
A Appendix

A.1 Proof of Lemma 1

Proof. Using the e-ISS property in Assumption 1, we have:
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where (a) and (b) are from geometric series and Cauchy-Schwarz inequality respectively.

A.2 Proof of Lemma 2

This proof is based on the proof of Theorem 4.1 in [28].

Proof. For any Θ̄ ∈ K1 and c̄(1:N) ∈ K2 we have
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∇ĉ`(i)t (Θ̂(i), ĉ
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where we have (a) because `(i)t is convex. Note that the total regret of A1 is T · o(N) because G(i) is
scaled up by a factor of T .

A.3 Proof of Theorem 3

Proof. Since Θ ∈ K1 and c(1:N) ∈ K2, applying Lemma 2 we have
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Then applying Lemma 1 we have
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where (a) uses (10).

A.4 Proof of Corollary 4

Before the proof, we first present a lemma [27] which shows that the regret of an Online Gradient
Descent (OGD) algorithm.

Lemma 7 (Regret of OGD [27]). Suppose f1:T (x) is a sequence of differentiable convex cost
functions from Rn to R, and K is a convex set in Rn with diameter D, i.e., ∀x1, x2 ∈ K, ‖x1 −
x2‖ ≤ D. We denote by G > 0 an upper bound on the norm of the gradients of f1:T over K, i.e.,
‖∇ft(x)‖ ≤ G for all t ∈ [1, T ] and x ∈ K.

The OGD algorithm initializes x1 ∈ K. At time step t, it plays xt, observes cost ft(xt), and updates
xt+1 by ΠK(xt−ηt∇ft(xt)) where ΠK is the projection ontoK, i.e., ΠK(y) = arg minx∈K ‖x−y‖.
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Now we will prove Corollary 4 by analyzingR(A1) andR(A2) respectively.

Proof of Corollary 4. Since the true dynamics f(x, c(i)) = Y1(x)Θ + Y2(x)c(i), we have
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Now let us study A1. Similarly, recall that G(i)(Θ̂) =
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Now let us analyze ACE(baseline adaptive control). To simplify notations, we define Ȳ (x) =

[Y1(x) Y2(x)] : Rn → Rn×(p+h) and α̂ = [Θ̂; ĉ] ∈ Rp+h. The baseline adaptive controller updates
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Note that this bound does not improve as the number of environments (i.e., N ) increases.
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A.5 Proof of Theorem 5

Proof. For any Θ ∈ K1 and c(1:N) ∈ K2 we have
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Then combining with Lemma 1 results in the ACE bound.

A.6 Proof of Theorem 6

Proof. Note that in this case the available measurement of f at the end of the outer iteration i is:
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where (a) uses (28).

Finally we have
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for all i with probability at least 1− δ. (b) is from (30) and (31). Then with Lemma 1 we have (with
probability at least 1− δ)
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If we relax the environment diversity condition to Ω(
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A.7 Experimental details

A.7.1 Theoretical justification of Deep OMAC

Recall that in Deep OMAC (Table 4 in Section 5) the model class is F (φ(x; Θ̂), ĉ) = φ(x; Θ̂) · ĉ,
where φ : Rn → Rn×h is a neural network parameterized by Θ̂. We provide the following proposition
to justify such choice of model class.

Proposition 1. Let f̄(x, c̄) : [−1, 1]n × [−1, 1]h̄ → R be an analytic function of [x, c̄] ∈ [−1, 1]n+h̄

for n, h̄ ≥ 1. Then for any ε > 0, there exist h(ε) ∈ Z+, a polynomial φ̄(x) : [−1, 1]n → Rh(ε) and
another polynomial c(c̄) : [−1, 1]h̄ → Rh(ε) such that

max
[x,c̄]∈[−1,1]n+h̄

‖f̄(x, c̄)− φ̄(x)>c(c̄)‖ ≤ ε

and h(ε) = O((log(1/ε))h̄).

Note that here the dimension of c depends on the precision 1/ε. In practice, for OMAC algorithms,
the dimension of ĉ or c (i.e., the latent space dimension) is a hyperparameter, and not necessarily
equal to the dimension of c̄ (i.e., the dimension of the actual environmental condition). A variant of
this proposition is proved in [34]. Since neural networks are universal approximators for polynomials,
this theorem implies that the structure φ(x; Θ̂)ĉ can approximate any analytic function f̄(x, c̄), and
the dimension of ĉ only increases polylogarithmically as the precision increases.

A.7.2 Pendulum dynamics model and controller design

In experiments, we consider a nonlinear pendulum dynamics with unknown gravity, damping and
external 2D wind w = [wx;wy] ∈ R2. The continuous-time dynamics model is given by

ml2θ̈ −mlĝ sin θ = u+ f(θ, θ̇, c(w))︸ ︷︷ ︸
unknown

, (34)
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Figure 2: Trajectories (top) and force predictions (bottom) in the pendulum experiment from one
random seed. The wind condition is switched randomly every 2 s (indicated by the dashed red lines).
The performance of OMAC improves as it encounters more environments while baseline not.

where
f(θ, θ̇, c(w)) = ~l × Fwind︸ ︷︷ ︸

air drag

− α1θ̇︸︷︷︸
damping

+ml(g − ĝ) sin θ︸ ︷︷ ︸
gravity mismatch

,

Fwind = α2 · ‖r‖2 · r, r = w −
[
lθ̇ cos θ

−lθ̇ sin θ

]
.

(35)

This model generalizes the pendulum with external wind model in [35] by introducing extra modelling
mismatches (e.g., gravity mismatch and unknown damping). In this model, α1 is the damping
coefficient, α2 is the air drag coefficient, r is the relative velocity of the pendulum to the wind,
Fwind is the air drag force vector, and ~l is the pendulum vector. Define the state of the pendulum as
x = [θ; θ̇]. The discrete dynamics is given by

xt+1 =

[
θt + δ · θ̇t

θ̇t + δ · mlĝ sin θt+ut+f(θt,θ̇t,c)
ml2

]
=

[
1 δ

0 1

]
︸ ︷︷ ︸

A

xt+

[
0
δ
ml2

]
︸ ︷︷ ︸
B

(ut+mlĝ sin θt+f(xt, c)), (36)

where δ is the discretization step. We use the controller structure ut = −Kxt−mlĝ sin θt− f̂ for all
6 controllers in the experiments, but different controllers have different methods to calculate f̂ (e.g.,
the no-adapt controller uses f̂ = 0 and the omniscient one uses f̂ = f ). We choose K such that
A−BK is stable (i.e., the spectral radius of A−BK is strictly smaller than 1), and then the e-ISS
assumption in Assumption 1 naturally holds. We visualize the pendulum experiment results in fig. 2.

A.7.3 Quadrotor dynamics model and controller design

Now we introduce the quadrotor dynamics with aerodynamic disturbance. Consider states given by
global position, p ∈ R3, velocity v ∈ R3, attitude rotation matrix R ∈ SO(3), and body angular
velocity ω ∈ R3. Then dynamics of a quadrotor are

ṗ = v, mv̇ = mg +RfT + f, (37a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τ, (37b)

where m is the mass, J is the inertia matrix of the quadrotor, S(·) is the skew-symmetric mapping, g
is the gravity vector, fT = [0, 0, T ]> and τ = [τx, τy, τz]

> are the total thrust and body torques from
four rotors, and f = [fx, fy, fz]

> are forces resulting from unmodelled aerodynamic effects and
varying wind conditions. In the simulator, f is implemented as the aerodynamic model given in [36].

Controller design. Quadrotor control, as part of multicopter control, generally has a cascaded
structure to separate the design of the position controller, attitude controller, and thrust mixer
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(allocation). In this paper, we incorporate the online learned aerodynamic force f̂ in the position
controller via the following equation:

fd = −mg −m(KP · p+KD · v)− f̂ , (38)

where KP ,KD ∈ R3×3 are gain matrices for the PD nominal term, and different controllers have
different methods to calculate f̂ (e.g., the omniscient controller uses f̂ = f ). Given the desired
force fd, a kinematic module decomposes it into the desired Rd and the desired thrust Td so that
Rd · [0, 0, Td]> ≈ fd. Then the desired attitude and thrust are sent to a lower level attitude controller
(e.g., the attitude controller in [51]).
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