
Appendices
A Proof of Proposition 2

Proposition 2 (Model Gradient). Let φ denote the parameters of a parametric MDP model T̂φ, and
let V πφ denote the value function for policy π in T̂φ. Then:

∇φV πφ = Es∼dπφ,a∼π,(s′,r)∼T̂φ
[
(r + γV πφ (s′)) · ∇φ log T̂φ(s′, r|s, a)

]
(4)

Proof: The proof is analogous to the proof of the policy gradient theorem [61, 62]. We start by
expressing the value function using Bellman’s equation, for some state s:

V πφ (s) =
∑
a

π(a|s)Qπ(s, a)

=
∑
a

π(a|s)
∑
s′,r

(r + γV πφ (s′)) · T̂φ(s′, r|s, a).
(10)

Applying the product rule:

∇φV πφ (s) =
∑
a

π(a|s)
∑
s′,r

[
(r + γV πφ (s′)) · ∇φT̂φ(s′, r|s, a) + T̂φ(s′, r|s, a) · ∇φ(r + γV πφ (s′))

]
=
∑
a

π(a|s)
∑
s′,r

(r + γV πφ (s′)) · ∇φT̂φ(s′, r|s, a) + γ
∑
a

π(a|s)
∑
s′

T̂φ(s′|s, a) · ∇φV πφ (s′)

(11)

Define ψ(s) :=
∑
a

π(a|s)
∑
s′,r

(r + γV πφ (s′)) · ∇φT̂φ(s′, r|s, a), and additionally define

ρπφ(s→ x, n) as the probability of transitioning from state s to x by executing π for n

steps in the MDP model defined by T̂φ. Using these definitions, we can rewrite the above equation as:

∇φV πφ (s) = ψ(s) + γ
∑
s′

ρπφ(s→ s′, 1) · ∇φV πφ (s′)

= ψ(s) + γ
∑
s′

ρπφ(s→ s′, 1)
[
ψ(s′) + γ

∑
s′′

ρπφ(s′ → s′′, 1) · ∇φV πφ (s′′)
]

= ψ(s) + γ
∑
s′

ρπφ(s→ s′, 1)ψ(s′) + γ2
∑
s′′

ρπφ(s→ s′′, 2) · ∇φV πφ (s′′)

=
∑
s′

∞∑
t=0

γtρπφ(s→ s′, t)ψ(s′) (continuing to unroll)

(12)

We have that V πφ =
∑
s µ0(s) · V πφ (s) by definition. Therefore,

∇φV πφ = ∇φ
(∑

s

µ0(s) · V πφ (s)
)

=
∑
s

µ0(s) · ∇φV πφ (s)

=
∑
s

µ0(s)
∑
s′

∞∑
t=0

γtρπφ(s→ s′, t)ψ(s′)

=
∑
s

dπφ(s)ψ(s)

(13)

17



where dπφ(s) is the (improper) discounted state visitation distribution of the policy π in the MDP
model T̂φ, under initial state distribution µ0. Finally, we apply the log-derivative trick to arrive at the
final result:

∇φV πφ =
∑
s

dπφ(s)
∑
a

π(a|s)
∑
s′,r

(r + γV πφ (s′)) · ∇φT̂φ(s′, r|s, a)

=
∑
s

dπφ(s)
∑
a

π(a|s)
∑
s′,r

T̂φ(s′, r|s, a)(r + γV πφ (s′))
∇φT̂φ(s′, r|s, a)

T̂φ(s′, r|s, a)

= Es∼dπφ,a∼π,(s′,r)∼T̂φ
[
(r + γV πφ (s′)) · ∇φ log T̂φ(s′, r|s, a)

]
�

(14)

A.1 Model Gradient with State-Action Value Baseline

We can subtract Qπφ(s, a) as a baseline without biasing the gradient estimate:

∇φV πφ = Es∼dπφ,a∼π,(s′,r)∼T̂φ
[
(r + γV πφ (s′)−Qπφ(s, a)) · ∇φ log T̂φ(s′, r|s, a)

]
(15)

Proof : We can subtract any quantity which does not depend on s′ or r without changing the value of
the expression because the subtracted quantity is zero. Specifically, for the baseline of Qπφ(s, a) we
have that:

Es∼dπφ,a∼π,(s′,r)∼T̂φ
[
Qπφ(s, a) · ∇φ log T̂φ(s′, r|s, a)

]
=
∑
s

dπφ(s)
∑
a

π(a|s)
∑
s′,r

T̂φ(s′, r|s, a) ·Q(s, a) · ∇φ log T̂φ(s′, r|s, a)

=
∑
s

dπφ(s)
∑
a

π(a|s) ·Q(s, a) ·
∑
s′,r

∇φT̂φ(s′, r|s, a)

=
∑
s

dπφ(s)
∑
a

π(a|s) ·Q(s, a) · ∇φ
∑
s′,r

T̂φ(s′, r|s, a)

=
∑
s

dπφ(s)
∑
a

π(a|s) ·Q(s, a) · ∇φ(1)

= 0

(16)

B Implementation Details

The code for RAMBO is available at github.com/marc-rigter/rambo. Our implementation builds upon
the official MOPO codebase.

B.1 Model Training

We represent the model as an ensemble of neural networks that output a Gaussian distribution over
the next state and reward given the current state and action:

T̂φ(s′, r|s, a) = N (µφ(s, a),Σφ(s, a)).

Following previous works [75, 76], during the initial maximum likelihood model training (Line 1 of
Algorithm 1) we train an ensemble of 7 such dynamics models and pick the best 5 models based on
the validation error on a held-out test set of 1000 transitions from the dataset D. Each model in the
ensemble is a 4-layer feedforward neural network with 200 hidden units per layer.

After the maximum likelihood training, RAMBO updates all of these 5 models adversarially according
to Algorithm 1. For each model rollout, we randomly pick one of the 5 dynamics models to simulate
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Table 4: Base hyperparameter configuration which is shared across all runs of RAMBO.

Hyperparameter Value

SA
C

critic learning rate 3e-4
actor learning rate 1e-4
discount factor (γ) 0.99

soft update parameter (τ ) 5e-3
target entropy -dim(A)

batch size 256

M
B

PO

no. of model networks 7
no. of elites 5

model learning rate 3e-4
ratio of real data (f ) 0.5

model training batch size 256
number of iterations (niter) 2000

the rollout. The learning rate for the model training is 3e-4 for both the MLE pretraining, and the
adversarial training. The model is trained using the Adam optimiser [26].

For the MLE pretraining, the batch size is 256. For each adversarial update in Equation 9 we sample
a batch of 256 transitions from D to compute the maximum likelihood term, and 256 synthetic
transitions for the model gradient term. The hyperparameters used for model training are summarised
in Table 4.

B.2 Policy Training

We sample a batch of 256 transitions to train the policy and value function using soft actor-critic
(SAC) [19]. We set the ratio of real data to f = 0.5 for all datasets, meaning that we sample 50%
of the batch transitions from D and the remaining 50% from DT̂φ . We chose this value because it
was used for most datasets by COMBO [75] and we found that it worked well. We represent the
Q-networks and the policy as three layer neural networks with 256 hidden units per layer.

For SAC [19] we use automatic entropy tuning, where the entropy target is set to the standard heuristic
of −dim(A). The only hyperparameter that we modify from the standard implementation of SAC is
the learning rate for the actor, which we set to 1e-4 as this was reported to work better in the CQL
paper [31] which also utilised SAC. For reference, the hyperparameters used for SAC are included in
Table 4.

B.3 RAMBO Implementation Details

For each iteration of RAMBO we perform 1000 gradient updates to the actor-critic algorithm, and
1000 adversarial gradient updates to the model. For each run, we perform 2000 iterations. The base
hyperparameter configuration for RAMBO that is shared across all runs is shown in Table 4.

The only parameters that we vary between datasets are the length of the synthetic rollouts, k, the
weighting of the adversarial term in the model update, λ, and the choice of rollout policy. Details are
included in the Hyperparameter Tuning section below.

B.4 Hyperparameter Tuning

We found that the hyperparameters that have the largest influence on the performance of RAMBO
are the length of the synthetic rollouts (k), and the weighting of the adversarial term in the model
update (λ). For the rollout length, we found that a value of either 2 or 5 worked well across most
datasets. This is a slight modification to the values of k ∈ {1, 5} that are typically used in previous
model-based offline RL algorithms [8, 75, 76].

To arrive at a suitable value for the adversarial weighting, we used the intuition that we must have
λ� 1. This is necessary so that the MLE term dominates in the loss function in Equation 9 for in-
distribution samples. This ensures that the model still fits the dataset accurately despite the adversarial
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Table 5: Hyperparameters used by RAMBO and RAMBOOFF for each dataset. k is the rollout length,
and λ is the adversary loss weighting. The hyperparameters for RAMBO are those with the best
performance from the three configurations tested (see Table 6). The hyperparameters for RAMBOOFF

are those which obtained the lowest value of the offline heuristic in Table 6. As indicated, a random
rollout policy was used for some of the AntMaze domains as we found that this performed better.

RAMBO RAMBOOFF

k λ k λ Rollout Policy
R

an
do

m HalfCheetah 5 0 2 3e-4

Current Policy

Hopper 2 3e-4 5 0
Walker2D 5 0 5 3e-4

M
ed

iu
m HalfCheetah 5 3e-4 2 3e-4

Hopper 5 3e-4 5 3e-4
Walker2D 5 0 5 0

M
ed

iu
m

R
ep

la
y HalfCheetah 5 3e-4 5 0

Hopper 2 3e-4 2 3e-4
Walker2D 5 0 5 0

M
ed

iu
m

E
xp

er
t HalfCheetah 5 3e-4 2 3e-4

Hopper 5 3e-4 5 3e-4
Walker2D 2 3e-4 2 3e-4

A
nt

M
az

e

Umaze 5 3e-4 5 3e-4 Current Policy
Medium-Play 5 0 5 3e-4

Uniform Random
Large-Play 5 3e-4 5 3e-4
Umaze-Diverse 5 0 5 0
Medium-Diverse 5 0 2 3e-4
Large-Diverse 5 0 5 0

training. We observed that if λ is set too high, the training can be unstable and the Q-function can
become extremely negative. If λ is too small, the adversarial training has no effect as the model is
updated too slowly. We found that a value of 3e-4 generally obtained good performance.

For all MuJoCo datasets we performed model rollouts using the current policy, but for some AntMaze
datasets we used a random rollout policy as we found this performed better. The rollout policies used
are listed in Table 5. For the MuJoCo datasets, we initialised the policy using behaviour cloning (BC)
which is common practice in offline RL [25, 74]. Ablation results without the BC initialisation are in
Appendix C.4. We did not use the BC initialisation for the AntMaze problems.

For the rollout length and the adversarial weighting, we tested the following three configurations on
each dataset: (k, λ) ∈ {(2, 3e-4), (5, 3e-4), (5, 0)}. We included (k, λ) = (5, 0) as we found that an
adversarial weighting of 0 worked well for some datasets. As described in Section 6, to evaluate
RAMBO we ran each of the three hyperparameter configurations for five seeds each, and reported the
best performance across the three configurations. The results for the best configuration are in Table 1,
and the corresponding final hyperparameters chosen can be found in Table 5. The results for each of
the three configurations can be found in Table 6.

Offline selection of hyperparameters is an important topic in offline RL [47, 77]. This is because in
some applications the selection of hyperparameters based on online performance may be infeasible.
Therefore, we present additional results in Table 1 where we select between the three choices of
hyperparameters offline using a simple heuristic based on the magnitude and stability of the Q-values
during training. After selecting the hyperparameters using the heuristic, we ran a further five seeds
using these parameters to produce the final result. We refer to this approach as RAMBOOFF. The
hyperparameters used by RAMBOOFF are also included in Table 5. Details of the heuristic used to
select the hyperparameter configuration for RAMBOOFF can be found in the following subsection.
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B.5 Offline Hyperparameter Selection Method

Deep RL algorithms are highly sensitive to the choice of hyperparameters [3]. There is no consensus
on how parameters should be selected for offline RL [47]. Some possibilities include a) selection
based on online evaluation [8, 9, 25, 39, 72, 76], b) selection based on an offline heuristic [47, 75],
and c) methods based on off-policy evaluation [47, 77].

To address applications in which online evaluation is possible, we evaluated RAMBO using approach
a) which is the most common practice among model-based offline RL algorithms [8, 25, 37, 39, 76].
To consider situations where online tuning is not possible, we also evaluate using approach b) to
select the hyperparameters for each dataset using a simple heuristic in a similar vein to [75]. We refer
to this second approach as RAMBOOFF.

To arrive at a heuristic that can be evaluated offline, we use the intuition that the value function
should be regularised (i.e. low) as well as stable during training. Therefore, our heuristic makes the
final hyperparameter selection from the set of candidate parameters according to: min

(
Qavg +Qvar),

where Qavg is the average Q-value at the end of training, and Qvar is the variance of the average
Q-value over the final 100 iterations of training.

The values of this heuristic for each of the three configurations that we test are the values in the
brackets provided in Table 6. The bolded values in the table indicate the lowest value for the heuristic,
which is the parameter configuration chosen for RAMBOOFF. After choosing the hyperparameters in
this manner, we rerun the algorithm for a further five seeds per dataset. The performance for these
additional runs are the results reported in Table 1 for RAMBOOFF.

The results in Table 1 indicate that RAMBOOFF obtains strong performance compared to existing
baselines on the MuJoCo domains. This indicates that it is possible to obtain solid performance
with RAMBO by choosing the final hyperparameters according to the magnitude and stability of the
Q-values. Unsurprisingly however, RAMBO performs slightly better than RAMBOOFF. This shows
that better performance is obtained using online hyperparameter tuning.

B.6 Evaluation Procedure

We report the average undiscounted normalized return averaged over the last 10 iterations of training,
with 10 evaluation episodes per iteration. We evaluated the SAC policy by deterministically taking
the mean action. The normalization procedure is that proposed by [14], where 100 represents an
expert policy and 0 represents a random policy.

B.7 Baselines and Domains

We compare RAMBO against state of the art model-based (COMBO [75], MOReL [25], RepB-
SDE [34] and MOPO [76]) and model-free (CQL [31], IQL [28], and TD3+BC [15]) offline RL
algorithms on the D4RL benchmarks [14]. The D4RL benchmarks are released with the Apache
License 2.0. To facilitate a fair comparison, we provide results for all algorithms for the MuJoCo-v2
D4RL datasets which contain more performant data than v0 [37].

Because the original COMBO, MOPO, and CQL papers use the MuJoCo-v0 datasets we report the
results for these algorithms on the MuJoCo-v2 datasets from [67]. The MOReL, IQL, RepB-SDE,
and TD3+BC papers include evaluations on the MuJoCo-v2 datasets, so for these algorithms we
include the results from the original papers.

For AntMaze-v0, we report the results from the original papers for CQL, IQL, and TD3+BC. For
COMBO, MOPO, RepB-SDE, and MOReL, the results are taken from [67]. Following the IQL
paper [28], we subtract 1 from the rewards of the AntMaze datasets for our experiments.

B.8 Computational Resources

During our experiments, each run of RAMBO has access to 2 CPUs of an Intel Xeon Platinum
8259CL processor at 3.1GHz, and half of an Nvidia T4 GPU. With this hardware, each run of
RAMBO takes 24-30 hours.

For our main evaluation of RAMBO, we ran five seeds for each of three parameter configurations for
18 tasks resulting in a total of 270 runs. This required approximately 150 GPU-days of compute.
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C Additional Results

C.1 Single Transition Example

Description In this domain, the state and action spaces are one-dimensional. The agent executes a
single action, a ∈ [−1, 1], from initial state s0. After executing the action, the agent transitions to s′
and receives a reward equal to the successor state, i.e. r(s′) = s′, and the episode terminates.

The actions in the dataset are sampled uniformly from a ∈ [−0.75, 0.7] ∪ [−0.15,−0.1] ∪
[0.1, 0.15] ∪ [0.7, 0.75]. In the MDP for this domain, the transition distribution for successor states
is as follows:

• s′ ∼ N (µ = 1, σ = 0.2), for a ∈ [−0.8, −0.65].

• s′ ∼ N (µ = 0.5, σ = 0.2), for a ∈ [−0.2, −0.05].

• s′ ∼ N (µ = 1.25, σ = 0.2), for a ∈ [0.05, 0.2].

• s′ ∼ N (µ = 1.5, σ = 0.2), for a ∈ [0.65, 0.8].

• s′ = 0.5, for all other actions.

The transitions to successor states from the actions in the dataset are illustrated in Figure 1.

Figure 1: Transition data for the Single Transition Example after executing action a from s0.

Comparison between RAMBO and COMBO To generate the comparison, we run both algo-
rithms for 50 iterations. To choose the regularisation parameter for COMBO, we sweep over
β ∈ {0.1, 0.2, 0.5, 1, 5} and choose the parameter with the best performance. Note that 0.5, 1, and 5
are the values used in the original COMBO paper [75], so we consider lower values of regularisation
than in the original paper. For RAMBO we use λ =3e-2. We used the implementation of COMBO
from github.com/takuseno/d3rlpy.

Figure 2 shows the Q-values produced by RAMBO throughout training. We can see that after 5
iterations, the Q-values for actions which are outside of the dataset are initially optimistic, and
over-estimate the true values. However, after 50 iterations the Q-values for out of distribution actions
have been regularised by RAMBO. The action selected by the policy after 50 iterations is the optimal
action in the dataset, a ∈ [0.7, 0.75]. Thus, we see that RAMBO introduces pessimism gradually as
the adversary is trained to modify the transitions to successor states.

For COMBO, the best performance averaged over 20 seeds was obtained for β = 0.2, and therefore
we report results for this value of the regularisation parameter. Figure 3 illustrates the Q-values
produced by COMBO throughout training (with β = 0.2). We see that at both 5 iterations and 50
iterations, the value estimates for actions outside of the dataset are highly pessimistic. In the run
illustrated for COMBO, the action selected by the policy after 50 iterations is a ∈ [0.1, 0.15], which
is not the optimal action in the dataset. Figure 3 shows that the failure to find an optimal action is due
to the gradient-based policy optimisation becoming stuck in a local maxima of the Q-function.

These results highlight a difference in the behaviour of RAMBO compared to COMBO. For RAMBO,
pessimism is introduced gradually as the adversary is trained to modify the transitions to successor
states. For COMBO, pessimism is introduced at the outset as it is part of the value function update
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throughout the entirety of training. Additionally, the regularisation of the Q-values for out of
distribution actions appears to be less aggressive for RAMBO than for COMBO.

The results averaged over 20 seeds in Table 3 show that RAMBO consistently performs better than
COMBO for this problem. This suggests that the gradual introduction of pessimism produced by
RAMBO means that the policy optimisation procedure is less likely to get stuck in poor local maxima
for this example. The downside of this behaviour is that it may take more iterations for RAMBO to
find a performant policy. Modifying other algorithms to gradually introduce pessimism may be an
interesting direction for future research.

(a) 5 iterations (b) 50 iterations

Figure 2: Q-values at the initial state during the training of RAMBO on the Single Transition Example.
The red line indicates the mean action of the policy.

(a) 5 iterations (b) 50 iterations

Figure 3: Q-values at the initial state during the training of COMBO on the Single Transition Example
(β = 0.2). The red line indicates the mean action of the policy.

C.2 Results for each Hyperparameter Configuration

In Table 6, we report the results for each of the three parameter configurations that we test. The
highlighted values indicate the best performance for each dataset, and are the results reported for
RAMBO in Table 1. In Table 6 we also report the values of the offline hyperparameter selection
heuristic in brackets. The bold values indicate the lowest value of the heuristic, which is the
hyperparameter configuration selected for RAMBOOFF.
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Table 6: Performance of RAMBO across each of the three configurations of the rollout length, k, and
the adversarial weighting, λ, that we tested. Values indicate the average normalized return at the end
of training. Each configuration was run for 5 seeds. ± captures the standard deviation over seeds.
Highlighted values indicate the best performance for each dataset. The values in brackets indicate the
value of the offline tuning heuristic described in Appendix B.5. “−” indicates that the value function
diverged.

k = 2, λ = 3e− 4 k = 5, λ = 3e− 4 k = 5, λ = 0

R
an

do
m HalfCheetah 34.5± 3.7 (348.1) 38.2± 3.9 (408.6) 40.0± 2.3 (377.6)

Hopper 21.6± 8.0 (1179.7) 21.3± 9.2 (1293.2) 15.1± 9.4 (188.9)

Walker2D − 0.2± 0.5 (1.2e8) 11.5± 10.5 (2.5e9)

M
ed

iu
m HalfCheetah 72.5± 4.4 (671.1) 77.6± 1.5 (717.4) 75.5± 6.0 (720.6)

Hopper − 92.8± 6.0 (300.4) 47.5± 36.0 (314.1)

Walker2D 82.2± 11.4 (523.6) 76.8± 4.8 (2124.2) 86.9± 2.7 (339.4)

M
ed

iu
m

R
ep

la
y HalfCheetah 65.4± 3.7 (623.5) 68.9± 2.3 (647.2) 64.7± 3.2 (608.4)

Hopper 96.6± 7.0 (262.4) 93.5± 10.3 (309.1) 36.7± 9.5 (263.4)

Walker2D 6.7± 2.5 (2.3e7) 62.1± 33.5 (4.3e6) 85.0± 15.0 (259.0)

M
ed

iu
m

E
xp

er
t HalfCheetah 78.1± 6.6 (987.1) 93.7± 10.5 (1008.9) 92.9± 11.9 (1013.2)

Hopper 36.4± 16.7 (344.1) 83.3± 9.1 (342.8) 77.6± 14.3 (344.4)

Walker2D 68.3± 20.6 (371.9) 31.7± 49.8 (2.0e7) 50.8± 57.8 (6.9e9)

A
nt

M
az

e

Umaze 8.8± 8.2 (−48.3) 25.0± 12.0 (-54.2) 3.8± 5.8 (−51.5)

Medium-Play 5.8± 6.6 (1421) 8.4± 13.5 (-70.77) 16.4± 17.9 (−68.10)

Large-Play 0.0± 0.0 (−77.9) 0.0± 0.0 (-78.1) 0.0± 0.0 (−77.9)

Umaze-Diverse 0.0± 0.0 (790.8) 0.0± 0.0 (68.2) 0.0± 0.0 (-65.4)

Medium-Diverse 3.8± 1.7 (-72.4) 1.6± 1.8 (−72.2) 23.2± 14.2 (−71.2)

Large-Diverse − 0.0± 0.0 (6.0e8) 2.4± 3.3 (3.5e6)

C.3 Visualisation of Adversarially Trained Dynamics Model

To visualise the influence of training the transition dynamics model in an adversarial manner as
proposed by RAMBO, we consider the following simple example MDP. In the example, the state
space (S) and action space (A) are 1-dimensional with, A = [−1, 1]. For this example, we assume
that the reward function is known and is equal to the current state, i.e. R(s, a) = s, meaning that
greater values of s have greater expected value. The true transition dynamics to the next state s′
depend on the action but are the same regardless of the initial state, s.

In Figure 4 we plot the data present in the offline dataset for this MDP. Note that the actions in the
dataset are sampled from a subset of the action space: a ∈ [−0.3, 0.3]. Because greater values of s′
correspond to greater expected value, the transition data indicates that the optimal action covered by
the dataset is a = 0.3.

In Figure 5 we plot the output of running naïve model-based policy optimisation (MBPO) on this
illustrative offline RL example. Figure 5a illustrates the MLE transition function used by MBPO.
The transition function fits the dataset for a ∈ [−0.3, 0.3]. Outside of the dataset, it predicts that an
action of a ≈ 1 transitions to the best successor state. Figure 5b shows that applying a reinforcement
learning algorithm (SAC) to this model results in the value function being over-estimated, and a ≈ 1
being predicted as the best action. This illustrates that the policy learns to exploit the inaccuracy in
the model and choose an out-of-distribution action.
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Figure 4: Transition data for illustrative example. The transition function is the same regardless of
the initial state. The actions in the dataset are sampled from a ∈ [−0.3, 0.3].

(a) Maximum likelihood estimate of the transition
function, which is used by MBPO. Shaded area indi-
cates ±1 SD of samples generated by the ensemble.

(b) Q-values after running SAC for 15 iterations. The
values are significantly over-estimated. The red line
indicates the mean action taken by the SAC policy.

Figure 5: Plots generated by running naïve MBPO on the illustrative MDP example.

(a) Model which is adversarially trained using
RAMBO. Shaded area indicates ±1 SD of samples
generated by the ensemble. The transition function ac-
curately predicts the dataset for in-distribution actions,
but predicts transitions to low value states for actions
which are out of distribution.

(b) Q-values from SAC critic. The red line indicates
the mean action taken by the policy trained using
SAC, which is a ≈ 0.3 (the best in-distribution ac-
tion). Training on pessimistic synthetic transitions reg-
ularises the Q-values for out-of-distribution actions.

Figure 6: Output generated by running RAMBO for 15 iterations on the illustrative MDP example,
using an adversary weighting of λ =3e-2.
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In Figure 6 we show plots generated after running RAMBO on this example for 15 iterations, using
an adversary weighting of λ = 3e-2. Figure 6a shows that the transition function still accurately
predicts the transitions within the dataset. This is because choosing λ � 1 means that the MLE
loss dominates for state-action pairs within the dataset. Due to the adversarial training, for actions
a /∈ [−0.3, 0.3] which are out of the dataset distribution, the transition function generates pessimistic
transitions to low values of s, which have low expected value.

As a result, low values are predicted for out-of-distribution actions, and the SAC agent illustrated
in 6b learns to take action a ≈ 0.3, which is the best action which is within the distribution of the
dataset. This demonstrates that by generating pessimistic synthetic transitions for out-of-distribution
actions, RAMBO enforces conservatism and prevents the learnt policy from taking state-action pairs
which have not been observed in the dataset.

C.4 Ablation of Behaviour Cloning Initialisation

For the MuJoCo locomotion experiments we initialised the policy using behaviour cloning, as noted
in Section 6 and Appendix B.4. This is a common initialisation step used in previous works [25, 74].
In Table 7 we present ablation results where the behaviour cloning initialisation is removed, and the
policy is initialised randomly. Table 7 indicates that the behaviour cloning initialisation results in a
small improvement in the performance of RAMBO.

Table 7: Ablation of RAMBO with no behaviour cloning initialisation on the D4RL benchmark [14].
We report the normalised performance during the last 10 iterations of training averaged over 5 seeds.

RAMBO RAMBO, No BC

R
an

do
m HalfCheetah 40.0± 2.3 39.5± 3.5

Hopper 21.6± 8.0 25.4± 7.5

Walker2D 11.5± 10.5 0.0± 0.3

M
ed

iu
m HalfCheetah 77.6± 1.5 77.9± 4.0

Hopper 92.8± 6.0 87.0± 15.4

Walker2D 86.9± 2.7 84.9± 2.6

M
ed

iu
m

R
ep

la
y HalfCheetah 68.9± 2.3 68.7± 5.3

Hopper 96.6± 7.0 99.5± 4.8

Walker2D 85.0± 15.0 89.2± 6.7

M
ed

iu
m

E
xp

er
t HalfCheetah 93.7± 10.5 95.4± 5.4

Hopper 83.3± 9.1 88.2± 20.5

Walker2D 68.3± 20.6 56.7± 39.0

MuJoCo-v2 Total: 826.2± 33.8 812.4± 47.8
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