
Proceedings of Machine Learning Research – Under Review:1–19, 2025 Full Paper – MIDL 2025 submission

Sequence models for continuous cell cycle stage prediction
from brightfield images

Louis-Alexandre Leger1∗ louis-alexandre.leger@epfl.ch

Maxine Leonardi1∗ maxine.leonardi@epfl.ch

Andrea Salati1∗ andrea.salati@epfl.ch

Felix Naef 1† felix.naef@epfl.ch

Martin Weigert1,2† martin.weigert@tu-dresden.de
1 Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne

(EPFL), Lausanne, Switzerland
2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Ger-

many

Editors: Under Review for MIDL 2025

Abstract

Understanding cell cycle dynamics is crucial for studying biological processes such as
growth, development and disease progression. While fluorescent protein reporters like the
Fucci system allow live monitoring of cell cycle phases, they require genetic engineering
and occupy additional fluorescence channels, limiting broader applicability in complex ex-
periments. In this study, we conduct a comprehensive evaluation of deep learning methods
for predicting continuous Fucci signals using non-fluorescence brightfield imaging, a widely
available label-free modality. To that end, we generated a large dataset of 1.3 M images
of dividing RPE1 cells with full cell cycle trajectories to quantitatively compare the pre-
dictive performance of distinct model categories including single time-frame models, causal
state space models and bidirectional transformer models. We show that both causal and
transformer-based models significantly outperform single- and fixed frame approaches, en-
abling the prediction of visually imperceptible transitions like G1/S within 1h resolution.
Our findings underscore the importance of sequence models for accurate predictions of cell
cycle dynamics and highlight their potential for label-free imaging.
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1. Introduction

The cell cycle is the driving force behind the growth and development of all living organ-
isms. This well-studied sequence of cellular events is tightly regulated, as aberrations in
such mechanisms can lead to genomic instability, a key driver of various diseases including
cancer (Kastan and Bartek, 2004). Live cell fluorescence microscopy has become a powerful
tool for studying cell cycle progression, particularly through the genetic engineering of fluo-
rescent reporters like the Fucci system (Sakaue-Sawano et al., 2008; Stallaert et al.). This
system enables the distinction of cell cycle phases from single images by fluorescently tag-
ging the two proteins Cdt1 and Geminin whose expression changes distinctively with the cell
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Figure 1: Multi-modal imaging of Fucci-reporter cells reveals a continuous rep-
resentation of cell cycle states. a) Time-lapse imaging of Fucci-reporting cells allows
for precise quantification of cell cycle staging through the characteristic oscillations of flu-
orescent reporter intensities. b) Representative time-lapse images of brightfield, H2B, and
Fucci channels across one full (M-M) cell cycle. c) Quantification of integrated logarith-
mic fluorescence intensities from Fucci reporters in a representative full M-M (mitosis to
mitosis) track. Vertical lines mark the time points corresponding to the images shown in d.
d) Log-transformed Fucci manifold for continuous inference of cell cycle states.

cycle (Figure 1). Despite its utility, the classic Fucci system and recent variants (Sakaue-
Sawano et al.; Grant et al.) are limiting in practice as they occupy two of the few available
microscopy channels, reducing the ability to study other cellular processes simultaneously
and requiring genetic modification that might interfere with the endogenous cell cycle reg-
ulation. In contrast, brightfield microscopy is an easily accessible and label-free imaging
modality that does not require genetic engineering, providing limited specificity and imag-
ing contrast. Although some cell cycle transitions, such as nuclear envelope breakdown, are
marked by distinct morphological changes that are easily detectable, most cell cycle transi-
tions are visually indiscernible in individual brightfield images of cells. In this paper, we ask
whether leveraging the temporal information in time-lapse brightfield microscopy images of
cells would allow to predict continuous cell cycle states without the need for fluorescent
reporters such as Fucci. To address this, we study several sequence-based deep learning
models, including transformers (Vaswani et al., 2017) and recently proposed state-space
models (e.g . Mamba (Gu and Dao, 2023)). In particular, we will investigate both causal
sequence models that only use information from previous time points, as well as non-causal
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models that may ingest the entire sequence. Providing a new dataset of over 1 M images
of segmented and tracked RPE-1 cells with accompanying ground truth Fucci signals, we
show that both causal and transformer-based non-causal models significantly outperform
single-frame approaches, enabling the prediction of morphologically important cell state
transitions like G1/S within 1h resolution from live-cell brightfield imaging alone.

1.1. Related work

The prediction of individual cell states from single microscopy images has found consider-
able interest in the literature. For instance (Rappez et al.) and (Narotamo et al.; Li et al.)
showed that deep learning-based models allow to classify discrete cell cycle states such as
the G1, S, or G2 phase from static multichannel images of cells. In particular, (Eulenberg
et al.; Blasi et al.; Jin et al.; He et al.) explored the use of brightfield and phase-imaging
data for cell cycle classification without fluorescence labeling. However, accurately anno-
tating discrete cell cycle stages highly depends on the imaging modality with nuclear stains
like DAPI or Hoechst providing clear features, while phase or brightfield imaging require
substantial more manual annotation expertise. Beyond static images, several studies have
investigated how the temporal information of images sequences can be leveraged to capture
dynamic cell behaviors (Wang et al., 2020; Zhao et al.; Chu et al., 2020). However, most
approaches have so far been focused on well-defined cell phases such as mitosis, where large
morphological changes facilitate annotation and prediction (Held et al.; Moreno-Andrés
et al.; Jose et al., 2024; Su et al., 2017). A notable exception is (Ulicna et al.) which applies
dynamic time warping (DTW) to features from an unsupervised autoencoder, enabling to
temporally align cell trajectories and to continuously predict cycle states across interphase.
Sequence models such as recurrent neural networks and transformers (Vaswani et al., 2017)
have been shown to be effective for modeling temporal data (Hewamalage et al., 2021; Wen
et al., 2023), with state-space models such as Mamba (Gu et al., 2022; Gu and Dao, 2023)
having recently gained considerable interest due to their training and inference efficiency.
As the cell cycle is a continuous causal process, sequence models appear to be a natural
fit for our task. However, studies that address this question systematically remain missing,
with the closest work being (Jose et al., 2024) which uses recurrent neural networks for cell
cycle prediction, yet for the case of a small number of discrete cell states.

2. Method

2.1. Dataset

We generated a large dataset of dividing human Fucci RPE1 cells using joint brightfield
and fluorescence time lapse microscopy. Movies spanning 72 hours were acquired at a
5 minute time resolution, capturing multiple cell cycles. In addition to the brightfield
modality, we acquired a nuclear marker channel (Histone H2B) and the two Fucci channels
(Fucci1/2). Based on the H2B channel, we segmented the cell nuclei with a custom StarDist
model (Schmidt et al., 2018) and tracked them across frames using TrackMate (Tinevez
et al., 2017). Note that since the amount of H2B histones needed by cells to pack DNA
doubles during S (DNA replication), the H2B channel does contain information on cell
cycle progression. Below, we leverage this as a control to assess predictive performance of
brightfield vs H2B. Full cell cycle tracks (from one mitosis to the next, M-M) were identified
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Figure 2: Overview of prediction approach. a) We use a ResNet-18 (He et al., 2016) to
extract single frame embeddings from a brightfield sequence which are fed into a sequence
model that predicts both Fucci channels. b) Sequence models explored in this paper:
Single Frame MLP, Fixed-frame CNN, causal state-space models e.g . Mamba (Gu and
Dao, 2023), bidirectional models e.g . transformers (Vaswani et al., 2017).

using K-Means clustering and ground-truth Fucci signals were computed by normalizing
the average Fucci intensities measured across the segmented nuclear mask (Figure 1c,d).
The training dataset comprises 5,188 full (M-M) cell cycle tracks with an average track
length of 230 frames. Each track contains paired brightfield and H2B images of size 64 ×
64 centered on the nucleus and the corresponding integrated Fucci signals. To evaluate
model performance, we created two additional test datasets: Regular, which contains 358
additional full tracks from RPE1 cells acquired at similar conditions as the training set,
and Drug, which comprises 73 complete tracks of cells treated with the cell cycle inhibitor
Palbociclib that heavily distorts the cell cycle and which is used in the clinic to treat breast
cancer. In total, this training and testing dataset consists of approximately 1.3 M images
and Fucci signals, all of which we make publicly available alongside this paper1.

2.2. Method

The cell cycle prediction task can be formalized as follows: Given a temporal sequence of
N brightfield images X ∈ RN×64×64, each associated with a corresponding two-dimensional
Fucci signal Y ∈ RN×2, the goal is to train a model f that predicts the normalized Fucci
intensities across the entire sequence in a supervised manner, i.e. f : RN×64×64 → RN×2 .
Note that the length N of the input is not fixed and the sequences is not required to span
the entire cell cycle, allowing us to analyze the impact of temporal context on prediction
performance. For this cell cycle prediction task, we evaluated three conceptually distinct
model classes: single-frame models, causal models and non-causal models (cf. Figure 2).
Each model uses first a ResNet-18 (He et al., 2016) as feature extractor which for every input
image in the sequence independently creates a 512-dimensional embedding. The sequence
of embeddings is then fed into the proper sequence model head that differs between the

1. https://zenodo.org/records/14774038
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three classes: Single-frame models serve as a baseline, predicting the Fucci signal from
each image embedding independently without leveraging temporal information. We use
a simple 4 layer MLP with hidden dimension 512. Fixed-frames models that use a fixed
history of past frames for prediction and for which we use a causal convolutional neural
networks (Van Den Oord et al., 2016) with a fixed causal temporal receptive field. Causal
models that incorporate past and present temporal context in more flexible way and which
are able to potentially capture arbitrary long temporal dependencies. In particular, we
compare LSTMs (Hochreiter and Schmidhuber, 1997), Mamba (Gu and Dao, 2023), and
causal transformers with masked attention. Bidirectional models process the entire sequence
bidirectionally, using both past and future frames for inference (i.e. non-causal information).
We use a standard transformer (4 layers) as representative architecture. To ensure a fair
comparison, we choose all sequence heads to have the same number of parameters (≈ 1M).
All transformer variants additionally use rotary positional embeddings (Su et al., 2024) to
encode the relative temporal position of each frame. We train each model for 150 epochs
while randomly sampling subtracks of variable lengths, using a learning rate of 10−4 and
L1 loss. We use standard data augmentation such as random rotations and flips.

2.2.1. Performance metrics

We evaluated model prediction by computing the mean L1 error for each Fucci channel
across a given track. Further, we use the dynamic time warping distance ∆DTW between
the predicted and ground truth Fucci signal that takes into account both the signal pre-
diction error as well as the temporal misalignment between the two signals. We use the
default ∆DTW distance implementation from the dtaidistance package (Meert et al.) with
a penalty of 0.1. Additionally, we introduced two biologically meaningful cell cycle check-
points (Figure 1) and measured the time difference between our predicted and observed
checkpoints in minutes. The first checkpoint tG1/S is the onset of the Geminin (Fucci 2)
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Figure 3: Predictions on unperturbed RPE cells Regular. a) Distribution of L1
errors across the different models. b) Predictions of Fucci signals on two example tracks:
one with accurate and one with poor predictions. The ground truth signal is shown in black.
c) Average prediction error, and d) variability of ground truth Fucci signals as a function
of normalized cell cycle time τ .
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Table 1: Cell cycle prediction accuracy for brightfield on Regular. Shown are
mean and standard deviation of the L1 error per Fucci channel and ∆DTW for full tracks
across Regular. ∆DTW when using H2B images as input modality for comparison.

Brightfield Histone H2B

Models L1,FUCCI1 L1,FUCCI2 ∆DTW ∆DTW

Single Frame 0.193 ± 0.066 0.146 ± 0.045 3.735 ± 0.863 2.595 ± 1.201
Causal CNN 0.157 ± 0.078 0.122 ± 0.049 2.468 ± 0.917 2.165 ± 1.210
Mamba 0.112 ± 0.072 0.091 ± 0.049 1.444 ± 0.898 1.426 ± 0.949
Transformer 0.066 ± 0.038 0.062 ± 0.037 1.285 ± 0.553 1.155 ± 0.612

signal, marking the G1/S phase transition (Sakaue-Sawano et al.). While the classic Fucci
reporter does not provide an exact molecular landmark of the S/G2 transition, we use the
disappearance of the Cdt1 (Fucci 1) signal as an approximate landmark for evaluating
S/G2 transition predictions tS/G2. We use these two landmarks to categorize cells into
discrete G1, S, and G2 phase classes for which we compute the F1-score of predictions.

3. Results

3.1. Comparison of prediction accuracy across sequence models

We first compare the performance of the different sequence models on predicting the Fucci
signals from brightfield images for full (M-M) cell cycle tracks. As seen in Figure 3a, the sin-
gle frame model predicts extremely noisy signals that deviate substantially from the ground
truth Fucci signal, whereas both causal and bidirectional models achieve qualitatively much
better predictions on both Fucci channels and generally aligns with the expected trends
(cf. Supp. Figure 6a,b, Supp. Figure 7). To quantitatively assess the performance of the
different models, we show the mean L1 error for each Fucci channel across all tracks as well
as the average ∆DTW distance between the predicted and ground truth Fucci signals for
the different models in Table 1. As expected, the single frame model which operates without
integrating temporal information performs the worst across all metrics (∆DTW = 3.735),
while integrating the full bidirectional (non-causal) sequence information via a transformer
achieves the best prediction (∆DTW = 1.285). Surprisingly, there is a notable difference
between the performance of the fixed-frames model (causal CNN) and the state-space model
(Mamba), with the former performing substantially worse than the latter (∆DTW = 2.468
vs. 1.444). This suggests that models that allow information propagation across the entire
sequence can be more effective than models that only use a fixed-size temporal context. We

Table 2: Prediction accuracy of biological checkpoints and selected cell cycle
states from brightfield images on Regular.

Models ∆tG1/S [min] ∆tS/G2[min] G1 S G2

Single Frame 191.3 117.9 0.71 0.64 0.87
Causal CNN 146.8 113.3 0.78 0.64 0.86
Mamba 111.4 102.4 0.83 0.72 0.89
Transformer 60.1 57.2 0.90 0.85 0.93
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Partial tracks - Bright�eld

Figure 4: Comparative performance of temporal encoders on partial cell cycle
tracks (brightfield). Shown is the average L1 error of both Fucci signals when using
partial tracks as input, parametrized by their relative start and end time τ1 ≤ τ2 ∈ [0, 1].

additionally computed ∆DTW when training with the H2B channel as input modality, which
a priori should be a substantially easier task as the H2B signal is biologically correlated with
the cell cycle. Indeed, this is corroborated by the performance of the single frame model
that vastly improves in this case (∆DTW = 2.595). Interestingly, both state-space models
as well as the transformer only marginally improve, suggesting that these models are able to
extract temporal cues from the brightfield images comparable to the easier H2B modality.
Similar observation can be made for the prediction of the biological checkpoints, as shown in
Table 2 and Figure 8. Again, the bidirectional transformer significantly outperforms other
methods for all metrics, including the prediction of biological checkpoints (Table 2, Supp.
Figure 8). As expected, the majority of prediction errors happen near the tG1/S and tS/G2

landmarks and are proportional to the standard deviation of the data (Figure 3 b, c).

3.2. Prediction on partial tracks

So far we focused on full (M-M) tracks of non-perturbed cells, all of which exhibit fairly
stereotypical cell cycle trajectories and for which sequence models are able to base their
predictions on a well defined starting points (i.e. the cell division event). We now evaluate
the performance of the different models on partial tracks, where the starting point is not
known a priori, which is a more challenging task. In Figure 4, we show the average L1

error with cropped partial tracks as input, indicated by their relative start and end time
τ1 ≤ τ2 ∈ [0, 1]. These partial tracks ranged from single-frame portions (along the diag-
onal) to entire tracks (lower-right element). Causal models still achieved better accuracy
in predicting Fucci values compared to non-temporal MLPs or fixed history CNNs. Sur-
prisingly, the performance advantage of transformers over causal methods observed in full
tracks diminishes on partial tracks. For all models, the error is maximal for segments that
end near tS/G2. Errors in Fucci1 show the same pattern while the errors in the Fucci2
arise mostly when taking segments from the beginning of the cell cycle (Supp. Figure 9).

3.3. Prediction on out-of-distribution perturbations

Finally, we evaluate the model performance on Drug, i.e. biologically strongly perturbed
cells that can be considered out-of-distribution. Specifically, these cells were treated with
the drug Palbociclib, a CDK4-6 inhibitor, that increases the cell cycle duration almost two-
fold from ∼20h to 40 h (Figure 5 a) and specifically the G1 phase duration, leading to a
strongly distorted cell-cycle (Figure 5 b). As expected, almost all models demonstrated a
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a b c

Figure 5: Results on perturbed RPE cells Drug. a,b) Effect of CDK4/6 inhibition
on cell cycle durations and onset of G1, S, and G2/M phases. The inhibitor extends G1
duration while leaving S and G2/M unchanged. c) Example Fucci predictions on Drug.

significant drop in accuracy when predicting Fucci signal in these unseen drug-treated cells,
as indicated by all evaluation metrics (Table 3). The notable exception is the bidirectional
transformer, that provides reasonable predictions and correctly captures distortions in the
G1 phase (Figure 5 c) that all other models significantly underestimated. Interestingly, the
MLP outperformed the other causal models on this distorted data, potentially as the later
overfitted on the training data. When performing the same analysis on H2B, we found
slightly better predictive performance (Supp. Tables B 2 and B 3, Supp. Figure 10, Supp.
Figure 11), which is expected due to the stronger correlation with the cell cycle.

4. Discussion and Conclusions

In this study, we generated and released a large dataset of cycling RPE1 cells under both
normal and drug-treated conditions and used it to investigate the utility of sequence mod-
els to infer the continuous cell cycle state from label-free brightfield images. Our analysis
demonstrates that temporal sequence models can significantly improve the cell cycle predic-
tion accuracy and enable the assessment of cell cycle state from brightfield images to a level
comparable when using the more informative H2B channel. This suggests that brightfield
morphological cues alone carry sufficient information for cell cycle inference. Importantly,
we found that causal state-space models substantially outperform commonly used fixed-
history convolutional networks, demonstrating their potential for real-time computer vision
and smart microscopy applications, where such causal inference is essential (Simon et al.;
Mahecic et al., 2022). We note that the observed reduced accuracy on drug-treated cells
underscores that creating general predictive cell state models for strong biological pertur-
bations remains challenging. However, our findings demonstrate that sequence models can
be effective predictors of cellular dynamics in more controlled settings.

Table 3: L1 error and ∆DTW for Fucci channels on Drug.

Models L1,FUCCI1 L1,FUCCI2 ∆DTW

Single Frame 0.239 ± 0.082 0.182 ± 0.056 5.329 ± 1.147
Causal CNN 0.252 ± 0.113 0.161 ± 0.059 4.323 ± 1.302
Mamba 0.485 ± 0.090 0.259 ± 0.045 3.563 ± 1.918
Transformer 0.147 ± 0.056 0.139 ± 0.048 3.022 ± 0.985
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Appendix A. Supplementary Methods

A.1. Cell culture

Fucci-RPE1 cells, kindly provided by Battich et al. [2020], were cultured at 37°C with 5%
CO2 in DMEM/F12 medium (Gibco 11320033), supplemented with 1 % non-essential amino
acids (NEAA) (Gibco 11140-035), 1% penicillin-streptomycin (Sigma-Aldrich G6784), and
10% fetal bovine serum (FBS) (Gibco 10437-028). In addition, the H2B-iRFP marker,
driven by a PGK promoter, was introduced into the cells using the second-generation lentivi-
ral system with a commercially available plasmid (Addgene: 90237).

A.2. Imaging

For imaging, H2B-Fucci-RPE1 cells were seeded into 96-well plates and cultured un-
der the conditions described above, with Fluorobrite medium (Gibco A1896701) replacing
DMEM/F12. For the perturbation experiments, cells were treated with 10 nM Palbociclib
(CDK4-6 inhibitor). Images from four channels—Brightfield, H2B (far red), Cdt1 (red),
and Geminin (green)—were acquired every 5 minutes using a PerkinElmer Operetta Micro-
scope with a 20x/0.80 objective. Four or nine tiles per well were captured for each channel,
with a 15% overlap for subsequent stitching.

A.3. Image preprocessing

Image preprocessing involved stitching the tiles (Preibisch et al.) and applying background
subtraction to fluorescent channels using a rolling ball algorithm. Cell nuclei were segmented
on the H2B channel with a custom StarDist model (Weigert and Schmidt) , and tracked
across frames using TrackMate (Tinevez et al., 2017). Full cell cycle tracks (M-M, tracks
encompassing one complete cell division cycle from one mitosis (M) to the next) were
isolated using K-Means clustering of interpolated Fucci signals. Our groundtruth labels
were obtained by averaging the fluorescent channels over the nuclei area and taking the
logarithm of this signal, with a smooth noise removal. The raw fluorescent Fucci signal is
not normalized for background noise (starting at 25) and expresses a greater dynamic range
in log scale as previously shown in DeepCycle (Rappez et al.). However taking the logarithm
increases the dynamic range of the background noise, leading to interesting questions about
the proper scale of these tracks. We average the pixels present in the nucleus for each Fucci
marker and then for the background noise normalization, we express the signal shifted and
in units of an ϵ, where ϵ can be k-th percentile of the signals distribution. We use the 1st
percentile ϵ = P1 = (P1,f1 , P1,f2). Then to deal with the increased dynamic range from the
log, we take the Softplus with β = 1 of our new units of ϵ before applying the logarithm:

F = (f1, f2), F =
F

A
= (f1, f2)

F ′ =
F − ϵ

ϵ
, Fucci = log2(Softplus(F

′))

Where F is the raw Fucci values from imaging of each nucleus pixel, A is the area of

the nucleus and Softplus(x) =
1

β
∗ log(1 + exp(β ∗ x)).
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Appendix B. Supplementary Tables

Table B 1: Number of parameters for each sequence model head.

Model Parameters

MLP 1.32 × 106

Causal CNN 0.94 × 106

LSTM 1.28 × 106

Mamba 1.11 × 106

Transformer 1.12 × 106

Table B 2: Side by side performance comparison of BF and H2B modalities at
predicting Fucci channels on Regular. Both data modalities present similar results:
sequence encoders outperform the single frame method. Moreover H2B only shows modestly
better performance than BF.

Brightfield Histone H2B
Models L1,FUCCI1 L1,FUCCI2 R2 DTW L1,FUCCI1 L1,FUCCI2 R2 ∆DTW

Single Frame 0.193 ± 0.066 0.146 ± 0.045 0.459 ± 0.271 3.735 ± 0.863 0.183 ± 0.104 0.130 ± 0.064 0.491 ± 0.431 2.595 ± 1.201
Causal CNN 0.157 ± 0.078 0.122 ± 0.049 0.608 ± 0.294 2.468 ± 0.917 0.154 ± 0.105 0.118 ± 0.061 0.586 ± 0.415 2.165 ± 1.210
LSTM 0.108 ± 0.069 0.087 ± 0.047 0.749 ± 0.266 1.527 ± 0.814 0.079 ± 0.065 0.075 ± 0.044 0.833 ± 0.265 1.467 ± 1.161
Causal Transformer 0.121 ± 0.073 0.094 ± 0.048 0.720 ± 0.279 1.728 ± 0.811 0.079 ± 0.057 0.079 ± 0.042 0.839 ± 0.214 1.552 ± 0.955
Mamba 0.112 ± 0.072 0.091 ± 0.049 0.739 ± 0.282 1.444 ± 0.898 0.074 ± 0.056 0.075 ± 0.040 0.853 ± 0.215 1.426 ± 0.949
Transformer 0.066 ± 0.038 0.062 ± 0.037 0.892 ± 0.111 1.285 ± 0.553 0.056 ± 0.039 0.054 ± 0.033 0.912 ± 0.116 1.155 ± 0.612

Table B 3: Performance metrics for both brightfield and histone H2B modalities
on Drug.

Palbociclib Brightfield Histone H2B
Models L1,FUCCI1 L1,FUCCI2 R2 ∆DTW L1,FUCCI1 L1,FUCCI2 R2 ∆DTW

Single Frame 0.239 ± 0.082 0.182 ± 0.056 -0.297 ± 1.064 5.329 ± 1.147 0.183 ± 0.050 0.107 ± 0.048 0.260 ± 0.466 3.285 ± 0.820
Causal CNN 0.252 ± 0.113 0.161 ± 0.059 -0.353 ± 1.459 4.323 ± 1.302 0.149 ± 0.042 0.125 ± 0.040 0.401 ± 0.376 3.077 ± 0.840
LSTM 0.424 ± 0.101 0.229 ± 0.045 -1.663 ± 1.727 3.685 ± 1.678 0.140 ± 0.051 0.115 ± 0.040 0.503 ± 0.404 2.750 ± 0.838
Causal Transformer 0.326 ± 0.104 0.214 ± 0.049 -0.728 ± 1.558 5.159 ± 1.562 0.132 ± 0.034 0.111 ± 0.037 0.628 ± 0.207 3.154 ± 0.872
Mamba 0.485 ± 0.090 0.259 ± 0.045 -2.244 ± 1.949 3.563 ± 1.918 0.185 ± 0.078 0.134 ± 0.043 0.255 ± 0.651 2.896 ± 0.903
Transformer 0.147 ± 0.056 0.139 ± 0.048 0.408 ± 0.478 3.022 ± 0.985 0.074 ± 0.029 0.095 ± 0.031 0.789 ± 0.131 2.896 ± 1.201
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Appendix C. Supplementary Figures

a 

b 

c 

Figure 6: Error Distribution of Predictions of Fucci on Test Set with Brightfield.
a. Distribution of L1 errors across the different models b. Error Distributions with Q1,
Median and Q3 Percentiles overlayed c. Q1, Median and Q3 Error Predictions visualized
per model.
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a b 

Figure 7: Learned Latent Space Representations (UMAP). Each frame of a track is
represented as a dot in umap space, the coloring is the normalized time a. Single Frame
(no history). b. Transformer (full sequence).
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Figure 8: Predicted ∆tG1/S and ∆tS/G2 from BF images for the different models.
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Bright�eld Fluorescencea b

Figure 9: Comparative Performance of Temporal Encoders in Predicting Fucci

1 and Fucci 2 from BF and H2B in partial cell cycle tracks. Error maps showing
the prediction error of the different models, assessed on the last frame of segments from the
M-M track, spanning indices τ1 to τ2.
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Figure 10: Comparative Performance of Temporal Encoders in Predicting Con-
tinuous Cell Cycle States from H2B Imaging in Unperturbed RPE Cells. a)
Distribution of L1 errors across the different models. b) Example predictions of Fucci
signals from different models on two tracks: one with accurate predictions and one with
poor predictions. The ground truth signal is shown in black. c) Average prediction error
and d. ground truth standard deviation are plotted in function of cell cycle phases.
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Figure 11: Comparative Performance of Temporal Encoders in Predicting Con-
tinuous Cell Cycle States from H2B in partial cell cycle tracks. Error maps
showing the prediction error of the different models, assessed on the last frame of segments
from the M-M track, spanning indices τ1 to τ2.
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