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A APPENDIX

A.1 FRAMEWORK INTEGRATE: TVM TENSOR EXPRESSION

To support TVM, we first need to specify that tvim.nd.NDArray is the data structure for Tensors
inmetadist.platform.tvm. Then, we must define and register basic operations such as add,
concatenate, chunk, allclose, and others that are required to perform relevant calculations
in the ShardCombine algorithm.

Here’s an example of how we can use MetaDist to run the ShardCombine Algorithm on TVM:

import tvm, metadist

n tvm.te.var ("n")

A = tvm.te.placeholder((n, ), name="A")

B = tvm.te.placeholder((n, ), name="B")

C = tvm.te.compute (A.shape, lambda i: A[i] + B[i], name="C")
s = tvm.te.create_schedule (C.op)

tgt = tvm.target.Target (target="1lvm", host="11lvm")
fadd tvm.build(s, [A, B, C], tgt, name="myadd")

def fadd_wrapped(a, b):
c = metadist.platform.tvm.zeros_like (a)
fadd(a, b, c¢)
return c

meta_op_ = metadist.unifyshard.MetaOp (fadd_wrapped, ((a, b), {}))
meta_op_.sharding_annotation ()

Note that in MetaDist, we need to shard and combine the input and output. However, TVM’s kernel
includes the output in the parameters of the input. Thus, we need to wrap the TVM kernel with the
fadd_wrapped function before using it. Once the kernel is wrapped, we can apply the MetaSPMD
annotation to the function via sharding_annotation. Adding distributed support for TVM is
mainly missing communication features and distributed runtime. we will try to fully support TVM
in future work.

A.2 DETAILED CONFIGURATION OF THE MODEL IN SECTION 4

For our weak-scaling experiments in Figure 8, we used three different models: GPT, WideResNet,
and GAT. Regarding models for benchmarking, we carefully selected well-known models such as
GPT and WResNet. These choices allowed us to conduct a scientific comparison with existing
approaches effectively. Moreover, we intentionally included models like GAT, which lack designed
parallelism and have not been extensively explored in the context of auto-parallelism.

The detailed configurations for each model are shown in Table 2, 3 and 4.

Table 2: Four sizes of GPT models for evaluation.

Number of - Number of e Number of Hidden size  Attention heads  Batch Size TFLOPs
GPUs parameters (billion) layers

1 1.26 1 10240 40 8 27.75

2 2.52 2 10240 40 8 58.93

4 5.03 4 10240 40 8 121.29
8 10.07 4 14336 56 8 237.15
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Table 3: Four sizes of WideResNet models for evaluation.
Number of Number of parameters

Number of layers  Width  Batch Size  #FLOPs (tera)

GPUs (billion)

1 0.63 50 448 64 37.08
2 0.63 50 448 128 74.17
4 1.23 50 320 128 145.22
8 1.23 50 320 256 290.44

Table 4: Four sizes of GAT models for evaluation.

Number of Nl:ln.lbel‘ of parameters  Number of Hidden size Number of #FLOPs (tera)
GPUs (billion) nodes heads

1 0.6 1024 24576 1 2.63

2 1.21 1024 24576 2 6.49

4 242 1024 24576 4 14.23

8 4.83 1024 24576 8 29.69

A.3 DETAILS ABOUT GATHER

What’s challenging and interesting is the complexity of the different operation. MetaDist introduces
two arguments in Gather, halo and block to support operators, such as convolution and concat. These
two operators are the more frequently used operators in deep learning models. We found that the
normal ShardCombine approach cannot describe these two operators. So we supported them by
extending the Gather function. And because the complete exploration of the space is large and time
consuming, we use some prior knowledge for efficiency.

A.3.1 HALOGATHER AND CONVOLUTION

In Figure 9, the shard and gather is extended with a halo argument. In the left case, we . If it is
positive, we add the data in the overlap region when we combine the results. If it is negative, we
discard the data with width d and then perform the gather operation. In this case

1

Global Tensor ‘ A ‘ Shard Result

=
Shard Tensor(halo=1)

Figure 9: Meaning of the argument halo in Shard and Gather

Figure 10 illustrates the two most common convolution operators. The left panel displays
convolution(kernel = 3, pad = 0), while the right panel shows convolution(kernel = 3, pad =
1). For simplicity and ease of understanding, we use 1D convolution. Similar methods can be used
in 2D and 3D convolution. In both cases, we assume that the input Tensor is A, which has z ele-
ments. After shard, each of our two devices contains half of the elements of A. Then we perform
a local convolution calculation. In convolution without padding, the halo argument can be inferred
from the tensor size. In convolution with padding, since the last row of data is computed under
ZERO padding and is not equivalent with the original computation, the size of the shard halo can
be inferred from the allclose_rows. And when trying to GATHER, halo argument of GATHER
can be inferred from the tensor size.
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Figure 10: Two kinds of convolution (commonly used) are shown.

A.3.2 BLOCKGATHER AND CONCAT

The concat (or concatenate) operator accepts a set of tensors as input, and its output is a tensor
created by splicing together the input tensors. We can observe that if we shard each input tensor and
then concatenate them locally, the results do not align with the global result; it resembles a block-
cyclic distribution. Therefore, we introduce the argument named block. The gather operation,
with block = n, first divides the shard tensor into n parts, then performs all-gather on each
part, and finally splices the results of the n all-gather parts.

Figure 11 shows depicts a concatenation of three tensors, Al, A2, B1, B2, C1, C2 represent the
shards of these three tensors. After concatenating them locally, we observed that only the first
allclose._rows elements could be aligned. Therefore, we can infer from this information that
’block’ is set to 3, meaning that the combine function here is Gather (block=3) .

concat
Global Tensor | A | | B | | C |
\LConcat :
Global Result I A | B | c |
)
auclu'se,rowg' \
Device 1 Device 2
Shard Tensor | Aq || B4 || C4 || A2 || B2 || C2 |
JConcat . rows :
Shard Result ] Aq By | Cy l | A2 | B2 | C2 |
allclose_rowt
rows  _
allclose_rows |
Gather(block=3) | Aq | A2 | B4 | B2 | Cq | C2 |

Figure 11: This example shows the concat operator concatenating three tensors. rows represents
the number of rows in the first shard result. allclose_rows represents the number of rows in
the first shard result that are allclose with the global result. Dividing the two yields the guessed
argument of block, which is used to try and validate.
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