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A APPENDIX

In the Appendix section, we provide more detailed description to our model, more experiment re-
sults, as well as additional remarks.

A.1 BLOCH EQUATIONS

The Bloch equations based MR physics governs signal formation, which involves spin dynamics,
quantum mechanics and electromagnetism. They are composed of a set of linear ordinary differential
equations in matrix form:

dM

dt
=

[−1/T2 γBz −rBy

−γBz −1/T2 γBx

γBy −γBx −1/T1

]
M +

[
0
0

M0/T1

]

where M =

[
Mx

My

Mz

]
. The Bloch equations represent a nonlinear mapping from per-voxel intrinsic

tissue properties to the corresponding temporal signal evolution. It describes discrete spin motion at
small time interval that records the magnetisation response of proton dipoles to dynamic excitations
induced by the RF sequence. The dynamics process can be characterized by 3 stages: nutation and
forced precession caused by RF pulse, rotation caused by gradient magnetic field, and relaxation
after removing RF pulse. Thus, this dynamic process can be described with successive operators
according to a specific MR pulse sequence.

RF effect. Each RF pulse excitation applies a rotation on the magnetization M as:

M ′ = Rθ,ϕM

where Rθ,ϕ denotes the rotation caused by RF with arbitrary B1 direction. It is formulated as

Rθ,ϕ = Rz(−ϕ)Ry(−θ)Rz(α)Ry(θ)Rz(ϕ)

where ϕ = tan−1(By/Bx), θ = tan−1(|Bxy/Bz|)
For instance, the RF pulse with flip angle α leads to a rotation on M along x, y axis:

M ′ = Rx(α)M =

[
1 0 0
0 cosα sinα
0 − sinα cosα

]
M

and

M ′ = Ry(α)M =

[
cosα − sinα
0 1 0

sinα 0 cosα

]
M

Gradient effect. The gradient / ∆B0 causes rotation of angle θ on M along z axis:

M ′ = Rz(θ)M =

[
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

]
M

where θ = γ(G · r⃗ +∆B0)τ

Relaxation effect. The relaxation over time period τ gives:

M ′ =

[
E2 0 0
0 E2 0
0 0 E1

]
M +

[
0
0

M0(1− E1)

]

where E1 = exp(−τ/T1), and E2 = exp(−τ/T2)

The rotations and relaxations can be combined and then propagated along L time points, leading to:

M1 = A1M0 +B1;M2 = A2M1 +B2; . . . ;ML = ALML−1 +BL
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which is equivalent to:
ML = AM0 +B

where A =
∏1

i=L Ai and B =
∑L

i=1

(∏i+1
j=L Aj

)
Bi =

(∏2
i=L Ai

)
B1 + . . .+ALBL−1 +BL

The differentiability of Bloch equations. Under some conditions, typically simple RF se-
quences and with assumed steady-state, there exist analytic (closed-form) solutions, e.g. M =
M0(1 − exp(−TR/T1)) exp(−TE/T2) for spin-echo pulse sequence. Then, it is apparent that
M is differentiable with respect to tissue properties T1, and T2. However, for a complex pulse
sequence, analytical solutions are hard to obtain due to spin history effects at unsteady-states and
system imperfections. For example, in MR fingerprinting, various sequence components are varied
in a pseudo-random pattern. In such cases, the solutions are also numerically differentiable with
respect to T1, T2.

A.2 EPG FORMALIZATION

Extended phase graphs (EPG) is a popular and powerful formalism to solve Bloch equations in the
Fourier domain. It provides fast and precise quantitation of echo intensities by characterizing the
effect of gradients, radio frequency (RF) pulses and relaxation during the MR sequence as the action
of a few matrix operations on the configuration states, a.k.a. phase states [59], a key concept based
on the Fourier decomposition of transverse magnetization.

Define a new transverse magnetization Mxy as the combination of Mx and My:

Mxy = Mx + iMy

This leads to a new matrix form for the magnetization with the following relation to the previous
one: Mxy

M∗
xy

Mz

 =

[
1 i 0
1 −i 0
0 0 1

] [
Mx

My

Mz

]

The Fourier coefficients F+
n , F−

n , Zn of the magnetization lead to the configuration state matrix Q
as:

F+
n =

∫ 1

0

Mxy(z)e
−2πinzdz

F−
n = F ∗

−n =

∫ 1

0

M∗
xy(z)e

−2πinzdz

Zn =

∫ 1

0

Mz(z)e
−2πinzdz

Q =

 F+
0 F+

1 · · · F+
N

F+
0 ∗ F−

1 · · · F−
N

Z0 Z1 · · · ZN


The inverse Fourier transform to the state matrix Q gives the magnetization as

Mxy(z) = F+
0 +

∞∑
n=1

[
F+
n e2πinz + (F−

n )∗e−2πinz
]

Mz(z) = Real

{
Z0 + 2

N∑
n=1

Zne
2πinz

}
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A.3 MORE DETAILS FOR EXPERIMENTS SETTINGS

We exploit the brain phantom of the BrainWeb Brain Database [10] to construct a set of realistic,
high-resolution T1 maps and T2 maps as ground truth, which faithfully exhibit spatial distribution
for different tissue compositions, including CSF, Grey matter, White matter, Adipose, Skin/muscle
with corresponding T1, T2, and proton density values. The brain phantoms adopted in our exper-
iment are the fuzzy version instead of the somewhat idealized crisp version, as the fuzzy version
has taken into account partial volume effects that a voxel may contain a fragment of different tissue
types, while the crisp version does not consider the inaccuracies associated with partial volume ef-
fects. The phantom data is obtained following the procedures: 1) obtain high-resolution real MRI
images (weighted T1, weighted T2) from MRI machines using specific RF sequences, 2) apply clas-
sification algorithm to each voxel to distinguish the tissue type, including grey matter, white matter,
skin, etc. 3) assign properties, such as T1, T2 values to each tissue type, which gives the high-
resolution phantom data. In summary, T1 and T2 are identified phenomenologically to serve as gold
standard reference.

In the experiment with different RF settings, we perform model training on one RF pulse sequence
and evaluate the trained models on another different RF pulse sequence. Specifically, we adopted 3
different RF pulse sequences, including FISP [43], Spline5 [40], Spline11Noisy [40] with their flip
angles shown in Figure 3a. The three RF pulse sequences have the same TR and TE settings, but
different FA settings. Specifically, the FA of FISP is constituted a sinusoidal variation in the range
of 0◦ − 70◦ degrees to ensure smoothly varying transient state of the magnetization [43]. The FA
of Spline5 is spline-interpolated function with five control points randomly sampled from 0◦−120◦

degree, while the FA of SplineNoise11 is spline-interpolated function with 11 control points plus
Gaussian random noise with 0 mean and 10 variance. Three FA settings are shown in Figure 3a.
As suggested in [43], TE is chosen to be a constant of 10 ms across all the time points, TR is
randomly time-varying sequence in the range of 11.5 - 14.5 ms with a Perlin noise pattern. FISP
is used exclusively in the testing stage, while Spline5 and Spline11Noisy are used exclusively in
the training stage. Under such settings, the performance of our BlochNet and other six models is
compared in Table 2.

A.4 PHANTOM DATA IN DETAIL

A Physical phantom is an object created using physical materials that mimic the responses of human
tissues under specific conditions. Since available real medical images are not enough to evaluate
different image analysis procedures[10], phantom data contributes to comparing the performance of
different medical imaging machines such as MRI [1]. However, the physical phantom with fixed
shape and properties makes it hard to test medical imaging machines under various conditions. A
digital phantom is a data file including any property of tissue that the imaging system is supposed
to identify. Compared to the physical phantom, it can control factors that generate images such as
slice thickness or contrast, leading to a dataset with a diverse distribution. For its generation, the
best classifier selected by the neuroanatomist to assign each voxel of multiple MR images (e.g., T1
weighted or T2 weighted) to different tissue types such as white matter and grey matter. Then tissue
parameters (T1, T2) are decided according to each tissue type for each voxel.

we select a few slices from each pair of T1/T2 phantom volume across 10 subjects (we select the
fourth and fifth slices showing multiple tissues clearly). These slices are then vectorized as column
vectors and stacked as a 2D matrix, leading to the ground truth tissue properties Θ ∈ RN×2, where
N = 85, 645 denotes the total number of voxels from all slices. Here, we only consider the temporal
information and ignore the spatial information, in other words, we treat every temporal sequence in
different locations in each slice and subject as separate data points.

A.5 MORE RESULTS

A.5.1 GENERALIZATION ACROSS DIFFERENT DATA DISTRIBUTIONS

Figure 6 in appendix shows the predicted tissue properties (marked as red dots) using various models
on anatomical MRF data, with the gold standard tissue properties marked as a blue line for reference.
All four models perform well in the middle range of tissue properties and lead to small errors.
However, the performance degrades to some extent at the head (small values) and tail (large values)
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Dictionary
matching FC RNN HYDRA Autoencoder

(FC-FC)
Autoencoder
(RNN-RNN)

Causal
(FC-Bloch)

Phantom data 6.6003 0.2609 0.2727 0.2363 0.2263 0.2784 0.1024
Anatomical data 6.0656 0.2773 0.3555 0.3884 0.2459 0.3353 0.1344

Table 3: Generalization performance across different RF pulse sequences: Spline5 in training,
FISP in testing. All modes are trained on synthetic signatures with uniformly distributed T1 and
T2 values as the label, and then tested on phantom data (top row) and anatomical data (bottom
row). The mean square error between the ground truth and predicted tissue properties measures the
generalization performance of these trained models on different RF settings, as well as different data
distributions.

region. For example, Figure 6a, 6b, 6c tend to have a higher loss when T2 values are smaller than 30
ms. In comparison, our physics-based model demonstrates a more uniform stability on the prediction
performance, and leads to small loss across the whole value range, especially when target T1, T2
values are close to the maximum and minimum, as shown in 6d.

(a) FC. (b) HYDRA.

(c) Auto-encoder(FC-FC). (d) Physics(FC-Bloch).

Figure 6: Comparison of the generalization performance across different data distributions for 4
models. Training with synthetic data, and testing with anatomical data. Blue line: ground truth. Red
dots: predicted values for tissue properties T1 and T2.

A.5.2 GENERALIZATION ACROSS DIFFERENT RF PULSE SEQUENCES

Here, we additionally evaluate generalization performance across different RF pulse sequences
where models are trained and tested with different types of RF pulse sequences. In the main pa-
per, we use two flip angles sampled from two different distribution, Spline5 and SplineNoisy11, for
generating training synthetic data. In comparison, we sampled two flip angles from one distribution,
Spline5, for training stage and FISP flip angle is applied for test stage. Table 3 shows the same
analysis as the Table 2 in the main paper. The proposed BlochNet shows the lowest reconstruction
loss on both phantom and anatomical data, outperforming other comparison models.

A.6 MORE DETAILS ABOUT FAST BLOCH DECODER BASED ON EFFICIENT EPG

Since the released EPG code [59] has slow computation speed for solving numerical solutions, we
adapt the EPG code [59] to achieve a much more efficient implementation, making it practical to
use the exact MRI physics model as a decoder in the training procedure. A key change involves
incorporating the torch jit package, and using batch-wise computation for the 3 Bloch stages includ-
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ing RF pulse excitation, gradient-based slice selection, and relaxation, handling complex values in
torch efficiently. This makes computation of the Bloch equations nearly a thousands times faster
than the original EPG code. For example, generating a batch (1000) of magnetic responses of length
1000 takes only 1.6768 seconds in average using our EPG implementation, in comparison with
587.8097 seconds in average using the original EPG implementation [59] on the same CPU. Most
of the benefit to faster computation comes from make it batch-wise computation using matrix mul-
tiplication. When the Bloch equation is applied as a decoder with an encoder with three layers of
fully-connected model, our code takes about 0.1 hour in average for an epoch in training, while
code [59] takes about 70 hours in average for an epoch on the same GPU(GTX 1080 Ti). Using
torch jit gives such advantage for faster computation since it makes gradient computation process
much efficient in end-to-end training procedure.
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