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6 APPENDIX

6.1 NETWORK SPECIFICATIONS, HYPERPARAMETERS

The observation encoder and decoder architectures are taken from Ha & Schmidhuber (2018),
the representation and transition functions are jointly implemented using an RSSM Hafner et al.
(2019b), reward predictor, policy and value are implemented as 3-layer MLPs with 200 hidden units
and ELU activations Clevert et al. (2015). The stochastic component of the hidden state is modeled
as a 30-dimensional diagonalized Gaussian, the deterministic component has 200 components. The
policy outputs actions parametrized by a tanh mean scaled by a factor of 5, the standard deviation
is computed as a softplus deviation of a Gaussian distribution and then transformed via a tanh Hou
et al. (2020)

We draw 50 batches of length 50 on each training iteration. The model, policy and value components
are trained using Adam Kingma & Ba (2014), with learning rates 6 x 1074, 8 x 1075, 8 x 1075,
respectively, and gradient normalization set to 100. On experiments with contrastive augmentation,
the momentum parameter on the contrastive representation was set to @ = 0.95. Images from
the environment were rendered at 80 x 80 pixels and were cropped down to 64 x 64 (images are
rendered at 64 x 64 if no contrastive augmentation is used). We use a latent imagination horizon
of H = 15, the parameters for the discounted V), targets where v = 0.99, A = 0.95. We tested
Ao, € [1.0,0.1,0.01] and A¢ € [1.0,0.1,0.01], with the best performing pair across all experiment
variants being Ay, = Ac0.1.

The prioritized episodic replay buffer is initialized with 5 seed episodes using random actions. The
collection interval was set to C = 100. Exploration noise was drawn from a A/(0, 0.3) distribution.
Action repeat for all environments were set to 2.

6.2 BISIMULATION DISTANCE

We recall from Ferns & Precup (2014) that for any two states s;, s;, and for any ¢ = [0,1), we can
find a bisimulation pseudometric that obeys

d(siys5) = max(l = c)|r(s:) = (s;)ll1 + Wi(p(sis1 | @,8:),p(sj11 | @, ), d)

Where r(s;) is the expected reward of state s;, p(s;+1 | a,s;) is the state transition function, and
Wi =inferpxp) [gy 5 d(siss5)d7 (si, s;) is the Wasserstein-1 metric.

To implement bisimulation metric learning in imagined trajectories, we defined a bisimulation policy
and value function a ~ m,(s;, 55), Vi (]s;—s;|) that operate on state pairs. For any pair of states s;, s
and action a ~ my(s;, s;), we compute the future state distribution p(s;+1 | a, ;) X p(s;j+1 | @, ;)
from the model. the bisimulation policy and value models are trained on the following objectives

a(si,s5,0) = (1=c)l|r(si) = r(s;)[I1 + Wa(p(sit1 | a,s:),p(s541 | a,s;), L?)
Lo, (5i,55) = qv(si, 85, a)

Ly, (si,55) = [Va(Isi — 551) — qu (54,55, 0)I1

That is, we relax the Wasserstein-1 distance to Wasserstein-2, similarliy to Zhang et al. (2020), since
it has a closed form formula for diagonal Gaussian distributions, we train a specialized policy to
maximize this distance in one-step imagination, and we train a value model so that the bisimulation
metric is deducible based on the absolute distance between states |s; — s;|. The gradients of the
bisimulation value model are propagated to the model parameters, with the intention of making
distance between latent states informative w.r.t. differences in future states and rewards.

The architecture for the bisimulation policy and value function are identical to the standard policy
and value models, we chose ¢ = 0.5 to compute the model losses, state pairs were chosen by
randomly pairing latent states in the 50 x 50 training batch. This technique did not improve sample
efficiency, but may be of use in situations similar to the ones studied in Zhang et al. (2020). Results
on the same 8 environments used for the ablation study are presented in table 3
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6.3 EXPLORATION VIA LATENT DISAGREEMENT

We follow the intrinsic reward by latent disagreement proposed in Sekar et al. (2020) and use this
intrinsic model uncertainty as a reward bonus for our policy. The reasoning behind this was to allow
the data collection process to collect experience that was near optimality in terms of true environment
reward, but tilted towards model refinement (by acquiring samples where the model is uncertain).
We added this intrinsic reward with a 0.1 scaling factor. Results on the same 8 environments used
for the ablation study are presented in table 3. This technique did not increase sample efficiency

Table 3: Episodic reward average for Dreamer, ReaPER, Bisimulation (Bisim), Exploration via la-
tent disagreement (ExP), and the intermediary components of ReaPER as a function of environment
steps. Rewards are averaged across the cartpole balance, cartpole swingup, reacher easy, cup catch,
finger spin, walker walk, walker run and cheetah run environments in DMControl. ReaPER consis-
tently outperforms the other options.

Steps  Dreamer Bisim Contrast L1  LlContrast PER Exp ExpReaPER ReaPER

100K 309 280 349 358 262 263 346 353 374
200K 549 510 663 563 619 452 581 628 670
300K 636 590 714 693 691 562 689 743 756
400K 682 621 732 752 758 595 724 769 780
500K 760 684 760 T4 741 611 740 770 787
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