
2021). Alternatively, the resources devoted to retrieval can
be adapted to the difficulty of the input, retrieving fewer
or no passages if the model is confident it already knows
the answer (Kratzwald & Feuerriegel, 2018; Varshney et al.,
2022). In order to efficiently model interaction between
different retrieved passages it is common to employ sparse
long-range attention (Guo et al., 2022; Ainslie et al., 2020;
Zemlyanskiy et al., 2021). Finally, there is a large body of
work that attempts to improve the efficiency of Transformer
models in general. Efficient fine-tuning methods (Zaken
et al., 2022; Hu et al., 2022) update only a fraction of param-
eters during fine-tuning, but unlike LUMEN these methods
still employ the full model for inference. Other general
efficiency improvements include parallelization (Pope et al.,
2022), quantization (Dettmers et al., 2022; Zeng et al., 2022),
and distillation (Hinton et al., 2015; Gou et al., 2021).

Memory models LUMEN is most nearly related to the
literature on memory. Another method to reduce encod-
ing cost of retrieval-augmented models is to pre-compute
representations for the retrieval corpus and collect these rep-
resentations into a memory, thereby amortizing the encoding
cost over all the instances for which a sample is retrieved.
In particular, LUMEN is closely connected to Li et al. (2022),
who propose a memory FiD model with pre-computed en-
coder representations. LUMEN can be seen as a hybrid of Li
et al. (2022) and FiD that partially pre-computes encoder
representations for efficiency, and finalizes the encoder rep-
resentations on-the-fly conditioned on question and task to
avoid the strong performance penalty from pre-computation.
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This partial pre-computation is a form of late interaction,
which has previously been used to improve the selection of
retrieved passages (Khattab & Zaharia, 2020; Santhanam
et al., 2022). We instead employ late interaction in the reader
model. Milbauer et al. (2023) also employs late interaction
in the reader model, but in the context of NLI as opposed to
retrieval-augmented generation.

LUMEN uses memory in a straightforward manner, sim-
ply pre-computing token representations from a pre-trained
model and retrieving passages with a standard dense passage
retriever. Other memory models can be more involved, in-
corporating end-to-end retrieval within the model (de Jong
et al., 2022b; Wu et al., 2022a), storing higher-level latent
representations (de Jong et al., 2022b; Chen et al., 2022; Wu
et al., 2022b), and specific pre-training for memory (de Jong
et al., 2022b; Zhong et al., 2022). The main idea behind LU-
MEN to update retrieved memory representations condition-
ing on the input is complementary to and can be combined
with these more complex memory models.

6. Conclusion
Retrieval-augmented language models such as Fusion-in-
Decoder are powerful but expensive. Pre-computing en-
coder representations into dense memory, a popular method
for reducing computation costs of retrieval-augmented mod-
els, leads to a sharp decrease in performance. We propose
LUMEN, a hybrid between Fusion-in-Decoder and dense
memory. Passage representations are partially pre-encoded
into a dense memory, and then reprocessed on the fly by
a fine-tuned encoder that conditions on the question. We
show that LUMEN achieves stronger performance for the
same FLOPs, and that this advantage increases with scale.
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A. Complexity Derivation
Table 1 shows the FLOPs per layer for FiD, MemoryFiD
and LUMEN. We go into more detail on those values here.
For background, we have a source input of length ns, a
target output of length nt, and a model with L layers and
dimensionality d. A linear layer from k to l uses kl FLOPs.

Each Transformer layer consists of an attention layer, a feed-
forward layer, and (in case of the decoder) a cross-attention
layer. Each attention layer performs query, key, value and
output projections, as well as attention score and value com-
putations. The projections map from d to d and use d2
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FLOPs per token, totaling 4d2 per token. The feedforward
layer of a vanilla Transformer maps each token from d to
4d and back, consuming 8d2 FLOPs per token.

The attention score and value computation involve taking
the inner product of nq · nv pairs of vectors of dimension
d, totaling nqnvd FLOPs each. For an FiD encoder layer,
the number of queries is equal to the source length, while
the number of values is equal to the length of each passage
and question (since FiD encodes each passage separately).
Therefore the attention score and value computation total
2nsnpd FLOPs, leading to total encoder layer FLOPs of

12nsd
2 + 2nsnpd

Since retrieved passages are short relative to model dimen-
sion (np << d), especially for larger models, the attention
score computation term is very small and we ignore it in our
estimate. The derivation for the decoder is similar, except for
the presence of cross-attention layers. For cross-attention,
the key and value projections apply to the source input and
the query and output projections apply to the target output.
Therefore, decoder layer FLOPs are given by

12ntd
2 + 2ntd

2 + 2nsd
2 + 2ntnsd

where the attention computation term is again negligible.
Totaling FLOPs from both components, we get FLOPs per
layer of

14nsd
2 + 14ntd

2

Finally, MemoryFiD simply removes the encoder FLOPs,
while LUMEN multiplies encoder FLOPs by live proportion
α, yielding the figures in Table 1.

B. FLOPs vs Latency
Our main experimental results measure computational cost
in terms of FLOPs. However, depending on the model con-
figuration and hardware setting, inference can be slower than
FLOPs would suggest due to memory bandwidth constraints.
In this section we show that LUMEN FLOPs efficiency gains
translate to actual throughput improvements.

We consider two settings. First, we investigate how LU-
MEN affects training speed, as memory bandwidth is pri-
marily a bottleneck for autoregressive inference. Second,
FiDO (de Jong et al., 2022a) showed that the memory band-
width overhead from decoder inference can be drastically
reduced with minimal reduction in quality through layer-
sparse cross-attention or multi-query attention. At the time
of our main experiments we did not have access to T5 check-
points with multi-query attention, but in production LU-
MEN would be deployed with multi-query attention. More-
over, recent work has shown that multi-query checkpoints

can be efficiently obtained from existing multi-head check-
points (Ainslie et al., 2023). Therefore, we report inference
measurements for T5 with multi-query attention.

Figure 11 shows latency as a function of live proportion,
demonstrating that latency varies nearly linearly with the
number of remaining live layers. Figure 12 instead shows
the trade-off between latency and quality, yielding the same
pattern as Figure 1.
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Figure 11. Fine-tuning time per sample for LUMEN-XXL as a function of live proportion.
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Figure 12. Exact match on Natural Questions as a function of inference time per sample for LUMEN-XXL, sweeping over live proportion.
Assumes multi-query for inference measurements.
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