
A Appendix

A.1 Proof of Lemma 1

Proof. Using the e-ISS property in Assumption 1, we have:

1

TN

N∑
i=1

T∑
t=1

‖x(i)
t ‖ ≤

1

TN

N∑
i=1

T∑
t=1

(
γ

t−1∑
k=1

ρt−1−k‖B(i)
k u

(i)
k − f

(i)
k + w

(i)
k ‖

)
(a)

≤ γ

1− ρ
1

TN

N∑
i=1

T−1∑
t=1

‖B(i)
t u

(i)
t − f

(i)
t + w

(i)
t ‖

(b)

≤ γ

1− ρ

√
1

TN

√√√√ N∑
i=1

T∑
t=1

‖B(i)
t u

(i)
t − f

(i)
t + w

(i)
t ‖2,

(8)

where (a) and (b) are from geometric series and Cauchy-Schwarz inequality respectively.

A.2 Proof of Lemma 2

This proof is based on the proof of Theorem 4.1 in [28].

Proof. For any Θ̄ ∈ K1 and c̄(1:N) ∈ K2 we have

N∑
i=1

T∑
t=1

`
(i)
t (Θ̂(i), ĉ

(i)
t)−

N∑
i=1

T∑
t=1

`
(i)
t (Θ̄, c̄(i))

(a)

≤
N∑
i=1

T∑
t=1

∇Θ̂`
(i)
t (Θ̂(i), ĉ

(i)
t) · (Θ̂(i) − Θ̄) +

N∑
i=1

T∑
t=1

∇ĉ`(i)t (Θ̂(i), ĉ
(i)
t) · (ĉ(i)t − c̄(i))

=

N∑
i=1

[
G(i)(Θ̂(i))−G(i)(Θ̄)

]
+

N∑
i=1

T∑
t=1

[
g

(i)
t (ĉ

(i)
t)− g(i)

t (c̄(i))
]

≤
N∑
i=1

G(i)(Θ̂(i))− min
Θ∈K1

N∑
i=1

G(i)(Θ)︸ ︷︷ ︸
the total regret ofA1,T ·o(N)

+

N∑
i=1

T∑
t=1

g
(i)
t (ĉ

(i)
t)−

N∑
i=1

min
c(i)∈K2

T∑
t=1

g
(i)
t (c(i))︸ ︷︷ ︸

the total regret ofA2,N ·o(T)

.

(9)

where we have (a) because `(i)t is convex. Note that the total regret of A1 is T · o(N) because G(i) is
scaled up by a factor of T .

A.3 Proof of Theorem 3

Proof. Since Θ ∈ K1 and c(1:N) ∈ K2, applying Lemma 2 we have

N∑
i=1

T∑
t=1

`
(i)
t (Θ̂(i), ĉ

(i)
t)−

N∑
i=1

T∑
t=1

`
(i)
t (Θ, c(i)) ≤ T · o(N) +N · o(T) (10)

Recall that the definition of `(i)t is `(i)t (Θ̂, ĉ) = ‖F (φ(x
(i)
t ; Θ̂), ĉ) − y(i)

t ‖2, and y(i)
t = f

(i)
t − w

(i)
t .

Therefore we have

`
(i)
t (Θ̂(i), ĉ

(i)
t) = ‖f̂ (i)

t − f
(i)
t + w

(i)
t ‖2 = ‖B(i)

t u
(i)
t − f

(i)
t + w

(i)
t ‖2

`
(i)
t (Θ, c(i)) = ‖w(i)

t ‖2 ≤W 2.
(11)

14

Then applying Lemma 1 we have

ACE ≤ γ

1− ρ

√∑N
i=1

∑T
t=1 ‖B

(i)
t u

(i)
t − f

(i)
t + w

(i)
t ‖2

TN

=
γ

1− ρ

√∑N
i=1

∑T
t=1 `

(i)
t (Θ̂(i), ĉ

(i)
t)

TN

(a)

≤ γ

1− ρ

√
T · o(N) +N · o(T) +

∑N
i=1

∑T
t=1 `

(i)
t (Θ, c(i))

TN

≤ γ

1− ρ

√
W 2 +

o(T)

T
+
o(N)

N
,

(12)

where (a) uses (10).

A.4 Proof of Corollary 4

Before the proof, we first present a lemma [27] which shows that the regret of an Online Gradient
Descent (OGD) algorithm.

Lemma 7 (Regret of OGD [27]). Suppose f1:T (x) is a sequence of differentiable convex cost
functions from Rn to R, and K is a convex set in Rn with diameter D, i.e., ∀x1, x2 ∈ K, ‖x1 −
x2‖ ≤ D. We denote by G > 0 an upper bound on the norm of the gradients of f1:T over K, i.e.,
‖∇ft(x)‖ ≤ G for all t ∈ [1, T] and x ∈ K.

The OGD algorithm initializes x1 ∈ K. At time step t, it plays xt, observes cost ft(xt), and updates
xt+1 by ΠK(xt−ηt∇ft(xt)) where ΠK is the projection ontoK, i.e., ΠK(y) = arg minx∈K ‖x−y‖.
OGD with learning rates {ηt = D

G
√
t
} guarantees the following:

T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x
∗) ≤ 3

2
GD
√
T . (13)

DefineR(A1) as the total regret of the outer-adapter A1, andR(A2) as the total regret of the inner-

adapter A2. Recall that in Theorem 3 we show that ACE(OMAC) ≤ γ
1−ρ

√
W 2 + R(A1)+R(A2)

TN .
Now we will prove Corollary 4 by analyzingR(A1) andR(A2) respectively.

Proof of Corollary 4. Since the true dynamics f(x, c(i)) = Y1(x)Θ + Y2(x)c(i), we have

`
(i)
t (Θ̂, ĉ) = ‖Y1(x

(i)
t)Θ̂ + Y2(x

(i)
t)ĉ− Y1(x

(i)
t)Θ− Y2(x

(i)
t)c(i) + w

(i)
t ‖2. (14)

Recall that g(i)
t (ĉ) = ∇ĉ`(i)t (Θ̂(i), ĉ

(i)
t) · ĉ, which is convex (linear) w.r.t. ĉ. The gradient of g(i)

t is
upper bounded as

‖∇ĉg(i)
t ‖ =

∥∥∥2Y2(x
(i)
t)>

(
Y1(x

(i)
t)Θ̂(i) + Y2(x

(i)
t)ĉ

(i)
t − Y1(x

(i)
t)Θ− Y2(x

(i)
t)c(i) + w

(i)
t

)∥∥∥
≤ 2K2K1KΘ + 2K2

2Kc + 2K2K1KΘ + 2K2
2Kc + 2K2W

= 4K1K2KΘ + 4K2
2Kc + 2K2W︸ ︷︷ ︸

C2

.

(15)
From Lemma 7, using learning rates η(i)

t = 2Kc

C2

√
t

for all i, the regret of A2 at each outer iteration is

upper bounded by 3KcC2

√
T . Then the total regret of A2 is bounded as

R(A2) ≤ 3KcC2N
√
T . (16)

15

Now let us study A1. Similarly, recall that G(i)(Θ̂) =
∑T
t=1∇Θ̂`

(i)
t (Θ̂(i), ĉ

(i)
t) · Θ̂, which is convex

(linear) w.r.t. Θ̂. The gradient of G(i) is upper bounded as

‖∇Θ̂G
(i)‖ =

∥∥∥∥∥
T∑
t=1

2Y1(x
(i)
t)>

(
Y1(x

(i)
t)Θ̂(i) + Y2(x

(i)
t)ĉ

(i)
t − Y1(x

(i)
t)Θ− Y2(x

(i)
t)c(i) + w

(i)
t

)∥∥∥∥∥
≤ T

(
2K2

1KΘ + 2K1K2Kc + 2K2
1KΘ + 2K1K2Kc + 2K1W

)
= T

(
4K2

1KΘ + 4K1K2Kc + 2K1W︸ ︷︷ ︸
C1

)
.

(17)
From Lemma 7, using learning rates η̄(i) = 2KΘ

TC1

√
i
, the total regret of A1 is upper bounded as

R(A1) ≤ 3KΘTC1

√
N. (18)

Finally using Theorem 3 we have

ACE(OMAC) ≤ γ

1− ρ

√
W 2 +

R(A1) +R(A2)

TN

≤ γ

1− ρ

√
W 2 + 3(KΘC1

1√
N

+KcC2
1√
T

).

(19)

Now let us analyze ACE(baseline adaptive control). To simplify notations, we define Ȳ (x) =

[Y1(x) Y2(x)] : Rn → Rn×(p+h) and α̂ = [Θ̂; ĉ] ∈ Rp+h. The baseline adaptive controller updates
the whole vector α̂ at every time step. We denote the ground truth parameter by α(i) = [Θ; c(i)],
and the estimation by α̂(i)

t = [Θ̂
(i)
t ; ĉ

(i)
t]. We have ‖α(i)‖ ≤

√
K2

Θ +K2
c . Define K̄ = {α̂ = [Θ̂; ĉ] :

‖Θ̂‖ ≤ KΘ, ‖ĉ‖ ≤ Kc}, which is a convex set in Rp+h.

Note that the loss function for the baseline adaptive control is ¯̀(i)
t (α̂) = ‖Ȳ (x

(i)
t)α̂− Y1(x

(i)
t)Θ−

Y2(x
(i)
t)c(i) + w

(i)
t ‖2. The gradient of ¯̀(i)

t is

∇α̂ ¯̀(i)
t (α̂) = 2

[
Y1(x

(i)
t)>

Y2(x
(i)
t)>

]
(Y1(x

(i)
t)Θ̂ + Y2(x

(i)
t)ĉ− Y1(x

(i)
t)Θ− Y2(x

(i)
t)c(i) + w

(i)
t), (20)

whose norm on K̄ is bounded by√
4(K2

1 +K2
2)(2K1KΘ + 2K2Kc +W)2 =

√
C2

1 + C2
2 . (21)

Therefore, from Lemma 7, running OGD on K̄ with learning rates
2
√
K2

Θ+K2
c√

C2
1+C2

2

√
t

gives the following

guarantee at each outer iteration:

T∑
t=1

¯̀(i)
t (α̂

(i)
t)− ¯̀(i)

t (α(i)) ≤ 3
√
K2

Θ +K2
c

√
C2

1 + C2
2

√
T . (22)

Finally, similar as (12) we have

ACE(baseline adaptive control) ≤ γ

1− ρ

√∑N
i=1

∑T
t=1

¯̀(i)
t (α̂

(i)
t)

TN

≤ γ

1− ρ

√∑N
i=1 3

√
K2

Θ +K2
c

√
C2

1 + C2
2

√
T +

∑N
i=1

∑T
t=1

¯̀(i)
t (α(i))

TN

≤ γ

1− ρ

√
W 2 + 3

√
K2

Θ +K2
c

√
C2

1 + C2
2

1√
T
.

(23)

Note that this bound does not improve as the number of environments (i.e., N) increases.

16

A.5 Proof of Theorem 5

Proof. For any Θ ∈ K1 and c(1:N) ∈ K2 we have
N∑
i=1

T∑
t=1

`
(i)
t (Θ̂(i), ĉ

(i)
t)−

N∑
i=1

T∑
t=1

`
(i)
t (Θ, c(i))

=

N∑
i=1

T∑
t=1

[
`
(i)
t (Θ̂(i), ĉ

(i)
t)− `(i)t (Θ̂(i), c(i))

]
+

N∑
i=1

T∑
t=1

[
`
(i)
t (Θ̂(i), c(i))− `(i)t (Θ, c(i))

]
=

N∑
i=1

T∑
t=1

[
g

(i)
t (c

(i)
t)− g(i)

t (c(i))
]

︸ ︷︷ ︸
≤o(T)

+

N∑
i=1

[
G(i)(Θ̂(i))−G(i)(Θ)

]
︸ ︷︷ ︸

≤T ·o(N)

(24)

Then combining with Lemma 1 results in the ACE bound.

A.6 Proof of Theorem 6

Proof. Note that in this case the available measurement of f at the end of the outer iteration i is:

y
(j)
t = Y (x

(j)
t)Θc(j) − w(j)

t , 1 ≤ j ≤ i, 1 ≤ t ≤ T. (25)

Recall that the Ridge-regression estimation of Θ̂ is given by

Θ̂(i+1) = arg min
Θ̂

λ‖Θ̂‖2F +

i∑
j=1

T∑
t=1

‖Y (x
(j)
t)Θ̂c(j) − y(j)

t ‖2

= arg min
Θ̂

λ‖Θ̂‖2F +

i∑
j=1

T∑
t=1

‖Z(j)
t vec(Θ̂)− y(j)

t ‖2.

(26)

Note that y(j)
t = (c(j)> ⊗ Y (x

(j)
t)) · vec(Θ) − w

(j)
t = Z

(j)
t vec(Θ) − w

(j)
t . Define Vi = λI +∑i

j=1

∑T
t=1 Z

(j)>
t Z

(j)
t . Then from the Theorem 2 of [32] we have

‖vec(Θ̂(i+1) −Θ)‖Vi
≤ R

√
p̄h log(

1 + iT · nK2
YK

2
c /λ

δ
) +
√
λKΘ (27)

for all i with probability at least 1 − δ. Note that the environment diversity condition implies:
Vi � Ω(i)I . Finally we have

‖Θ̂(i+1) −Θ‖2F = ‖vec(Θ̂(i+1) −Θ)‖2 ≤ O(
1

i
)O(log(iT/δ)) = O(

log(iT/δ)

i
). (28)

Then with a fixed Θ̂(i+1), in outer iteration i+ 1 we have

g
(i+1)
t (ĉ) = ‖Y (x

(i+1)
t)Θ̂(i+1)ĉ− Y (x

(i+1)
t)Θc(i+1) + w

(i+1)
t ‖2. (29)

Since A2 gives sublinear regret, we have
T∑
t=1

‖Y (x
(i+1)
t)Θ̂(i+1)ĉ

(i+1)
t − Y (x

(i+1)
t)Θc(i+1) + w

(i+1)
t ‖2

− min
ĉ∈K2

T∑
t=1

‖Y (x
(i+1)
t)Θ̂(i+1)ĉ− Y (x

(i+1)
t)Θc(i+1) + w

(i+1)
t ‖2 = o(T).

(30)

Note that

min
ĉ∈K2

T∑
t=1

‖Y (x
(i+1)
t)Θ̂(i+1)ĉ− Y (x

(i+1)
t)Θc(i+1) + w

(i+1)
t ‖2

≤
T∑
t=1

‖Y (x
(i+1)
t)Θ̂(i+1)c(i+1) − Y (x

(i+1)
t)Θc(i+1) + w

(i+1)
t ‖2

(a)

≤TW 2 + T ·K2
Y ·O(

log(iT/δ)

i
) ·K2

c ,

(31)

17

where (a) uses (28).

Finally we have

T∑
t=1

‖f̂ (i+1)
t − f (i+1)

t + w
(i+1)
t ‖2

=

T∑
t=1

‖Y (x
(i+1)
t)Θ̂(i+1)ĉ

(i+1)
t − Y (x

(i+1)
t)Θc(i+1) + w

(i+1)
t ‖2

(b)

≤o(T) + TW 2 +O(T
log(iT/δ)

i
)

(32)

for all i with probability at least 1− δ. (b) is from (30) and (31). Then with Lemma 1 we have (with
probability at least 1− δ)

ACE ≤ γ

1− ρ

√∑N
i=1 o(T) + TW 2 +O(T log(iT/δ)

i)

TN

≤ γ

1− ρ

√√√√W 2 +
o(T)

T
+
O(log(NT/δ))

N

N∑
i=1

1

i

≤ γ

1− ρ

√
W 2 +

o(T)

T
+O(

log(NT/δ) log(N)

N
).

(33)

If we relax the environment diversity condition to Ω(
√
i), in (28) we will haveO(log(iT/δ)√

i
). Therefore

in (33) the last term becomes O(log(NT/δ))
N

∑N
i=1

1√
i
≤ O(log(NT/δ))√

N
.

A.7 Experimental details

A.7.1 Theoretical justification of Deep OMAC

Recall that in Deep OMAC (Table 4 in Section 5) the model class is F (φ(x; Θ̂), ĉ) = φ(x; Θ̂) · ĉ,
where φ : Rn → Rn×h is a neural network parameterized by Θ̂. We provide the following proposition
to justify such choice of model class.

Proposition 1. Let f̄(x, c̄) : [−1, 1]n × [−1, 1]h̄ → R be an analytic function of [x, c̄] ∈ [−1, 1]n+h̄

for n, h̄ ≥ 1. Then for any ε > 0, there exist h(ε) ∈ Z+, a polynomial φ̄(x) : [−1, 1]n → Rh(ε) and
another polynomial c(c̄) : [−1, 1]h̄ → Rh(ε) such that

max
[x,c̄]∈[−1,1]n+h̄

‖f̄(x, c̄)− φ̄(x)>c(c̄)‖ ≤ ε

and h(ε) = O((log(1/ε))h̄).

Note that here the dimension of c depends on the precision 1/ε. In practice, for OMAC algorithms,
the dimension of ĉ or c (i.e., the latent space dimension) is a hyperparameter, and not necessarily
equal to the dimension of c̄ (i.e., the dimension of the actual environmental condition). A variant of
this proposition is proved in [34]. Since neural networks are universal approximators for polynomials,
this theorem implies that the structure φ(x; Θ̂)ĉ can approximate any analytic function f̄(x, c̄), and
the dimension of ĉ only increases polylogarithmically as the precision increases.

A.7.2 Pendulum dynamics model and controller design

In experiments, we consider a nonlinear pendulum dynamics with unknown gravity, damping and
external 2D wind w = [wx;wy] ∈ R2. The continuous-time dynamics model is given by

ml2θ̈ −mlĝ sin θ = u+ f(θ, θ̇, c(w))︸ ︷︷ ︸
unknown

, (34)

18

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

baseline adaptation
 ACE: 0.204

0 10 20 30 40 50 60
time (s)

1.0

0.5

0.0

0.5

1.0

1.5

N
m

f
f

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

OMAC (convex)
 ACE: 0.128

0 10 20 30 40 50 60
time (s)

1.0

0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

OMAC (element-wise convex)
 ACE: 0.112

0 10 20 30 40 50 60
time (s)

1.0

0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

OMAC (deep learning)
 ACE: 0.062

0 10 20 30 40 50 60
time (s)

1.0

0.5

0.0

0.5

1.0

1.5

Figure 2: Trajectories (top) and force predictions (bottom) in the pendulum experiment from one
random seed. The wind condition is switched randomly every 2 s (indicated by the dashed red lines).
The performance of OMAC improves as it encounters more environments while baseline not.

where
f(θ, θ̇, c(w)) = ~l × Fwind︸ ︷︷ ︸

air drag

− α1θ̇︸︷︷︸
damping

+ml(g − ĝ) sin θ︸ ︷︷ ︸
gravity mismatch

,

Fwind = α2 · ‖r‖2 · r, r = w −
[
lθ̇ cos θ

−lθ̇ sin θ

]
.

(35)

This model generalizes the pendulum with external wind model in [35] by introducing extra modelling
mismatches (e.g., gravity mismatch and unknown damping). In this model, α1 is the damping
coefficient, α2 is the air drag coefficient, r is the relative velocity of the pendulum to the wind,
Fwind is the air drag force vector, and ~l is the pendulum vector. Define the state of the pendulum as
x = [θ; θ̇]. The discrete dynamics is given by

xt+1 =

[
θt + δ · θ̇t

θ̇t + δ · mlĝ sin θt+ut+f(θt,θ̇t,c)
ml2

]
=

[
1 δ

0 1

]
︸ ︷︷ ︸

A

xt+

[
0
δ
ml2

]
︸ ︷︷ ︸
B

(ut+mlĝ sin θt+f(xt, c)), (36)

where δ is the discretization step. We use the controller structure ut = −Kxt−mlĝ sin θt− f̂ for all
6 controllers in the experiments, but different controllers have different methods to calculate f̂ (e.g.,
the no-adapt controller uses f̂ = 0 and the omniscient one uses f̂ = f). We choose K such that
A−BK is stable (i.e., the spectral radius of A−BK is strictly smaller than 1), and then the e-ISS
assumption in Assumption 1 naturally holds. We visualize the pendulum experiment results in fig. 2.

A.7.3 Quadrotor dynamics model and controller design

Now we introduce the quadrotor dynamics with aerodynamic disturbance. Consider states given by
global position, p ∈ R3, velocity v ∈ R3, attitude rotation matrix R ∈ SO(3), and body angular
velocity ω ∈ R3. Then dynamics of a quadrotor are

ṗ = v, mv̇ = mg +RfT + f, (37a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τ, (37b)

where m is the mass, J is the inertia matrix of the quadrotor, S(·) is the skew-symmetric mapping, g
is the gravity vector, fT = [0, 0, T]> and τ = [τx, τy, τz]

> are the total thrust and body torques from
four rotors, and f = [fx, fy, fz]

> are forces resulting from unmodelled aerodynamic effects and
varying wind conditions. In the simulator, f is implemented as the aerodynamic model given in [36].

Controller design. Quadrotor control, as part of multicopter control, generally has a cascaded
structure to separate the design of the position controller, attitude controller, and thrust mixer

19

(allocation). In this paper, we incorporate the online learned aerodynamic force f̂ in the position
controller via the following equation:

fd = −mg −m(KP · p+KD · v)− f̂ , (38)

where KP ,KD ∈ R3×3 are gain matrices for the PD nominal term, and different controllers have
different methods to calculate f̂ (e.g., the omniscient controller uses f̂ = f). Given the desired
force fd, a kinematic module decomposes it into the desired Rd and the desired thrust Td so that
Rd · [0, 0, Td]> ≈ fd. Then the desired attitude and thrust are sent to a lower level attitude controller
(e.g., the attitude controller in [51]).

20

	Introduction
	Problem statement
	Online meta-adaptive control (OMAC) algorithm
	Main theoretical results
	Convex case
	Element-wise convex case
	Faster convergence with sub Gaussian and environment diversity assumptions

	Deep OMAC and experiments
	Related work
	Concluding remarks
	Appendix
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Corollary 4
	Proof of Theorem 5
	Proof of Theorem 6
	Experimental details
	Theoretical justification of Deep OMAC
	Pendulum dynamics model and controller design
	Quadrotor dynamics model and controller design

