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Abstract

We consider the classical problem of finding the minimum feedback arc set on
tournaments (MFAST). The problem is NP-hard in general and we study it for
important classes of tournaments that arise naturally in the problem of learning to
rank from pairwise comparisons. Specifically, we consider tournaments classes
that arise out of parametric preference matrices that can lead to cyclic preference
relations. We investigate their structural properties via forbidden sub tournament
configurations. Towards this, we introduce Tournament Dimension - a combinato-
rial parameter that characterizes the size of a forbidden configuration for rank r
tournament classes i.e., classes that arise out of pairwise preference matrices which
lead to rank r skew-symmetric matrices under a suitable link function. Our main re-
sult is a polynomial-time algorithm - Rank2Rank - that solves the MFAST problem
for the rank 2 tournament class. This is achieved via a geometric characterization
that relies on our explicit construction of a forbidden configuration for this class.
Building on our understanding of the rank-2 tournament class, we propose a
very general and flexible parametric pairwise preference model called the local-
global model which subsumes the popular Bradley-Terry-Luce/Thurstone classes to
capture locally cyclic as well as globally acyclic preference relations. We develop
a polynomial-time algorithm - BlockRank2Rank- to solve the MFAST problem
on the associated Block-Rank 2 tournament class.
As an application, we study the problem of learning to rank from pairwise compar-
isons under the proposed local-global preference model. Exploiting our structural
characterization, we propose PairwiseBlockRank - a pairwise ranking algorithm
for this class. We show sample complexity bounds of PairwiseBlockRank to
learn a good ranking under the proposed model. Finally, we conduct experiments on
synthetic and real-world datasets to show the efficacy of the proposed algorithm.

1 Introduction

A tournament is a complete directed graph. Given a tournament T, the classical feedback arc set
on tournament (MFAST) problem asks for the minimum number of edges that must be removed
(or whose orientation reversed) in T to make it acyclic [3]. The problem is known to be NP-hard
for general tournaments [6]. We investigate the MFAST problem for several classes of tournaments
which naturally occur in learning to rank from pairwise comparisons. In particular, we wish to study
the MFAST problem on tournament classes which arise out of parametric pairwise preference classes.

Popular parametric preference models such as the Bradley-Terry-Luce (BTL) [4; 17] and Thurstone
models [25] give rise to acyclic tournament matrices for which the MFAST problem is trivial. Our
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Figure 1: Several tournaments that arise out of real world datasets
exhibit cyclic structure. (Source: www.preflib.org). Figure shows
six such examples in varied application domains. Except the Sushi
Preference Tournament, none of the others can be modelled using acyclic
preference models like Bradley-Terry-Luce/Thurstone. The local-global
model described in Section 6 and the associated Block- T n

2 class defined
in this paper induces all these flexible tournament structures.

Figure 2: Out of 290
real world tournaments from
www.preflib.org, figure shows
the fraction of tournaments that are
acyclic and the fraction of cyclic
tournaments that satisfy the Block-
Rank 2 model we propose.

goal is to identify and study non-trivial classes of parametric preference matrices which give rise to
potentially cyclic tournaments. Cyclic tournaments arise naturally in several real world preference
datasets. Figure 1 shows a few real world cyclic tournament structures and Figure 2 shows the fraction
of tournaments out of 290 real world tournaments that are acyclic and those that are cyclic and can
arise out of the models proposed in this paper. Clearly, simple models such as BTL/Thurstone are
insufficient to model these tournaments.

Every pairwise preference matrix P ∈ (0, 1)n×n can be associated to a tournament via a skew
symmetric link function φ i.e, φ(P) is a skew symmetric matrix and the tournament T associated
to P has an edge from i to j if and only if φ(Pij) > 0. While preference matrices themselves are
always of high rank [11], several well studied pairwise preference classes give rise to skew symmetric
matrices of low rank under a suitable link function. For example, the BTL model gives rise to a rank 2
skew symmetric matrix under the logit link whereas the Thurstone Model does so under a probit
link [22]. It is important to understand the possible tournaments any parametric preference class can
give rise to. Indeed, it might be natural and much easier for a modeller/domain expert to make a
structural statement such as The class of tournaments of interest should contain cycles of length at
most 4 as opposed to an algebraic statement like The class of tournaments should be associated with
a preference matrix which on a skew symmetric transformation leads to a rank 8 matrix.

We study the structure of rank r tournament class i.e, tournaments which arise out of preference
matrices that lead to some rank r matrix under a skew-symmetric transformation. This class can be
interpreted as each node in the tournament having an embedding in Rr and the preference relation
between nodes depends on a suitable notion of similarity between the embeddings (see Section 4
for details). It is known that such classes can model cyclic relations [22]. To investigate the MFAST
problem for the rank r tournament classes, we first structurally understand these tournament via the
notion of forbidden configurations [8]. Forbidden configurations in tournaments have been studied in
other non-parametric contexts. The simplest example is the class of acyclic tournaments which has
the 3 cycle as a forbidden configuration. A complicated forbidden configuration class using Möbius
ladders was studied in [8; 9]. In both these cases, the MFAST problem is poly-time solvable.

Our Contributions. Our first contribution is to derive upper and lower bounds for the size of
a forbidden configuration for any rank r tournament class. We do this by introducing a novel
combinatorial parameter that we call the Tournament Dimension. When rank r = 2, we completely
characterize the associated tournament class by identifying the exact forbidden configuration. We
use this forbidden configuration to understand the geometry of this tournament class and propose an
algorithm (Rank2Rank) to solve the MFAST problem in polynomial time for this class of tournaments.

Our next contribution is to propose a flexible class of tournaments called the Block Rank 2 class
which builds on the rank 2 class. Tournaments in this class can arise from the local-global model - a
general pairwise preference model that we propose. The model can capture locally cyclic relations as
well as globally acyclic relations and is well suited for several practical applications including those
in Figure 1. The model subsumes several popular pairwise ranking models including the BTL and
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Thurstone models. We show that the MFAST problem on the associated Block Rank 2 tournament
class is polynomial time solvable and propose an algorithm (BlockRank2Rank) for the problem.

Our third contribution is to study an application of our work to the problem of learning to rank from
pairwise comparisons. We propose a matrix completion based algorithm called PairwiseBlockRank
for this problem and derive sample complexity bounds for the same under the proposed local-global
preference model. Finally, we evaluate our algorithms on real world and synthetic data-sets and show
improved performance over several existing algorithms.

2 Related Work

Several works have considered learning from transitive pairwise models especially focusing on
the Bradley-Terry-Luce (BTL) model[12; 20; 21; 24; 14]. As we focus on cyclic relations, we
discuss only the models which can lead to cyclic preferences. While the BTL model can be seen
as using a 1 dimensional embedding of the item using a score vector, studies have considered
higher dimensional embeddings. A 2 dimensional embedding was considered in [5]. While their
model can give rise to cyclic tournaments, it is not clear what type of cycles are possible. [18; 19]
propose the Majority vote model which is a random utility model (RUM) with a d dimensional
feature embedding for each item. The Majority vote model is powerful enough to produce arbitrarily
long cycles and can express any probability sub-matrix over a fixed triplet. The Rank 2 model
we study is as powerful as the Majority vote model. Furthermore, we give a complete structural
characterization of the tournaments of our model which is not known for the Majority vote model.
The Blade-Chest inner (BCI) model [7] embeds each item into two d dimensional vectors (blade
vector and a chest vector) and a score vector s where the probability of i being preferred over j
depends on < ichest, jblade > − < iblade, jchest > +si − sj . The rank-2 model can be seen as a special
case of the BCI model where d = 1 and s is a constant vector. When d is O(n), the BCI model can
give rise to any tournament as there are O(n2) parameters and so the MFAST problem becomes
intractable. We focus on the special case of d = 1 where there are only 2n parameters and propose
algorithms to obtain optimal rankings. Finally, we discuss the low rank pairwise rank (LRPR) class
of models which result in a low rank matrix under a transformation using a suitable link function
[22]. Previous work [12,22] have proposed matrix completion based algorithms to obtain optimal
ranking for the LRPR type models assuming transitivity of preferences. In this work, we make no
such assumptions.

3 Preliminaries

A Tournament is a complete directed graph. We use i �T j to denote that there is a directed edge
from node i to j in the tournament T. We call a set of edges Fσ in a tournament T as the feedback
arc set of permutation σ w.r.t T if σ(i) > σ(j) (j ranked ahead of i in σ) but i �T j. Indeed, if one
reverses the orientation of the Fσ edges in T, one gets an acyclic tournament whose topological sort
would yield σ. We call a permutation σ∗ as MFAST-Optimal for T if σ∗ ∈ arg minσ |Fσ|.
We call P ∈ (0, 1)n×n a pairwise preference matrix if Pij + Pji = 1 ∀i 6= j. We assume
Pij 6= 0.5 ∀i, j. We will say TP is a tournament associated with P if a directed edge from node
i to j is present in TP if and only if Pij > 0.5. We call P a rank r preference matrix w.r.t a link
function φ if rank(φ(P)) = r where the function φ is applied element-wise to P. We will call φ a
skew symmetric link function if φ(P) is a skew symmetric matrix for any pairwise preference matrix
P. Examples of such φ include the logit and probit links where logit(x) = log(x/(1− x)) and
probit(x) = Φ−1(p) where Φ is the standard normal cdf. We use T n,φr to denote the class of all
tournaments on n nodes which are associated with a rank r preference matrix w.r.t φ.

Our goal is the study the tournament class T n,φr where φ is a skew symmetric link function. Skew-
symmetric matrices are naturally associated to tournaments where the edge directions in the tour-
nament are determined by the sign of the corresponding matrix entry. Our results would apply for
any skew symmetric φ and so we will drop the φ in T n,φr when it is clear from the context. As skew
symmetric matrices have even rank, T n,φr is non-empty only for even r. We wish to investigate the
structural constraints on these tournament classes that arise out of the algebraic (rank) restriction that
define them. We note that it was known earlier that for the special case when r = 2, T n,φ2 contains
both cyclic and acyclic tournaments [22]. However, nothing further was known about this class.
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Algorithm 1 Tournament Game
1: Input: Integers k, d
2: Player-1 chooses a labelled dataset
{(x1, y1), . . . (xk, yk)} where D = {xi}ki=1 ∈ Rd
induces a Tournament, yi ∈ {+1,−1}

3: Player-2 chooses a Tournament preserving mapping f
w.r.t D

4: if ∃w ∈ Rd such that sign(wT f(xi)) = yi ∀i ∈ [k]
then

5: Player-2 wins the game
6: else
7: Player-1 wins the game
8: end if

Figure 3: Forbidden configu-
rations for any induced tourna-
ment on 4 nodes in T n2

Definition 1. A class of tournaments T is said to have a forbidden configuration of size ` if ` is
the smallest integer such that there exists a tournament T` on ` nodes which does not appear as an
induced sub-tournament for any T ∈ T

In other words, no induced sub-tournament on l nodes of T ∈ T is isomorphic to T`. For example,
the class of all acyclic tournaments T acyclic has C3 - the 3-cycle as a forbidden configuration. Taking
advantage of this forbidden configuration, one can immediately come up with an algorithm to solve
the MFAST problem on T acyclic - indeed, a topological sort solves this problem. Our interest is to
understand if there are similar forbidden configurations for the class T n,φr . Towards this, we start the
next section by defining a novel combinatorial parameter called the Tournament dimension.

4 Tournament Dimension

Let d be an even integer. We say a set of points D = {x1, . . . ,xk} ∈ Rd induces a tournament T if
xi is a d-dimensional embedding of node i and a directed edge from node i to j exists in T if and
only if xTi A

rotxj > 0. Here, Arot ∈ Rd×d is the block diagonal matrix with d
2 blocks where each

block of size 2 is a rotation matrix [0 − 1; 1 0] 2. Note that xTi A
rotxj = −xTj Arotxi ∀i, j and the

tournament inducing property of D excludes datapoints such that xTi A
rotxj = 0. We note that d

being even is not a restriction on the embedding. If d is odd, one can increase the embedding to d+ 1
dimensions w.l.o.g where the last component is 1 for all xi.
Lemma 1. Let D = {x1, . . . ,xk} ∈ Rd induce a tournament T. Then T ∈ T kd . Furthermore, for
every T ∈ T kd there exists a dataset D with k vectors in Rd that induces T.

We call a mapping f : Rd → Rd as Tournament-preserving w.r.t. a tournament inducing dataset D
if (f(xi)

TArotf(xj) > 0) ⇐⇒ (xTi A
rotxj > 0) ∀xi,xj ∈ D. We define the Tournament game

between two players as described in Algorithm 1.
Definition 2. The Tournament dimension for d - TourDim(d) - is the largest value of k for which
Player 2 always has a winning strategy in the Tournament game (Algorithm 1).

Remark. TourDim(d) = k implies that Player 1 has a winning strategy for all values ≥ k + 1. In
particular, there is a tournament T ∈ T kd induced by the dataset D and a labelling {y1, . . . , yk}
strategically chosen by Player 1 such that there does not exist a T-preserving mapping for which
Player 2 can find a w ∈ Rd that labels all points in D correctly. The inability to find such a w is
equivalent to the inability to add one more node to T whose edge direction to node i of T is specified
by the label yi. Thus, there must be a forbidden configuration on k + 2 nodes.

The Theorem below formalizes the above remark.
Theorem 2. T nr has a forbidden configuration of size TourDim(r) + 2 for every even integer r < n
and every n ≥ TourDim(r) + 2.

2The matrix Arot is fundamental to skew-symmetric matrices. In fact, any skew-symmetric bilinear form can
be represented under a suitable basis using Arot and additional zero diagonal blocks as necessary [23].
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Figure 4: (Left) Geometry of the embeddings of nodes in T n2 where −S3 ⊂ cone(S0 ∪ S1) is
highlighted. (Right) Structure of Tournament belonging to T n2 for the example on the left. The sets
{S0, . . . , S4} are colored as per the left figure and mapped to {A1, A2, B1, B2, C} as in Theorem 6.

We bound the size of the forbidden configuration as follows
Theorem 3. Let T nr have a forbidden configuration of size `. Then r + 2 ≤ ` ≤ 2r + r + 1

Remark. We believe that the upper bound in Theorem 3 is not tight in general and leave it as an
open problem to improve this for a general r.
Corollary 1. T n2 has a forbidden configuration of size 4.

While the above Corollary gives the size of the forbidden sub configuration, it does not specify what
exactly the configuration is. As the rank 2 class occurs naturally in several learning to rank problems,
we investigate this further in the next section.

5 Rank 2 Tournaments - T n
2

In this section we focus on the Rank 2 tournament class T n2 . To motivate this class, consider the
following generalisation of the popular Bradley-Terry-Luce (BTL) preference model where for a
skew symmetric link function φ, we define φ(Pij) = uivj − viuj . The model is parameterized by
two vectors u,v ∈ Rn. When one of these vectors is the all ones vectors and when the link function
φ is the logit function, the model reduces to the standard BTL model.

In general for any P, if φ is a skew symmetric link function that results in a rank 2 matrix, then
φ(P) = uvT − vuT for some u,v ∈ Rn. Such a model can be interpreted as each node i having a
two dimensional embedding hi = [ui, vi]. Here, the direction of the edge between nodes i and j in
the associated tournament depends on the sign of uivj − viuj = hTi A

rothj where Arot ∈ R2×2 is
the rotation matrix [0− 1; 1 0]. With this background, we now proceed to characterize the class T n2 .

Geometric Characterization of T n2 : We start with the following key lemma:
Lemma 4. (Forbidden configurations) Let n ≥ 4. Every induced tournament of T n2 on a subset of
four nodes forbids the configurations in Figure 3.

The above lemma can be used to geometrically characterize the two dimensional embeddings of the
nodes in T n2 . For this characterization, we need the following definition.

We call a set of vectors S ⊂ R2 a separator of two sets of vectors U, V ⊂ R2 if the convex cone of
U ∪ V contains −S i.e., the set of vectors in S rotated by 180 degrees is a subset of cone(U ∪ V )

Theorem 5. Let T ∈ T n2 where each node i has a two dimensional embedding hi ∈ R2. Then
either T ∈ T acyclic or ∃k ≥ 1 such that the vectors hi can be partitioned into 2k + 1 ordered sets
{S0, . . . , S2k} where for each i = 0, . . . , 2k, Si ⊂ R2 is a separator of the sets Si+k mod(2k+1) and
Si+k+1 mod(2k+1)

Figure 4 (left) shows how the embeddings of nodes that result in T n2 would look like geometrically.
As one can observe, the example tournament has 5 sets of vectors and every set of vectors of the
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same color acts as a separator for two other sets of different colors. This is the crucial geometric
insight that we obtain which characterizes this tournament class. We note that when the number of
sets (colors) is just 1, the model leads to acyclic tournaments. Indeed, tournaments arising out of the
BTL/Thurstone models have this property and lead to T ∈ T acyclic ( T n2 . However, T n2 is much
more richer than the simple T acyclic class.

Structural Characterization of T n2 : With the help of the geometric characterization, we next give
the structural description of all tournaments in T n2 . For two sets of nodes A and B, We use A �T B
to denote that every node in A has an outgoing edge to every node in B in the tournament T. Also,
A ≺T B whenever B �T A

Theorem 6. Let n ≥ 4 and T ∈ T n2 . Then either T ∈ T acyclic or there exists k ≥ 1 such that the n
nodes can be partitioned into 2k + 1 sets {A1, A2, . . . , Ak, B1, B2, . . . , Bk, C} where
(a) The induced sub-tournament on each of the 2k + 1 sets belong to T acyclic

(b) Ai �T Aj , Bi �T Bj ∀i < j
(c) Ai �T Bj ∀i ≥ j, Ai ≺T Bj ∀i < j
(d) Bi �T C �T Aj ∀i, j

Figure 4 (right) gives a graphical representation of the structure of T n2 described in Theorem 6. The
following theorem sheds light on the rich expressivity of the T n2 tournament class.
Theorem 7. (Long Cycles and Arbitrary Triplets) Given any arbitrary ordered set of indices
{i1, i2, . . . , ik}, k ≤ n, there exists a T ∈ T n2 such that i1 �T i2 �T . . . �T ik �T i1. Further-
more, Given any p1, p2, p3 ∈ (0, 1) and indices i1, i2, i3 ∈ [n], there exists a pairwise preference
matrix P whose associated TP ∈ T n2 where P(i1, i2) = p1,P(i2, i3) = p2,P(i3, i1) = p3.

5.1 Polynomial Time Algorithm for MFAST for T n2

We present a polynomial time algorithm for MFAST for the T n2 class. The algorithm Rank2Rank
(Algorithm 2) takes as input a tournament T and outputs a permutation σ∗ that is MFAST-optimal
for T whenever T ∈ T n2 . The algorithm finds such a σ∗ by relying crucially on the structural
understanding gained in the previous section via forbidden configurations. In the following, given a
set of nodes A and a tournament T, we represent the induced tournament on A by T as TA.

Algorithm 2 Rank2Rank-R2R
1: Input: A tournament T
2: if T ∈ T acyclic then
3: Obtain σ∗ by a Topological sort of T
4: else
5: Find {a, b, c} s.t (a �T b �T c �T a)
6: A := {a} ∪ {i : i �T b and c �T i}
7: B := {b} ∪ {i : i �T c and a �T i}
8: C := {c} ∪ {i : i �T a and b �T i}
9: σ0 = [R2R(TA), R2R(TB), R2R(TC)]

10: Let σh be the permutation obtained by a
cyclic shift of σ0 by h positions.

11: Let σ∗ be the permutation among σh ∀h
which has the least size of the feedback
arc set w.r.t T i.e., σ∗ = arg min

h
|Fσh
|

12: end if
13: Output σ∗

Algorithm 3 BlockRank2Rank - BR2R
1: Input: A tournament T
2: if T ∈ T acyclic then
3: Obtain σ∗ by a Topological sort of T
4: else
5: Find {a, b, c} s.t (a �T b �T c �T a)
6: S+ = {i : i �T {a, b, c}}
7: S− = {i : i ≺T {a, b, c}}
8: S = [n]\{S+ ∪ S−}
9: σ∗ = [BR2R(TS+), R2R(TS), BR2R(TS−)]

10: end if
11: Output σ∗

Theorem 8. If T ∈ T n2 is given as input to the Rank2Rank (Algorithm 2), the output σ∗ produced by
the algorithm is MFAST-optimal for T. Furthermore, Rank2Rank has a time complexity of poly(n).

Geometric Sweep Interpretation: One can also come up with a geometric sweep algorithm to solve
the MFAST problem for T n2 inspired by the geometric embedding based interpretation given earlier.
Here, we assume that the embeddings of the items are given as input. The algorithm begins by fixing
an arbitrary anchor item i and circular sweeps the R2 plane in the counter clockwise direction from
the embedding of i thus creating a permutation σ0 of items corresponding to the order in which they
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are encountered in the sweep. Starting to sweep from different anchors would give rise to n different
cyclic shifts of σ0. We argue in the appendix that the optimal σ∗ that solves the MFAST problem
w.r.t T must necessarily be one of these n permutations. We note that while the Geometric sweep
algorithm needs the embeddings to be known, the Rank2Rank algorithm does not need the same.

6 Block T n
2 Class

Often in practical applications, items can be clustered into blocks such that within block they exhibit
a certain local pairwise preference whereas across blocks they exhibit a global pairwise preference.
For example, consider the game of tennis where the top 3 players might have a cyclic preference
among themselves whereas they strictly beat every other player in the bottom n− 3. To capture such
effects, we next propose the local-global pairwise preference model.

6.1 Local-Global Preference Model

The local-global pairwise preference model is parameterized by three vectors s,u,v ∈ Rn and a
ordered partition of [n] given by {H1, ...,Hb} ∈ 2[n] where ∪bk=1Hk = [n] and Hi ∩Hj = ∅ ∀i 6= j.
Let g(i) denote the partition in which item i is present. We assume that si > sj ⇐⇒ g(i) < g(j)
i.e., the parameter vector s aligns with the ordering of the partitions. The pairwise preference
probability of item i being preferred over item j under a skew symmetric link function φ is given as

φ(Pij) =

{
uivj − viuj if ∃` s.t i, j ∈ H`

si − sj otherwise

Figure 5 shows some flexible tournament structures that arise out of the local global model and Figure
1 shows several real world tournaments that have associated tournaments arising out of this model.

One can interpret the above model as follows: The set of [n] items is divided into b blocks/partitions.
Restricted to each block, the local pairwise preference matrix has an associated tournament that
belongs to T n2 which can potentially contain cycles. However, across partitions, the preference matrix
behaves like a standard BTL type model parameterized by the score vector s and hence the associated
global block level tournament relation belongs to T acyclic. The tournament associated to the entire
set of n nodes thus has a block structure. Indeed, the model is determined by 3n parameters where 2n
parameters determine the intra block local structure and n parameters the inter block global structure.

Remark. The standard BTL model and it’s generalization with 2n parameters are special cases of
the above model where the number of blocks b = 1 and φ is the logit link.

We refer to the class of tournaments that arise out of a local-global model as the Block− T n2 class.

Theorem 9. If T ∈ Block-T n2 is given as input to the BlockRank2Rank (Algorithm 3), the output
σ∗ produced by the algorithm if MFAST-optimal for T. Furthermore, BlockRank2Rank has a time
complexity of poly(n).

7 Learning to Rank From Pairwise Comparisons under Block-T n
2

We now consider the application of the models discussed so far to the problem of learning to rank from
pairwise comparisons under the local-global pairwise preference model which lead to tournaments
in Block-T n2 . Towards this, we propose the PairwiseBlockRank algorithm (Algorithm 4). Given
a dataset of pairwise comparisons, the algorithm constructs the empirical pairwise comparison
matrix. It applies the link function φ to construct a empirical skew-symmetric matrix with missing
entries (corresponding to pairs that are not compared in the dataset). The algorithm then applies a
matrix completion routine to complete the skew-symmetric matrix. Once complete, the associated
tournament is computed and the ranking obtained using the BlockRank2Rank algorithm.

Matrix completion routines (such as [16]) typically require an upper bound on the rank of the matrix
being completed. The following Lemma establishes that this depends on b, the number of blocks.

Lemma 10. Let T ∈ Block-T n2 with b blocks. Then T ∈ T nr for some r ≤ 4b.

The following theorem establishes sample complexity of learning for recovering the blocks correctly.
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Figure 5: Example of a few Flexible
Tournament Structures arising out of
the local-global model with 1, 2 and 3
blocks.

Algorithm 4 PairwiseBlockRank
1: Input: D = {(ik, jk), yk}, k = {1, . . . ,m}, link

function φ, rank r
2: Compute Empirical pairwise preference matrix:
3: if (i, j) = (ik, jk)for some k then
4: P̂ij =

∑m
k=1

I(ik=i,jk=j,yk=1)
I(ik=i,jk=j) ; P̂ji = 1− Pij

5: else
P̂ij = P̂ji = 0

6: end if
7: M̂ = Matrix-Completion(φ(P̂), r)

8: Construct Tournament T from M̂ where (i, j) ∈ E
whenever M̂ij > 0

9: σ∗ = BlockRank2Rank - BR2R(T)
10: Output σ∗

Theorem 11. (Block Recovery) Let the local global model be parameterized by vectors u,v, s ∈ Rn
and ordered partitions {H1, . . . ,Hb} and a skew symmetric link function φ. Let m pairs be chosen
uniformly at random from all subsets of

(
n
2

)
of size m and let each pair be compared K times

according to the corresponding preference matrix P. Let θ = minij |uivj − viuj | where (i, j)
are in the same partition and let ∆ = min |si − sj | where (i, j) are in different partitions. Let
0 < ε < n2( θ∆ )2. Then with probability at least 1− 2

n3 , if m is O(nblog(n))) and K is O( b log(n)
ε∆2 ),

the PairwiseBlockRank algorithm on running with the dataset generated as above, returns a
ranking σ that respects the block structure i.e., σ(i) < σ(j) whenever i ∈ Hk and j ∈ H` ∀` > k.

8 Experiments

Datasets: We use the following real world datasets (with n items to be ranked and m pairwise
comparisons): DoTA [1] (n = 757,m = 10442), Tennis [2] (n = 742,m = 23806), Sushi-A [15]
(n = 10,m = 100000), Sushi-B [15] (n = 100,m = 25000), Jester [13] (n = 100,m = 891404).

Setting + Performance measure: Given a set of pairwise comparisons, we do a 70 : 30 train:test
split. We run the algorithms on the train data to obtain a ranking σ. We test the performance of σ on
the test set by computing the ratio of upsets(the pairs (i, j) for which σ(j) < σ(i) but the fraction of
times i being preferred over j in the test set is ≥ 0.5) and the number of unique pairs in the test data.

Algorithms:
MC + Copeland: We first complete the empirical preference matrix P̂ using a matrix-completion
(MC) routine with rank = 2 and then run the standard Copeland procedure [10] to get a ranking.

MC + Borda: Same as Copeland but the standard Borda algorithm [21] is used instead of Copeland
to obtain a ranking from the completed ranking.

Rank Centrality: A spectral ranking algorithm [20] that ranks based on computing a stationary
distribution of a Markov chain associated with P̂.

Blade-Chest: A maximum likelihood based algorithm for the Blade-Chest model [7] where we set
the dimension of the emdedding to be 8 (Other choices perform poorly, see Supplementary). To
obtain a ranking from the estimated MLE, we run the BlockRank2 algorithm of this paper (Other
choices perform poorly, see Supplementary).

PariwiseBlockRank: The algorithm described in this paper. To make it more suitable for real-
world data, in each recursive call, we use either the ranking given by the algorithm or the Copeland
procedure depending on whichever is better for the given data.

The results are presented in Table 1 averaged over 20 splits. As can be seen, the PairwiseBlockRank
algorithm performs better or comparably with the best algorithm for most of the datasets. In some
cases, it produces similar results as the Copeland algorithm. Furthermore, the Blade-Chest model
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Algorithm|
Dataset

MC + Copeland MC + Borda Rank Centrality Blade-Chest Pairwise Block-
Rank

DOTA 0.311 ±0.01 0.368±0.03 0.215 ±0.01 0.228 ±0.01 0.23 ±0.03
Tennis 0.314 ±0.005 0.314±0.006 0.285 ±0.008 0.311 ±0.006 0.281 ±0.006
Sushi-A 0.036±0.02 0.18 ±0.02 0.042 ±0.01 0.06±0.01 0.034±0.02
Sushi-B 0.176±0.006 0.188±0.005 0.176 ±0.006 0.203±0.006 0.176±0.006
Jester 0.05 ±0.001 0.23±0.002 0.05 ±0.001 0.15 ±0.022 0.05 ±0.001

Table 1: Results on real-world datasets. Algorithms with the best results are in boldface.

Figure 6: Results for P under local-global model with 3 blocks. Refer Section 8 for details.

performs poorly for all datasets. The Rank-centrality algorithm performs competitively. To understand
this better, we run the following synthetic experiments to compare with rank centrality algorithm.

Synthetic Experiments: The synthetic data was generated to follow the local-global Model. We
considered the number of items n = 600, and ran experiments on b = 3 (see Supplementary for other
choices) block cases with equal sized blocks. From the constructed underlying probability preference
matrix, we sampled entries according to two parameters, K and known fraction β. Known fraction
(β) represents the fraction of total unique pairs that are uniformly chosen for comparison and K
represents the number of Bernoulli comparisons for every such pair chosen. We did two types of
experiments, one where we fixed the known fraction β and varied K and other where we fixed K and
varied β. Thus for every experiment K.β.

(
600
2

)
comparisons are made in total. Figure 6 shows the

results from varying K and the known fraction. The results are averaged across 10 runs. As can be
seen, for the MC + PairwiseBlockRank algorithm, the pairwise disagreements quickly approach
the optimal value when the known fraction is fixed, and K increases. For the other algorithms, the
quality of ranking does not improve with increase in K. Similar trend is observed when the known
fraction β is increased while fixing K. The results clearly indicate that with increasing samples, the
proposed algorithm quickly converges to the optimal ranking whereas the others perform poorly.

9 Conclusion

In this work, we study the class of parametric preference matrices which induce cyclic tournaments.
We propose algorithms that solve the MFAST problem on rank 2 classes and build on the rank 2
class to propose a flexible model called the local-global model. For the general rank r class, we
initiate understanding the associated tournament class via the notion of tournament dimension. Going
forward, we would like to understand the forbidden configurations of higher rank tournaments and
pin down the difficulty in solving the MFAST problem using this approach.

Broader Impact We introduce a flexible parametric model that can capture potentially
acyclic relations. The broader impact is that we look at the classical MFAST problem from a novel
parametric viewpoint. We believe this can lead to broader impact in fundamental understanding of
the hardness of this problem. Algorithms might be subject to bias if the data is inherently biased. The
current approach does not focus on removing algorithmic bias that can arise in this fashion.
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A Appendix

Link to Source Code An anonymous link to the source code is present here.
Theorem 12. (Transitivity) Let P ∈. Let i, j, k be three items with embeddings hi, hj , hk ∈ R2

respectively. If there exits a d ∈ R2 such that hTa d > 0 ∀a ∈ {i, j, k}, then TP({i, j, k}) is acyclic.

Proof. Let θ1 be the counterclockwise angle between i and j and θ2 be the angle between j and k.
W.l.o.g assume that i �P j and j �P k. Then 0 < θ1, θ2 < π. The relationship between i and k is
determined by θ1 + θ2. However, the existence of a d ∈ R2 satisfying the condition of the theorem
implies that the embeddings of the three items {i, j, k} lie in the same half space. This implies that
0 < θ1 + θ2 < π which further implies that i �P k. The result follows.

Proof of Lemma 1

Proof. Let D = {x1, . . . ,xk} induce a tournament T. As Tij = sign(xTi A
rotxj) by definition, T

is associated with the skew symmetrix matrix

Proof of Theorem 2

Proof. Assume that the TourDim(d) = k. Thus Player 1 has a winning strategy for k + 1 i.e., there
exists a dataset D of size k + 1 that induces a tournament T ∈ T k+1

d such that Player 2 cannot
produce a T preserving mapping f such that one can find a w where f(xi) = yi for all i. Note that
the ability of Player 2 to find such a w is equivalent to the ability of adding one more node to the
tournament T whose direction with respect to the node i of T is given by the label yi where the new
tournament would belong to T k+2

d . This is true as this new tournament with the extra node is induced
by the dataset {D ∪ (Arot)−1w} (Note that Arot is invertible). As Player 2 is unable to produce
such a mapping and taking into account that both D (and so T) and yi’s were chosen strategically
by Player 1, this implies that no tournament in T k+2

d can contain T as an induced sub configuration.
Finally consider any n ≥ k + 1 and let T ∈ T nd . As T restricted to any subset of k + 1 nodes must
belong to T k+1

d , the result follows.

Theorem 3: The bounds for ` must be as follows: r + 2 ≤ ` ≤ 2r + r + 1 and not r and 2r as stated
in the submission.

Proof of Theorem 3

Proof. By definition ` = TourDim(r) + 2. Thus we need to show that TourDim(r) ≥ r. Assume
not. Then Player 1 has a winning strategy for r i.e., there exists a dataset D of size r such that
there does not exist a T preserving mapping such that one can find a w with f(xi) = yi for all i.
However, it is always possible to perturb the datapoints randomly by a small ε amount such that
the perturbed D still induces T and the data points are linearly independent with probability 1. For
such a perturbed dataset, there must exist a w that achieves the labeling given by yi - just solve for
Xw = y where X ∈ Rd×d contains the data points in the perturbed D as its columns. Thus, we arrive
at a contradiction. This proves the lower bound.

To prove the upper bound, fix an arbitrary tournament T ∈ T r+1
r on r + 1 nodes where each node

has an embedding xi ∈ Rr. Then xr+1 =
∑r
i=1 cixi for some constants cis. Assume wlog that

ci 6= 0 ∀i (If some set of ci = 0, then the bound we get would be tighter). Now consider adding an
extra node to T whose directions with the r + 1 nodes are given by the label vector y ∈ {±1}r+1

where yr+1 = −1. If this new tournament is not a forbidden configuration for T r+2
r , then there must

exist some z ∈ Rr such that sign(zTArotxi) = yi for all i = 1, . . . , r + 1. We argue that such a z
invalidates a particular sign pattern for the coefficients ci’s. Indeed, the following is true:

zTArotxr+1 =

r∑
i=1

ci(z
TArotxi)

yr+1 = sign(zTArotxr+1) = −1 =⇒ sign(ci) = yi ∀i is not possible as it would lead to a
contradiction since sign(zTArotxi) = yi.
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As the choice for yi for i = 1, . . . , r is arbitrary, one can keep attempting to add nodes to the
tournament with all possible sign patterns with respect to the first r nodes. Indeed after adding 2r

such nodes exhausting all sign patterns for y1, . . . , yr, one invalidates all possible sign patterns for
the coefficients c1, . . . cr. But this is a contradiction. Thus, starting from an arbitrary tournament on
T ∈ T r+1

r we arrive at a forbidden configuration for T r+1+2r

r nodes.

Finally, for a general n ≥ r + 1 + 2r, if T ∈ T nr , any induced tournament on r + 1 + 2r nodes must
belong to T r+1+2r

r and so the above argument suffices.

Proof of Corollary 1

Proof. From Theorem 3, it follows that the forbidden configuration for T n2 must be of size at least
4. We will show that this is indeed exactly equal to 4 by showing that TourDim(2) = 2. To show
this, we need to demonstrate a strategy for player 1 to win with 3 data points in R2. Let the data
points selected by player 1 induce the 3 cycle as the tournament and the corresponding labels be
y1 = y2 = y3 = 1. Any T preserving mapping should necessarily map the datapoints to some
x1,x2,x3 ∈ R2 where the counterclockwise angle between x1 and x2 is less than 180 degrees and
−x3 ∈ cone{x1,x2}. If not, one cannot induce the 3-cycle as a tournament. Then for any w ∈ R2

such that sign(wTx1) = sign(wTx2) = 1, it must necessarily be the case that sign(wTx3) = −1.
However y3 = 1 and so Player 1 has a winning strategy.

Thus TourDim(2) <= 2. But it is trivial to verify that TourDim(2) ≥ 2 as Player 2 always has a
winning strategy with just 2 data points. Thus TourDim(2) = 2 and so from Theorem 2 it follows
that T n2 has a forbidden configuration of size 4.

Proof of Lemma 4

Proof. Consider the sub-tournament of four items {a1, a2, a3, a4} labelled T. If T corresponds
to an acyclic graph, there is nothing to prove. Therefore only the case where T contains at least
1 cycle is considered. Without loss of generality, let the items which form a cycle have indices
a1, a2 and a3. Let the corresponding embeddings of each item i to be [ui, vi]. For a4 to not violate
the rank 2 assumption, it too must have a corresponding embedding by which its interactions with
the existing items are defined. Let the embedding of a4 be [u4, v4]. Without loss of generality, let
a1 �P a2 �P a3 �P a1. Let the angle between the embeddings of items a1, a2 be α and items
a2, a3 be β. Since a3 �P a1, we have α+ β > π. Now consider the angle between a1, a4 to be θ.
The following cases are possible.

θ ∈ (0, α) =⇒ a1 � a4 � a2

θ ∈ (α, α+ β) =⇒ a2 � a4 � a3

θ ∈ (α+ β, 2π) =⇒ a3 � a4 � a1

In none of these cases can the item a4 succeed, or precede all of the 3 existing items. As the set of
items chosen was arbitrary, the result follows.

Proof of Theorem 5
This theorems follows naturally from Equation 1 obtained as part of the proof for Theorem 6. Given
Equation 1, it follows that Si+k+1 mod(2k+1) � Si � Si+k mod(2k+1).

Proof of Theorem 6

Proof. This proof in constructive in nature. Consider the set of items in the tournament to be
represented as ai. For every item ai in the tournament, define Si to be the maximal set of items
associated with ai such that |Si| < n and Si satisfies the following

∀ak ∈ Si, aj /∈ Si, ak �P aj iff ai �P aj
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By definition Si is non-empty as it contains ai and is not equal to [n] as |Si| < n. It can be easily
observed that the item to set mapping is an equivalence relation. Let the set of all unique constructed
sets be named Q = {S1, S2, ...S`} for some ` . Note that these sets are disjoint due to the equivalence
relation present between the items and the sets in Q. Let Vi be a vector corresponding to any one of
the items in the set chosen arbitrarily. This vector representation cannot capture the exact probabilities
between the items but has the following property.

sin θ > 0 ⇐⇒ Si �P Sj where θ is the counterclockwise angle between Vi and Vj

Consider an ordering of Q determined by the corresponding Vi, such that the Vi are in counter-
clockwise order. Consider the set of sets corresponding to Vi that precede V1 to be Q1 and the set of
sets which correspond to vectors preceded by V1 to be Q2. It is clear from Theorem 12 that the sets in
Q1 have a transitive relationship amongst them. The same applies for Q2. Consider two consecutive
sets (consecutive defined w.r.t to the angle between the representative vectors) {V1} ∪Q1, say X1

and X2. From the maximal property of the sets, we know that there must exist another set X such
that

X1 � X � X2

or
X2 � X � X1

We now introduce the term ’set separator’ to refer to the set X i.e, X is the separator of X1 and X2.
There is a transitive relationship among the items of V1 ∪Q1, therefore X must lie in Q2. Similarly,
the separator of any two consecutive sets in {V1} ∪Q2 must lie in Q1. Also, the set separator for a
unique pair of successive sets must be unique. To prove this by contradiction, consider 2 pairs of
successive sets in Q1, X1, X2 and X3, X4. Let Y ∈ Q2 be the separator for X1, X2 and X3, X4

such that X1 � X2 � X3 � X4. This leads to one of the forbidden configurations shown in Figure
4 being obtained for the subset {X1, X2, Y,X3}. Since each pair of successive sets in Q1 has a
corresponding set in Q2, and vice versa, the number of sets in Q1 and Q2 must be equal. Let k be
the number of items in Q1. The total number of sets present in Q must be 2k + 1. Let the sets in
Q now be ordered as {S1, S2 . . . S2k+1} such that the sets are in counterclockwise order w.r.t. their
corresponding vectors. In the above construction, the set Q is split using the vector V1. Similarly, the
set Q can by split by using any vector Vi(Corresponding to set Si). Since the proof above generalizes
to any split, the following relationship between the sets holds true.

Si � Sj ⇐⇒ i− j(mod2k + 1) ≤ k (1)

Proof of Part(a) Using the claims proven in ??, it is sufficient to prove that all the items belonging
to a single set lie in the same half-plane. This is trivially true since all items in a set Si lie in the same
half-plane split by when the plane is split by any of the items due to the maximal property of the sets.

Proof of Parts (b) (c) (d)) We now construct the sets A1, A2, . . . , Ak, B1, B2, . . . , Bk, C. Let C by
the set S1. Consider

Ai = Si+1

and
Bi = Si+k+1

Since A1, A2, . . . , Ak and B1, B2, . . . , Bk are consecutive sets which lie in the same half place when
S1 is used to split the plane, the transitive properties on the sets represented by Ai and Bi holds.
From our construction of sets A1, A2, . . . , Ak and B1, B2, . . . , Bk and the properties of the sets Si
proven above, parts (c) and (d) hold true.

Proof of Theorem 7

Proof. We show this using construction. A T ∈ T n2 with a cycle of any length, k, can be constructed
as follows. Let the embedding corresponding to item ik be [cos 2jπ

k , sin 2jπ
k ]. It is clear that

iTt A
rotit+1 > 0∀t ∈ 1..k − 1 and iTkA

roti1.
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To show this model can represent a size 3 cycle with any fixed pairwise probabilities, fix an arbitrary
triplet {i, j, k}. Let q` = ln(p`/(1− p`)) ∀` ∈ {1, 2, 3} and the embedding, [ui, vi], corresponding
to each item i. By setting ui = 1, vi = 0, uj = 0, vj = q1, uk = −q2/q1 and vk = −q3, the arbitrary
triplet can be satisfied for all values of p` 6= 0.5, ` ∈ {1, 2, 3}. By definition of P , values of 0.5 are
disallowed and the result follows.

Proof of Theorem 8

Proof. First we aim to prove that the optimal ranking for T ∈ T n2 is one of the n cyclic shifts of
one of the permutations of the items. Furthermore, the permutation of the items considered is a
counterclockwise ordering the corresponding vectors, and is proven using induction. Using Theorem
6, we can partition the set of all items into 2k + 1 groups. We can first show that the items of a single
group must appear in consecutive positions in one of the optimal rankings. This is proven as follows.

Consider there exists an optimal ranking with items which belong to the same group not occurring
consecutively. Consider two items belonging to the same group, which have items from other groups
present in between them in the ranking. Consider these items to be a1, a2, with a1 present above in
the rankings. Consider the number of upsets that the two items are involved in to be u1 and u2. If
u1 ≤ u2, a2 can be placed right after a1 in the ranking, creating a better or equivalent ranking in
terms of upsets. Similarly if u1 ≥ u2, a1 can be placed directly above a2 in the rankings to create
an equivalent or better ranking. Therefore there exists an optimal ranking which has all items in the
same group consecutively.

This theorem is then reduced to finding a ranking of groups, which is proven using induction on k.

Base Case
Consider the base case with k = 1. Let there be 3 groups, C, A1, B1. We can say that the optimal
ranking cannot be any of the following

CB1A1

A1CB1

B1A1C

since all three rankings can be made better by swapping the second and third ranked groups. Therefore
the 3 possible optimal rankings are

CA1B1

A1B1C

B1CA1

which are cyclic shifts of each other.

Inductive Step
One property of rankings which is useful for the inductive step proof is as follows. Let there be 2k+ 1
groups G = {g1, g2 . . . g2k+1}. Label the optimal ranking with the condition that gi be placed first in
the ranking as Ri. The ranking Ri with gi removed must be the optimal ranking for G \ {gi}. This
can be shown using contradiction i.e, if there was a better ranking for G \ gi, that ranking with gi
appended to the front would be better than Ri.

We now assume the theorem is true for size 2k − 1 instances and aim to prove for the same for size
2k + 1 instances. Consider g1 as the first group in the ranking. This creates a certain number of
upsets, for the purposes of ranking the remaining groups, 2 of the remaining groups can be merged
into a single group. This follows from the observation in the proof of Theorem 6 that each group also
’separates’ two groups. This can be considered an instance of the size 2k − 1 problem. Therefore
the set of optimal rankings with g1 as the first group in the rankings is made up of g1 as the first
group and a cyclic sweep of the remaining items to fill the remaining positions. Therefore the optimal
permutation must be among the sets created by considering each of the 2k + 1 groups as the first
group in the rankings. Let Ri,j represent the ranking which has group gi as the first group and the
remaining groups present as a cyclic sweep from gj . Consider the case of R1,k. Let xi represent the
number of items in group gi. If R1,k is a better ranking than Rk,k+1, it implies that

n+1∑
i=k

xi >

2n+1∑
i=n+2

xi (2)
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by considering the shift of g1 in the two rankings. The difference in the number of upsets between
R1,2 and R1,k is given by

x2(−xk−xk+1 . . .−xn+2 +xn+3 . . . x2n+1) +x3(−xk−xk+1 . . .−xn+3 +xn+4 . . . x2n+1) . . .

Using Equation 2, it can be seen that each of the above terms are negative for any j ≤ n+ 1, making
R1,2 the better ranking. Any j > n+ 1 cannot be considered as an optimal ranking since the first
group as per the ranking must precede the second(otherwise switching them would decrease the
upsets). Since either R1,2 or Rk,k+1(both counterclockwise orderings) is better than R1,k whenever
k ≤ n+ 1(R1,k cannot be the optimal ranking when k > n+ 1), and since this can be generalised for
any Ri,j , it is shown that one of the counterclockwise orderings of the items is the optimal ranking.
This shows that a geometric sweep of items when embeddings are known provides an optimal ranking.
Using Theorem 12, we it can be proven that R2R can find an optimal ranking without using the
embeddings. Considering a cycle a, b, c is found, let A,B,C be defined as in Algorithm 2. From this
it is clear that the counterclockwise ordering of arms will follow A � B � C � A, but the ordering
within each set remains unknown. Since Theorem 12 can be applied on A,B,C by setting d as c, a, b
respectively, all 3 sets must be total orders (acyclic). Therefore, the counterclockwise sweep order is
obtainable by performing a topological sort. Concatenating the topological sorts of A,B,C should
result in a permutation which corresponds to a counterclockwise sweep being created. This is done in
Algorithm 2 since the recursive calls of the algorithm on sets A,B,C will result in topological sorts
being returned. Since the algorithm is able to find a counterclockwise sweep, and considers all cyclic
shifts of the permutation, it is optimal.

Proof of Polynomial Time Complexity The proof given here is stronger than the stated theorem,
here we show that R2R has a polynomial running time for any instance. R2R first aims to find a cyclic
triplet. This can be done in polynomial time in multiple ways. If a cyclic triplet is not found, the
algorithm is polynomial time since a Topological sort is sufficient to obtain the optimal ranking. If a
cycle is found, the recurrence relation, T (n) = 3T (n3 ) + P (n) where P (n) is a polynomial which
represents the time taken to check and compare the upsets of all n cyclic permutations. By solving
this recursive equation, it can be shown that T (n) is polynomial in nature.

Proof of Theorem 9

Proof. This algorithm is based on Theorem 8. BR2R first tries to find a cyclic triplet, these 3 items
must belong to the same block, B, since there cannot be cycles or items which belong to different
blocks.

If a cycle is not found, the time complexity analysis and optimality is trivial. The optimality is
guaranteed by the properties of Topological sorting, and the time complexity is polynomial in n.

If a cycle is found, the remaining items can be put into 3 groups. The first group is the set of items that
precede all 3 items in the cyclic triplet. These items cannot belong to B since one of the forbidden
structures, as seen in 4, would be formed. This is also true for the second group, which consists
of all the items which are preceded by all 3 items in the cyclic triplet. The third group of items
consists of items which belong to the block B. Since the blocks are ordered, an optimal ranking can
be constructed once the optimal rankings are known for each of the 3 groups by simply appending
the rankings. Therefore we can construct the recurrence relationship for the time complexity of BR2R

T (n) = P (|B|) + T (n− |B| − |F |) + T (|F |)

where |F | is the size of the group of items which precede all 3 items of the cyclic triplet. By assuming
the T (n) is not sub-linear

T (n) = P (|B|) + T (n− |B|)

Since |B| >= 3, T (n) a polynomial, making BR2R a polynomial time algorithm. Since the ranking
obtained by the above algorithm follows the block structure i.e, arms belonging to higher blocks are
ranked higher, and optimal ranking is used to rank arms in the same block, the ranking over all arms
produced must be optimal as well.

Proof of Lemma 10
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Proof. Consider the definition of T ∈ Block-T n2 .

{
T ∈ Block-T n2 : ∃s,u ∈ Rn, a partition {Hk}bk=1 ∈ [n] s.t

φ(Tij) =

{
uivj − viuj if ∃` s.t i, j ∈ H`

si − sj otherwise

}}

The T defined above can be expressed in the form Q−QT where Q is

Qij =

{
uivj if ∃` s.t i, j ∈ H`

si otherwise

}}

The rank of Q can be established as 2b as follows. Consider a sub-matrix of Q defined as

Qk = [Qij ]∀i ∈ [n]∀j ∈ Hk

Each column of this matrix can be expressed as a linear combination of two vectors Uk, Sk which are
defined as

Uk =

{
ui if i ∈ Hk

0 otherwise

Sk =

{
si if i /∈ Hk

0 otherwise

A column whose index in the original matrix Q is j can be expressed as Ukvj + sk. Since each
sub-matrix is of rank 2, Q must be of rank 2b. Since the rank of the sum of two matrices is upper
bounded by the sum of the ranks of the two matrices, the rank of T must be less than or equal to 4b.
Therefore T ∈ T nr for some r ≤ 4b.

Proof of Theorem 11

Proof. To prove this theorem, we assume the matrix completion subroutine used in Algorithm 4 is
the OPTSPACE algorithm of (16). From Lemma 10 we know that the rank of a local global model P
with b blocks is at most 4.b and this is also passed as an input to the Matrix completion routine. The
proof of the theorem closely follows the proof of Theorem 13 in (22)). Specifically, from Equation 8
in the proof of the theorem, under similar sample complexity O(nb log(n) samples each compared
O(b log(n) times and for any 0 < ε < 1

2 , the Frobenius norm difference of the completed matrix and
the true low rank matrix can be bounded as follows:

‖M̂−M‖2F ≤
n2εmin(θ2,∆2)

4
≤ n2ε∆2

4

where M = φ(P)

Under the condition that ε ≤ θ2

n2∆2 , this further can be bounded by

‖M̂−M‖2F ≤
θ2

4

This implies that for every (i, j) pair where i and j are in different blocks, it must necessarily be
the case that |M̂ij −Mij | ≤ θ

2 . This implies then that in the reconstructed tournament using M̂,
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i �T(M̂) j if and only if i �TP
j. This guarantees that the tournament T(M̂) would be the same as

TP upto the blocks. Once the tournament is reconstructed, the algorithm runs the BR2B routine on
T(M̂). The BR2B algorithm starts by looking for a cyclic triplet if one exists. As a cycle cannot
exist across blocks, the BR2R algorithm will necessarily find a cycle (if one exists) within a block.
Thus the sets S+ and S− would contain complete blocks in every recursive call. This further implies
that the final concatenated ordering produced by the BR2R algorithm respects the blocks. Thus, the
result follows.
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