A Appendix

A. 1 Proof of Lemma 1

Proof. Using the e-ISS property in Assumption 1, we have:

$$
\begin{aligned}
& \quad \frac{1}{T N} \sum_{i=1}^{N} \sum_{t=1}^{T}\left\|x_{t}^{(i)}\right\| \leq \frac{1}{T N} \sum_{i=1}^{N} \sum_{t=1}^{T}\left(\gamma \sum_{k=1}^{t-1} \rho^{t-1-k}\left\|B_{k}^{(i)} u_{k}^{(i)}-f_{k}^{(i)}+w_{k}^{(i)}\right\|\right) \\
& \stackrel{(a)}{\leq} \frac{\gamma}{1-\rho} \frac{1}{T N} \sum_{i=1}^{N} \sum_{t=1}^{T-1}\left\|B_{t}^{(i)} u_{t}^{(i)}-f_{t}^{(i)}+w_{t}^{(i)}\right\| \\
& \stackrel{(b)}{\leq} \frac{\gamma}{1-\rho} \sqrt{\frac{1}{T N}} \sqrt{\sum_{i=1}^{N} \sum_{t=1}^{T}\left\|B_{t}^{(i)} u_{t}^{(i)}-f_{t}^{(i)}+w_{t}^{(i)}\right\|^{2}},
\end{aligned}
$$

where (a) and (b) are from geometric series and Cauchy-Schwarz inequality respectively.

A. 2 Proof of Lemma 2

This proof is based on the proof of Theorem 4.1 in [28].

Proof. For any $\bar{\Theta} \in \mathcal{K}_{1}$ and $\bar{c}^{(1: N)} \in \mathcal{K}_{2}$ we have

$$
\begin{align*}
& \sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right)-\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\bar{\Theta}, \bar{c}^{(i)}\right) \\
\stackrel{(a)}{\leq} & \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\hat{\Theta}} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right) \cdot\left(\hat{\Theta}^{(i)}-\bar{\Theta}\right)+\sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\hat{c}} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right) \cdot\left(\hat{c}_{t}^{(i)}-\bar{c}^{(i)}\right) \\
= & \sum_{i=1}^{N}\left[G^{(i)}\left(\hat{\Theta}^{(i)}\right)-G^{(i)}(\bar{\Theta})\right]+\sum_{i=1}^{N} \sum_{t=1}^{T}\left[g_{t}^{(i)}\left(\hat{c}_{t}^{(i)}\right)-g_{t}^{(i)}\left(\bar{c}^{(i)}\right)\right] \tag{9}\\
\leq & \underbrace{\sum_{i=1}^{N} G^{(i)}\left(\hat{\Theta}^{(i)}\right)-\min _{\Theta \in \mathcal{K}_{1}} \sum_{i=1}^{N} G^{(i)}(\Theta)}_{\text {the total regret of } \mathcal{A}_{1}, T \cdot o(N)}+\underbrace{\sum_{i=1}^{N} \sum_{t=1}^{T} g_{t}^{(i)}\left(\hat{c}_{t}^{(i)}\right)-\sum_{i=1}^{N} \min _{c^{(i)} \in \mathcal{K}_{2}} \sum_{t=1}^{T} g_{t}^{(i)}\left(c^{(i)}\right)}_{\text {the total regret of }} .
\end{align*}
$$

where we have (a) because $\ell_{t}^{(i)}$ is convex. Note that the total regret of \mathcal{A}_{1} is $T \cdot o(N)$ because $G^{(i)}$ is scaled up by a factor of T.

A. 3 Proof of Theorem 3

Proof. Since $\Theta \in \mathcal{K}_{1}$ and $c^{(1: N)} \in \mathcal{K}_{2}$, applying Lemma 2 we have

$$
\begin{equation*}
\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right)-\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\Theta, c^{(i)}\right) \leq T \cdot o(N)+N \cdot o(T) \tag{10}
\end{equation*}
$$

Recall that the definition of $\ell_{t}^{(i)}$ is $\ell_{t}^{(i)}(\hat{\Theta}, \hat{c})=\left\|F\left(\phi\left(x_{t}^{(i)} ; \hat{\Theta}\right), \hat{c}\right)-y_{t}^{(i)}\right\|^{2}$, and $y_{t}^{(i)}=f_{t}^{(i)}-w_{t}^{(i)}$. Therefore we have

$$
\begin{align*}
\ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right) & =\left\|\hat{f}_{t}^{(i)}-f_{t}^{(i)}+w_{t}^{(i)}\right\|^{2}=\left\|B_{t}^{(i)} u_{t}^{(i)}-f_{t}^{(i)}+w_{t}^{(i)}\right\|^{2} \tag{11}\\
\ell_{t}^{(i)}\left(\Theta, c^{(i)}\right) & =\left\|w_{t}^{(i)}\right\|^{2} \leq W^{2} .
\end{align*}
$$

Then applying Lemma 1 we have

$$
\begin{align*}
\mathrm{ACE} & \leq \frac{\gamma}{1-\rho} \sqrt{\frac{\sum_{i=1}^{N} \sum_{t=1}^{T}\left\|B_{t}^{(i)} u_{t}^{(i)}-f_{t}^{(i)}+w_{t}^{(i)}\right\|^{2}}{T N}} \\
& =\frac{\gamma}{1-\rho} \sqrt{\frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right)}{T N}} \tag{12}\\
& \leq \frac{\gamma}{1-\rho} \sqrt{\frac{T \cdot o(N)+N \cdot o(T)+\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\Theta, c^{(i)}\right)}{T N}} \\
& \leq \frac{\gamma}{1-\rho} \sqrt{W^{2}+\frac{o(T)}{T}+\frac{o(N)}{N}}
\end{align*}
$$

where (a) uses (10).

A. 4 Proof of Corollary 4

Before the proof, we first present a lemma [27] which shows that the regret of an Online Gradient Descent (OGD) algorithm.
Lemma 7 (Regret of OGD [27]). Suppose $f_{1: T}(x)$ is a sequence of differentiable convex cost functions from \mathbb{R}^{n} to \mathbb{R}, and \mathcal{K} is a convex set in \mathbb{R}^{n} with diameter D, i.e., $\forall x_{1}, x_{2} \in \mathcal{K}, \| x_{1}-$ $x_{2} \| \leq D$. We denote by $G>0$ an upper bound on the norm of the gradients of $f_{1: T}$ over \mathcal{K}, i.e., $\left\|\nabla f_{t}(x)\right\| \leq G$ for all $t \in[1, T]$ and $x \in \mathcal{K}$.
The OGD algorithm initializes $x_{1} \in \mathcal{K}$. At time step t, it plays x_{t}, observes cost $f_{t}\left(x_{t}\right)$, and updates x_{t+1} by $\Pi_{\mathcal{K}}\left(x_{t}-\eta_{t} \nabla f_{t}\left(x_{t}\right)\right)$ where $\Pi_{\mathcal{K}}$ is the projection onto \mathcal{K}, i.e., $\Pi_{\mathcal{K}}(y)=\arg \min _{x \in \mathcal{K}}\|x-y\|$. OGD with learning rates $\left\{\eta_{t}=\frac{D}{G \sqrt{t}}\right\}$ guarantees the following:

$$
\begin{equation*}
\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\min _{x^{*} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}\left(x^{*}\right) \leq \frac{3}{2} G D \sqrt{T} \tag{13}
\end{equation*}
$$

Define $\mathcal{R}\left(\mathcal{A}_{1}\right)$ as the total regret of the outer-adapter \mathcal{A}_{1}, and $\mathcal{R}\left(\mathcal{A}_{2}\right)$ as the total regret of the inneradapter \mathcal{A}_{2}. Recall that in Theorem 3 we show that $\mathrm{ACE}(\mathrm{OMAC}) \leq \frac{\gamma}{1-\rho} \sqrt{W^{2}+\frac{\mathcal{R}\left(\mathcal{A}_{1}\right)+\mathcal{R}\left(\mathcal{A}_{2}\right)}{T N}}$. Now we will prove Corollary 4 by analyzing $\mathcal{R}\left(\mathcal{A}_{1}\right)$ and $\mathcal{R}\left(\mathcal{A}_{2}\right)$ respectively.

Proof of Corollary 4 Since the true dynamics $f\left(x, c^{(i)}\right)=Y_{1}(x) \Theta+Y_{2}(x) c^{(i)}$, we have

$$
\begin{equation*}
\ell_{t}^{(i)}(\hat{\Theta}, \hat{c})=\left\|Y_{1}\left(x_{t}^{(i)}\right) \hat{\Theta}+Y_{2}\left(x_{t}^{(i)}\right) \hat{c}-Y_{1}\left(x_{t}^{(i)}\right) \Theta-Y_{2}\left(x_{t}^{(i)}\right) c^{(i)}+w_{t}^{(i)}\right\|^{2} \tag{14}
\end{equation*}
$$

Recall that $g_{t}^{(i)}(\hat{c})=\nabla_{\hat{c}} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right) \cdot \hat{c}$, which is convex (linear) w.r.t. \hat{c}. The gradient of $g_{t}^{(i)}$ is upper bounded as

$$
\begin{align*}
\left\|\nabla_{\hat{c}} g_{t}^{(i)}\right\| & =\left\|2 Y_{2}\left(x_{t}^{(i)}\right)^{\top}\left(Y_{1}\left(x_{t}^{(i)}\right) \hat{\Theta}^{(i)}+Y_{2}\left(x_{t}^{(i)}\right) \hat{c}_{t}^{(i)}-Y_{1}\left(x_{t}^{(i)}\right) \Theta-Y_{2}\left(x_{t}^{(i)}\right) c^{(i)}+w_{t}^{(i)}\right)\right\| \\
& \leq 2 K_{2} K_{1} K_{\Theta}+2 K_{2}^{2} K_{c}+2 K_{2} K_{1} K_{\Theta}+2 K_{2}^{2} K_{c}+2 K_{2} W \\
& =\underbrace{4 K_{1} K_{2} K_{\Theta}+4 K_{2}^{2} K_{c}+2 K_{2} W}_{C_{2}} . \tag{15}
\end{align*}
$$

From Lemma 7 , using learning rates $\eta_{t}^{(i)}=\frac{2 K_{c}}{C_{2} \sqrt{t}}$ for all i, the regret of \mathcal{A}_{2} at each outer iteration is upper bounded by $3 K_{c} C_{2} \sqrt{T}$. Then the total regret of \mathcal{A}_{2} is bounded as

$$
\begin{equation*}
\mathcal{R}\left(\mathcal{A}_{2}\right) \leq 3 K_{c} C_{2} N \sqrt{T} . \tag{16}
\end{equation*}
$$

Now let us study \mathcal{A}_{1}. Similarly, recall that $G^{(i)}(\hat{\Theta})=\sum_{t=1}^{T} \nabla_{\hat{\Theta}} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right) \cdot \hat{\Theta}$, which is convex (linear) w.r.t. $\hat{\Theta}$. The gradient of $G^{(i)}$ is upper bounded as

$$
\begin{align*}
\left\|\nabla_{\hat{\Theta}} G^{(i)}\right\| & =\left\|\sum_{t=1}^{T} 2 Y_{1}\left(x_{t}^{(i)}\right)^{\top}\left(Y_{1}\left(x_{t}^{(i)}\right) \hat{\Theta}^{(i)}+Y_{2}\left(x_{t}^{(i)}\right) \hat{c}_{t}^{(i)}-Y_{1}\left(x_{t}^{(i)}\right) \Theta-Y_{2}\left(x_{t}^{(i)}\right) c^{(i)}+w_{t}^{(i)}\right)\right\| \\
& \leq T\left(2 K_{1}^{2} K_{\Theta}+2 K_{1} K_{2} K_{c}+2 K_{1}^{2} K_{\Theta}+2 K_{1} K_{2} K_{c}+2 K_{1} W\right) \\
& =T(\underbrace{4 K_{1}^{2} K_{\Theta}+4 K_{1} K_{2} K_{c}+2 K_{1} W}_{C_{1}}) \tag{17}
\end{align*}
$$

From Lemma 7. using learning rates $\bar{\eta}^{(i)}=\frac{2 K_{\Theta}}{T C_{1} \sqrt{i}}$, the total regret of \mathcal{A}_{1} is upper bounded as

$$
\begin{equation*}
\mathcal{R}\left(\mathcal{A}_{1}\right) \leq 3 K_{\Theta} T C_{1} \sqrt{N} \tag{18}
\end{equation*}
$$

Finally using Theorem 3 we have

$$
\begin{align*}
\operatorname{ACE}(\mathrm{OMAC}) & \leq \frac{\gamma}{1-\rho} \sqrt{W^{2}+\frac{\mathcal{R}\left(\mathcal{A}_{1}\right)+\mathcal{R}\left(\mathcal{A}_{2}\right)}{T N}} \\
& \leq \frac{\gamma}{1-\rho} \sqrt{W^{2}+3\left(K_{\Theta} C_{1} \frac{1}{\sqrt{N}}+K_{c} C_{2} \frac{1}{\sqrt{T}}\right)} \tag{19}
\end{align*}
$$

Now let us analyze ACE(baseline adaptive control). To simplify notations, we define $\bar{Y}(x)=$ $\left[Y_{1}(x) Y_{2}(x)\right]: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times(p+h)}$ and $\hat{\alpha}=[\hat{\Theta} ; \hat{c}] \in \mathbb{R}^{p+h}$. The baseline adaptive controller updates the whole vector $\hat{\alpha}$ at every time step. We denote the ground truth parameter by $\alpha^{(i)}=\left[\Theta ; c^{(i)}\right]$, and the estimation by $\hat{\alpha}_{t}^{(i)}=\left[\hat{\Theta}_{t}^{(i)} ; \hat{c}_{t}^{(i)}\right]$. We have $\left\|\alpha^{(i)}\right\| \leq \sqrt{K_{\Theta}^{2}+K_{c}^{2}}$. Define $\overline{\mathcal{K}}=\{\hat{\alpha}=[\hat{\Theta} ; \hat{c}]$: $\left.\|\hat{\Theta}\| \leq \mathcal{K}_{\Theta},\|\hat{c}\| \leq \mathcal{K}_{c}\right\}$, which is a convex set in \mathbb{R}^{p+h}.
Note that the loss function for the baseline adaptive control is $\bar{\ell}_{t}^{(i)}(\hat{\alpha})=\| \bar{Y}\left(x_{t}^{(i)}\right) \hat{\alpha}-Y_{1}\left(x_{t}^{(i)}\right) \Theta-$ $Y_{2}\left(x_{t}^{(i)}\right) c^{(i)}+w_{t}^{(i)} \|^{2}$. The gradient of $\bar{\ell}_{t}^{(i)}$ is

$$
\nabla_{\hat{\alpha}} \bar{\ell}_{t}^{(i)}(\hat{\alpha})=2\left[\begin{array}{l}
Y_{1}\left(x_{t}^{(i)}\right)^{\top} \tag{20}\\
Y_{2}\left(x_{t}^{(i)}\right)^{\top}
\end{array}\right]\left(Y_{1}\left(x_{t}^{(i)}\right) \hat{\Theta}+Y_{2}\left(x_{t}^{(i)}\right) \hat{c}-Y_{1}\left(x_{t}^{(i)}\right) \Theta-Y_{2}\left(x_{t}^{(i)}\right) c^{(i)}+w_{t}^{(i)}\right)
$$

whose norm on $\overline{\mathcal{K}}$ is bounded by

$$
\begin{equation*}
\sqrt{4\left(K_{1}^{2}+K_{2}^{2}\right)\left(2 K_{1} K_{\Theta}+2 K_{2} K_{c}+W\right)^{2}}=\sqrt{C_{1}^{2}+C_{2}^{2}} \tag{21}
\end{equation*}
$$

Therefore, from Lemma 7, running OGD on $\overline{\mathcal{K}}$ with learning rates $\frac{2 \sqrt{K_{\Theta}^{2}+K_{c}^{2}}}{\sqrt{C_{1}^{2}+C_{2}^{2}} \sqrt{t}}$ gives the following guarantee at each outer iteration:

$$
\begin{equation*}
\sum_{t=1}^{T} \bar{\ell}_{t}^{(i)}\left(\hat{\alpha}_{t}^{(i)}\right)-\bar{\ell}_{t}^{(i)}\left(\alpha^{(i)}\right) \leq 3 \sqrt{K_{\Theta}^{2}+K_{c}^{2}} \sqrt{C_{1}^{2}+C_{2}^{2}} \sqrt{T} \tag{22}
\end{equation*}
$$

Finally, similar as 12 we have

$$
\begin{align*}
& \text { ACE (baseline adaptive control) } \leq \frac{\gamma}{1-\rho} \sqrt{\frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \bar{\ell}_{t}^{(i)}\left(\hat{\alpha}_{t}^{(i)}\right)}{T N}} \\
& \leq \frac{\gamma}{1-\rho} \sqrt{\frac{\sum_{i=1}^{N} 3 \sqrt{K_{\Theta}^{2}+K_{c}^{2}} \sqrt{C_{1}^{2}+C_{2}^{2}} \sqrt{T}+\sum_{i=1}^{N} \sum_{t=1}^{T} \bar{\ell}_{t}^{(i)}\left(\alpha^{(i)}\right)}{T N}} \tag{23}\\
& \leq \frac{\gamma}{1-\rho} \sqrt{W^{2}+3 \sqrt{K_{\Theta}^{2}+K_{c}^{2}} \sqrt{C_{1}^{2}+C_{2}^{2}} \frac{1}{\sqrt{T}}} .
\end{align*}
$$

Note that this bound does not improve as the number of environments (i.e., N) increases.

A. 5 Proof of Theorem 5

Proof. For any $\Theta \in \mathcal{K}_{1}$ and $c^{(1: N)} \in \mathcal{K}_{2}$ we have

$$
\begin{align*}
& \sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right)-\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_{t}^{(i)}\left(\Theta, c^{(i)}\right) \\
= & \sum_{i=1}^{N} \sum_{t=1}^{T}\left[\ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, \hat{c}_{t}^{(i)}\right)-\ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, c^{(i)}\right)\right]+\sum_{i=1}^{N} \sum_{t=1}^{T}\left[\ell_{t}^{(i)}\left(\hat{\Theta}^{(i)}, c^{(i)}\right)-\ell_{t}^{(i)}\left(\Theta, c^{(i)}\right)\right] \tag{24}\\
= & \sum_{i=1}^{N} \underbrace{\sum_{t=1}^{T}\left[g_{t}^{(i)}\left(c_{t}^{(i)}\right)-g_{t}^{(i)}\left(c^{(i)}\right)\right]}_{\leq o(T)}+\underbrace{\sum_{i=1}^{N}\left[G^{(i)}\left(\hat{\Theta}^{(i)}\right)-G^{(i)}(\Theta)\right]}_{\leq T \cdot o(N)}
\end{align*}
$$

Then combining with Lemma 1 results in the ACE bound.

A. 6 Proof of Theorem 6

Proof. Note that in this case the available measurement of f at the end of the outer iteration i is:

$$
\begin{equation*}
y_{t}^{(j)}=Y\left(x_{t}^{(j)}\right) \Theta c^{(j)}-w_{t}^{(j)}, \quad 1 \leq j \leq i, 1 \leq t \leq T \tag{25}
\end{equation*}
$$

Recall that the Ridge-regression estimation of $\hat{\Theta}$ is given by

$$
\begin{align*}
\hat{\Theta}^{(i+1)} & =\arg \min _{\hat{\Theta}} \lambda\|\hat{\Theta}\|_{F}^{2}+\sum_{j=1}^{i} \sum_{t=1}^{T}\left\|Y\left(x_{t}^{(j)}\right) \hat{\Theta} c^{(j)}-y_{t}^{(j)}\right\|^{2} \\
& =\arg \min _{\hat{\Theta}} \lambda\|\hat{\Theta}\|_{F}^{2}+\sum_{j=1}^{i} \sum_{t=1}^{T}\left\|Z_{t}^{(j)} \operatorname{vec}(\hat{\Theta})-y_{t}^{(j)}\right\|^{2} . \tag{26}
\end{align*}
$$

Note that $y_{t}^{(j)}=\left(c^{(j) \top} \otimes Y\left(x_{t}^{(j)}\right)\right) \cdot \operatorname{vec}(\Theta)-w_{t}^{(j)}=Z_{t}^{(j)} \operatorname{vec}(\Theta)-w_{t}^{(j)}$. Define $V_{i}=\lambda I+$ $\sum_{j=1}^{i} \sum_{t=1}^{T} Z_{t}^{(j) \top} Z_{t}^{(j)}$. Then from the Theorem 2 of [32] we have

$$
\begin{equation*}
\left\|\operatorname{vec}\left(\hat{\Theta}^{(i+1)}-\Theta\right)\right\|_{V_{i}} \leq R \sqrt{\bar{p} h \log \left(\frac{1+i T \cdot n K_{Y}^{2} K_{c}^{2} / \lambda}{\delta}\right)}+\sqrt{\lambda} K_{\Theta} \tag{27}
\end{equation*}
$$

for all i with probability at least $1-\delta$. Note that the environment diversity condition implies: $V_{i} \succ \Omega(i) I$. Finally we have

$$
\begin{equation*}
\left\|\hat{\Theta}^{(i+1)}-\Theta\right\|_{F}^{2}=\left\|\operatorname{vec}\left(\hat{\Theta}^{(i+1)}-\Theta\right)\right\|^{2} \leq O\left(\frac{1}{i}\right) O(\log (i T / \delta))=O\left(\frac{\log (i T / \delta)}{i}\right) \tag{28}
\end{equation*}
$$

Then with a fixed $\hat{\Theta}^{(i+1)}$, in outer iteration $i+1$ we have

$$
\begin{equation*}
g_{t}^{(i+1)}(\hat{c})=\left\|Y\left(x_{t}^{(i+1)}\right) \hat{\Theta}^{(i+1)} \hat{c}-Y\left(x_{t}^{(i+1)}\right) \Theta c^{(i+1)}+w_{t}^{(i+1)}\right\|^{2} \tag{29}
\end{equation*}
$$

Since \mathcal{A}_{2} gives sublinear regret, we have

$$
\begin{align*}
& \sum_{t=1}^{T}\left\|Y\left(x_{t}^{(i+1)}\right) \hat{\Theta}^{(i+1)} \hat{c}_{t}^{(i+1)}-Y\left(x_{t}^{(i+1)}\right) \Theta c^{(i+1)}+w_{t}^{(i+1)}\right\|^{2} \tag{30}\\
& -\min _{\hat{c} \in \mathcal{K}_{2}} \sum_{t=1}^{T}\left\|Y\left(x_{t}^{(i+1)}\right) \hat{\Theta}^{(i+1)} \hat{c}-Y\left(x_{t}^{(i+1)}\right) \Theta c^{(i+1)}+w_{t}^{(i+1)}\right\|^{2}=o(T)
\end{align*}
$$

Note that

$$
\begin{align*}
& \min _{\hat{c} \in \mathcal{K}_{2}} \sum_{t=1}^{T}\left\|Y\left(x_{t}^{(i+1)}\right) \hat{\Theta}^{(i+1)} \hat{c}-Y\left(x_{t}^{(i+1)}\right) \Theta c^{(i+1)}+w_{t}^{(i+1)}\right\|^{2} \\
& \leq \sum_{t=1}^{T}\left\|Y\left(x_{t}^{(i+1)}\right) \hat{\Theta}^{(i+1)} c^{(i+1)}-Y\left(x_{t}^{(i+1)}\right) \Theta c^{(i+1)}+w_{t}^{(i+1)}\right\|^{2} \tag{31}\\
& \stackrel{(a)}{\leq} T W^{2}+T \cdot K_{Y}^{2} \cdot O\left(\frac{\log (i T / \delta)}{i}\right) \cdot K_{c}^{2},
\end{align*}
$$

where (a) uses 28.
Finally we have

$$
\begin{align*}
& \sum_{t=1}^{T}\left\|\hat{f}_{t}^{(i+1)}-f_{t}^{(i+1)}+w_{t}^{(i+1)}\right\|^{2} \\
= & \sum_{t=1}^{T}\left\|Y\left(x_{t}^{(i+1)}\right) \hat{\Theta}^{(i+1)} \hat{c}_{t}^{(i+1)}-Y\left(x_{t}^{(i+1)}\right) \Theta c^{(i+1)}+w_{t}^{(i+1)}\right\|^{2} \tag{32}\\
\stackrel{(b)}{\leq} & o(T)+T W^{2}+O\left(T \frac{\log (i T / \delta)}{i}\right)
\end{align*}
$$

for all i with probability at least $1-\delta .(b)$ is from (30) and (31). Then with Lemma 1 we have (with probability at least $1-\delta$)

$$
\begin{align*}
\mathrm{ACE} & \leq \frac{\gamma}{1-\rho} \sqrt{\frac{\sum_{i=1}^{N} o(T)+T W^{2}+O\left(T \frac{\log (i T / \delta)}{i}\right)}{T N}} \\
& \leq \frac{\gamma}{1-\rho} \sqrt{W^{2}+\frac{o(T)}{T}+\frac{O(\log (N T / \delta))}{N} \sum_{i=1}^{N} \frac{1}{i}} \tag{33}\\
& \leq \frac{\gamma}{1-\rho} \sqrt{W^{2}+\frac{o(T)}{T}+O\left(\frac{\log (N T / \delta) \log (N)}{N}\right)} .
\end{align*}
$$

If we relax the environment diversity condition to $\Omega(\sqrt{i})$, in (28) we will have $O\left(\frac{\log (i T / \delta)}{\sqrt{i}}\right)$. Therefore in (33) the last term becomes $\frac{O(\log (N T / \delta))}{N} \sum_{i=1}^{N} \frac{1}{\sqrt{i}} \leq \frac{O(\log (N T / \delta))}{\sqrt{N}}$.

A. 7 Experimental details

A.7.1 Theoretical justification of Deep OMAC

Recall that in Deep OMAC (Table 4 in Section 5 the model class is $F(\phi(x ; \hat{\Theta}), \hat{c})=\phi(x ; \hat{\Theta}) \cdot \hat{c}$, where $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times h}$ is a neural network parameterized by $\hat{\Theta}$. We provide the following proposition to justify such choice of model class.
Proposition 1. Let $\bar{f}(x, \bar{c}):[-1,1]^{n} \times[-1,1]^{\bar{h}} \rightarrow \mathbb{R}$ be an analytic function of $[x, \bar{c}] \in[-1,1]^{n+\bar{h}}$ for $n, \bar{h} \geq 1$. Then for any $\epsilon>0$, there exist $h(\epsilon) \in \mathbb{Z}^{+}$, a polynomial $\bar{\phi}(x):[-1,1]^{n} \rightarrow \mathbb{R}^{h(\epsilon)}$ and another polynomial $c(\bar{c}):[-1,1]^{\bar{h}} \rightarrow \mathbb{R}^{h(\epsilon)}$ such that

$$
\max _{[x, \bar{c}] \in[-1,1]^{n+\bar{h}}}\left\|\bar{f}(x, \bar{c})-\bar{\phi}(x)^{\top} c(\bar{c})\right\| \leq \epsilon
$$

and $h(\epsilon)=O\left((\log (1 / \epsilon))^{\bar{h}}\right)$.
Note that here the dimension of c depends on the precision $1 / \epsilon$. In practice, for OMAC algorithms, the dimension of \hat{c} or c (i.e., the latent space dimension) is a hyperparameter, and not necessarily equal to the dimension of \bar{c} (i.e., the dimension of the actual environmental condition). A variant of this proposition is proved in [34]. Since neural networks are universal approximators for polynomials, this theorem implies that the structure $\phi(x ; \hat{\Theta}) \hat{c}$ can approximate any analytic function $\bar{f}(x, \bar{c})$, and the dimension of \hat{c} only increases polylogarithmically as the precision increases.

A.7.2 Pendulum dynamics model and controller design

In experiments, we consider a nonlinear pendulum dynamics with unknown gravity, damping and external 2D wind $w=\left[w_{x} ; w_{y}\right] \in \mathbb{R}^{2}$. The continuous-time dynamics model is given by

$$
\begin{equation*}
m l^{2} \ddot{\theta}-m l \hat{g} \sin \theta=u+\underbrace{f(\theta, \dot{\theta}, c(w))}_{\text {unknown }}, \tag{34}
\end{equation*}
$$

Figure 2: Trajectories (top) and force predictions (bottom) in the pendulum experiment from one random seed. The wind condition is switched randomly every 2 s (indicated by the dashed red lines). The performance of OMAC improves as it encounters more environments while baseline not.
where

$$
\begin{align*}
& f(\theta, \dot{\theta}, c(w))=\underbrace{\vec{l} \times F_{\text {wind }}}_{\text {air drag }}-\underbrace{\alpha_{1} \dot{\theta}}_{\text {damping }}+\underbrace{m l(g-\hat{g}) \sin \theta}_{\text {gravity mismatch }}, \tag{35}\\
& F_{\text {wind }}=\alpha_{2} \cdot\|r\|_{2} \cdot r, r=w-\left[\begin{array}{c}
l \dot{\theta} \cos \theta \\
-l \dot{\theta} \sin \theta
\end{array}\right] .
\end{align*}
$$

This model generalizes the pendulum with external wind model in [35] by introducing extra modelling mismatches (e.g., gravity mismatch and unknown damping). In this model, α_{1} is the damping coefficient, α_{2} is the air drag coefficient, r is the relative velocity of the pendulum to the wind, $F_{\text {wind }}$ is the air drag force vector, and \vec{l} is the pendulum vector. Define the state of the pendulum as $x=[\theta ; \dot{\theta}]$. The discrete dynamics is given by

$$
x_{t+1}=\left[\begin{array}{c}
\theta_{t}+\delta \cdot \dot{\theta}_{t} \tag{36}\\
\dot{\theta}_{t}+\delta \cdot \frac{m l \hat{g} \sin \theta_{t}+u_{t}+f\left(\theta_{t}, \dot{\theta}_{t}, c\right)}{m l^{2}}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
1 & \delta \\
0 & 1
\end{array}\right]}_{A} x_{t}+\underbrace{\left[\begin{array}{c}
0 \\
\frac{\delta}{m l^{2}}
\end{array}\right]}_{B}\left(u_{t}+m l \hat{g} \sin \theta_{t}+f\left(x_{t}, c\right)\right),
$$

where δ is the discretization step. We use the controller structure $u_{t}=-K x_{t}-m l \hat{g} \sin \theta_{t}-\hat{f}$ for all 6 controllers in the experiments, but different controllers have different methods to calculate \hat{f} (e.g., the no-adapt controller uses $\hat{f}=0$ and the omniscient one uses $\hat{f}=f$). We choose K such that $A-B K$ is stable (i.e., the spectral radius of $A-B K$ is strictly smaller than 1), and then the e-ISS assumption in Assumption 1 naturally holds. We visualize the pendulum experiment results in fig. 2

A.7.3 Quadrotor dynamics model and controller design

Now we introduce the quadrotor dynamics with aerodynamic disturbance. Consider states given by global position, $p \in \mathbb{R}^{3}$, velocity $v \in \mathbb{R}^{3}$, attitude rotation matrix $R \in \mathrm{SO}(3)$, and body angular velocity $\omega \in \mathbb{R}^{3}$. Then dynamics of a quadrotor are

$$
\begin{array}{ll}
\dot{p}=v, & m \dot{v}=m g+R f_{T}+f, \\
\dot{R}=R S(\omega), & J \dot{\omega}=J \omega \times \omega+\tau \tag{37b}
\end{array}
$$

where m is the mass, J is the inertia matrix of the quadrotor, $S(\cdot)$ is the skew-symmetric mapping, g is the gravity vector, $f_{T}=[0,0, T]^{\top}$ and $\tau=\left[\tau_{x}, \tau_{y}, \tau_{z}\right]^{\top}$ are the total thrust and body torques from four rotors, and $f=\left[f_{x}, f_{y}, f_{z}\right]^{\top}$ are forces resulting from unmodelled aerodynamic effects and varying wind conditions. In the simulator, f is implemented as the aerodynamic model given in [36].
Controller design. Quadrotor control, as part of multicopter control, generally has a cascaded structure to separate the design of the position controller, attitude controller, and thrust mixer
(allocation). In this paper, we incorporate the online learned aerodynamic force \hat{f} in the position controller via the following equation:

$$
\begin{equation*}
f_{d}=-m g-m\left(K_{P} \cdot p+K_{D} \cdot v\right)-\hat{f} \tag{38}
\end{equation*}
$$

where $K_{P}, K_{D} \in \mathbb{R}^{3 \times 3}$ are gain matrices for the PD nominal term, and different controllers have different methods to calculate \hat{f} (e.g., the omniscient controller uses $\hat{f}=f$). Given the desired force f_{d}, a kinematic module decomposes it into the desired R_{d} and the desired thrust T_{d} so that $R_{d} \cdot\left[0,0, T_{d}\right]^{\top} \approx f_{d}$. Then the desired attitude and thrust are sent to a lower level attitude controller (e.g., the attitude controller in [51]).

