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A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 Training DYNFRS and Unlearning
Samples with OCC(q)
1: procedure DISTRIBUTE(S, T , q)
2: k → T ↑ q
3: S(1), . . . , S(T )

→ ⊋, · · · ,⊋
4: for ↓xi, yi↔ ↗ S do
5: j1···k → randomly and independently

sample k different integers from [T ]
6: for t ↗ j1···k do
7: S(t)

→ S(t)
↘ {↓xi, yi↔}

8: end for
9: end for

10: return S(1), . . . , S(T )

11: end procedure
12:
13: procedure TRAIN(S, T , q)
14: ! → ⊋
15: S(1), . . . , S(T )

→ DISTRIBUTE(S, T, q)
16: for t → 1 · · ·T do
17: ωt → BUILDTREE(S(t))
18: ! → ! ↘ {ωt}

19: end for
20: return !
21: end procedure
22:
23: procedure ADD(!, ↓x, y↔)
24: j1···k → randomly and independently sam-

ple k different integers from [T ]
25: for t → j1···k do
26: ADD(ωt, ↓x, y↔)
27: end for
28: end procedure
29:
30: procedure REMOVE(!, ↓x, y↔)
31: for t → 1 · · ·T do
32: if ↓x, y↔ ↗ S(t) then
33: REMOVE(ωt, ↓x, y↔)
34: end if
35: end for
36: end procedure

Algorithm 2 Unlearning and Querying in Trees
with LZY
1: procedure REMOVE(ω, ↓x, y↔) ε ADD is similar
2: DELETE(ROOT(ω), ↓x, y↔)
3: end procedure
4:
5: procedure REMOVE(u, ↓x, y↔)
6: Su → Su\↓x, y↔ ε implementation

of DYNFRS does not actually store Su, so this line
stands for updating all split statistics of node u

7: if LZYu = 1 then return
8: else if BESTSPLITCHANGED(u) then
9: LZYu → 1

10: else if ¬ISLEAF(u) then
11: if xaω

u
≃ wω

u then
12: REMOVE(ul, ↓x, y↔)
13: else
14: REMOVE(ur, ↓x, y↔)
15: end if
16: end if
17: end procedure
18:
19: procedure QUERY(ω, ↓x, y↔)
20: QUERY(ROOT(ω), ↓x, y↔)
21: end procedure
22:
23: procedure QUERY(u, ↓x, y↔)
24: if LZYu = 1 then
25: SPLIT(u)
26: LZYu → 0
27: LZYul → 1, LZYur → 1
28: end if
29: if ISLEAF(u) then
30: return Su

31: end if
32: if xaω

u
≃ wω

u then
33: QUERY(ul, ↓x, y↔)
34: else
35: QUERY(ur, ↓x, y↔)
36: end if
37: end procedure

A.2 PROOFS

Theorem 1. Sample addition and removal for the DYNFRS framework are exact.

Proof. We prove that the subsampling method OCC(q) maintains the exactness of DYNFRS. Let
random variable oi,t ↭ [→xi, yi↑ ↓ S(t)] denotes whether →xi, yi↑ occurs in S(t). In OCC(q), each
sample →xi, yi↑ is distributed to ↔qT ↗ distinct trees, with the selection of these trees being inde-
pendent of other samples →xj , yj↑ ↓ S for j ↘= i. Thus, oi,· is independent from oj,· for j ↘= i.
However, oi,1, oi,2, . . . , oi,T are dependent on each other, constrainted by ≃t ↓ [T ], oi,t ↓ {0, 1},∑T

t=0 oi,t = ↔qT ↗, and we say they follow a joint distribution B(T, q).

Now, let S→(1), S→(2), . . . , S→(T ) denotes the training sets for each tree generated by applying OCC(q)
to the modified training set S→, and let o→i,t ↭ [→xi, yi↑ ↓ S→(t)]. Then, when removing sample
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→xi, yi↑ (i.e., S→ = S\→xi, yi↑), we have (oj,1, . . . , oj,T ) ⇐ B(T, q) and (o→j,1, . . . , o
→
j,T ) ⇐ B(T, q)

for i ↘= j, and oi,· = 0 (because →xi, yi↑ is removed) and o→i,· = 0. Notably, B(T, q) depends on
T and q only, but not on training samples S. This shows that simply setting oi,· = 0 ensures that
OCC(q) with sample removed maintains the same distribution as applying OCC(q) on the modified
training set.

Similarily, when adding →xi, yi↑ (i.e., S→ = S⇒→xi, yi↑), (oj,1, . . . , oj,T ) and (o→j,1, . . . , o
→
j,T ) follow

the same distribution B(T, q) for j ↘= i. While (oj,1, . . . , oj,T ) is generated from B(T, q) for addi-
tion, it is equivalent to (o→i,1, . . . , o

→
i,T ) for following the same distribution. Therefore, OCC(q) with

sample added maintains the same distribution as applying OCC(q) on the modified training set.

Next, we prove that the addition and removal operations are exact within a specific DYNFRS tree.
When no change in range of attribute a ([min{xi,a | →xi, yi↑ ↓ Su}, max{xi,a | →xi, yi↑ ↓ Su}])
occurs, the candidate splits are sampled from the same uniform distribution making DYNFRS and
the retraining method are identical in distribution node’s split candidates. However, when a change
in range occurs, DYNFRS resamples all candidate splits and makes them stay in the same uniform
distribution as those in the retraining method. Consequently, DYNFRS adjusts itself to remain in the
same distribution with the retraining method. Thus, sample addition and removal in DYNFRS are
exact.

Lemma 1. For a certain Extremely Randomized Tree node u, and a specific attribute a, the time
complexity of finding the best split of attribute a is O(|Su| log s), assuming that |Su| ⇑ s.

Proof. Conventionally, for each tree node u and an attribute a, we uniformly samples s thresholds
wa,1···s from [min{xi,a | →xi, yi↑ ↓ Su}, max{xi,a | →xi, yi↑ ↓ Su}]. Then, we try to split Su with
each threshold and look for split statistics that are: (1) the number of samples in the left or right
child (i.e., |Sul | and |Sur |), and (2) the number of positive samples in left or right child (|Sul,+| and
|Sur,+|), which are the requirements for calculating the empirical criterion scores.

One approach, as used by prior works, first sort all samples Su by x·,a in ascending order, and then
sort thresholds wa,1···s in ascending order. These sortings has a time complexity of O(|Su| log |Su|)
and O(s log s), respectively. After that, a similar technique used in the merge sort algorithm is used
to find the desired split statistics in O(|Su| + s).

To get rid of the costly sorting on Su, we sort wa,1···s O(s log s) and then iterate through all samples
and calculate the changes each sample brings to candidates’ split statistics. For convenience, let

bk ↭
∣∣{→xi, yi↑ | →xi, yi↑ ↓ Su ⇓ xi,a ⇔ wa,k}

∣∣,
ck ↭

∣∣{→xi, yi↑ | →xi, yi↑ ↓ Su ⇓ xi,a ⇔ wa,k ⇓ yi = +}
∣∣,

which are crucial split statistics for calculating the empirical criterion score. We start with setting
b1···s and c1···s as all zeros. Then, for a sample →xi, yi↑ ↓ Su, it will cause an increment in bs→···s for
some s→ satisfying xi,a ⇔ ws→ and xi,a > ws→↑1. Given that wa,1···s are sorted, all k, (s→ ⇔ k ⇔ s)
satisfy xi,a ⇔ wa,k, while xi,a > wa,k for all 1 ⇔ k < s→. s→ can be easily found by binary search
in O(log s), then adding 1 to bs→ , bs→+1, . . . , bs is the only thing left. Use a loop for range addition
is clearly O(s), but insteading of finding b1···s, we keep track of d1···s, where dk ↭ bk ↖ bk↑1. So
increment bs→···s can be replace by ds→ ↙ ds→ + 1, which is O(1). When all samples are processed,
we construct b1·s from d1···s, where prefix sums bk ↙ bk↑1 + dk help solve it in O(s).

For every sample →xi, yi↑ ↓ S, we need to find s→ in O(log s) (Algorithm 3: line 10), and perform
increment in d→s in O(1) (Algorithm 3: line 11), which results in a time complexity of O(|Su| log s)
in this part (Algorithm 3: line 9-14). Meanwhile, the prefix sum is executed after all samples are
processed (Algorithm 3: line 15-18), and its execution time is bounded by O(s). Luckily, c1···s can
be calculated in a similar manner, and with both b1···s and c1···s ready, we can obtain the empirical
criterion score for each candidate split (Algorithm 3: line 21-28), and this has a time complexity of
O(s) assuming calculating criterion scores to be O(1).

Since |Su| ⇑ s, the term O(|Su| log s) dominates in time complexity, with the binary search (Al-
gorithm 3: line 10) being the threshold. It is noteworthy that adopting exponential search to find
s→ can result in an expected O(log log s) time complexity since wa,1···s are uniformly distributed.
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However, binary search outperforms exponential search in practice, so we conclude with a time
complexity of O(|Su| log s) for finding the best split of attribute a in node u when |Su| ⇑ s.

Algorithm 3 Find the best split for attribute a
1: procedure FINDATTRIBUTEBESTSPLIT(Su, a, s)
2: R → [min{xi,a | ↓xi, yi↔ ↗ Su},max{xi,a | ↓xi, yi↔ ↗ Su}]
3: wa,1···s → sample s i.i.d. values from R
4: wa,1···s → SORT(wa,1···s) ε sort wa,1···s in ascending order.
5: b1···s → {0, · · · , 0} ε create an 1-D array of size s
6: c1···s → {0, · · · , 0} ε create an 1-D array of size s
7: n → |Su|

8: n+ → 0
9: for ↓xi, yi↔ ↗ Su do

10: s→ → LOWERBOUND(w1···s,xi,a) ε find the largest position k s.t. wk↑1 < xi,a

11: bs→ → bs→ + 1
12: cs→ → cs→ + yi
13: n+ → n+ + yi
14: end for
15: for k → 2 . . . s do ε find prefix sum
16: bk → bk + bk↑1

17: ck → ck + ck↑1

18: end for
19: Iω → ⇐

20: wω
a → 0

21: for k → 1 . . . s do
22: Ik → I(bk, ck, n⇒ bk, n+ ⇒ ck)
23: ε I(|Sul |, |Sul,+|, |Sur |, |Sur,+|) returns the empirical critierion score for split (a,wa,k) in O(1)

using either Gini index IG (this work) or Shannon’s entropy IE .
24: if Ik < Iω then
25: Iω → Ik
26: wω

a → wa,k

27: end if
28: end for
29: return (a,wω

a)
30: end procedure

Given q < 1, the proportion of trees each sample is assigned to, T , the number of trees in the
forest, dmax, the maximum depth of each tree, p, the number of candidate attributes, s, the number
of candidate splits for each attribute (usually s ⇔ 30), and n = |S|, size of the training set, we now
prove the following:

Theorem 2. Training DYNFRS yields a time complexity of O(qTdmaxpn log s).

Proof. For certain tree and a specific node u, we find the best split among p randomly selected
attributes a1···p, and we call FINDATTRIBUTEBESTSPLIT(Su, ai, s) (Algorithm 3) p times for each
i ↓ [p]. From Lemma 1, finding the best split for the node u has a time complexity of O(p|Su| log s).
Then, summing |Su| over all tree nodes u on that tree, we have

∑
u |Su| ⇔ dmaxqn, since the root

of the tree contains about ↔qT ↗n/T ∝ qn samples, and each layer has at most the same amount of
samples as the root (layer 0). Therefore, the time complexity for training one DYNFRS tree can be
bounded by O(dmaxqn log s). Since there are T independent trees in the forest, the time complexity
for training a DYNFRS forest is O(qTdmaxpn log s).

Theorem 3. Modification (sample addition or removal) in DYNFRS yields a time complexity of
O(qTdmaxps) if no attribute range changes occurs while O(qTdmaxps + cnaff log s) otherwise
(where c denotes the number of attributes affected, and naff denotes the sum of sample size among
all affected nodes met by this modification request).
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Proof. When no attribute range change occurs on each tree, the modification request traverses a
path from the root to a leaf with at most dmax nodes. For each node, we need to recalculate all the
empirical criterion scores for all candidate splits O(ps). Since OCC(q) guarantees that only ↔qT ↗
trees are affected by the modification requests, at most qTdmax nodes need the recalculation. So,
the time complexity for one modification request yields O(qTdmaxps).

When an attribute range occurs on u, it is necessary to call FINDATTRIBUTEBESTSPLIT(Su, a, s)
for u and the affected attribute a. Given that the affected nodes’ sample sizes sum up to naff, and for
each affected node, we need to resample at most c ⇔ p attributes, and then Lemma 1 entails that the
time complexity for completing all resampling is an additional O(cnaff log s).

Theorem 4. Query in DYNFRS yields a time complexity of O(Tdmax) if no lazy tag is met, while
O(Tdmax + pnlzy log s) otherwise (where nlzy denotes the sum of sample size among all nodes with
lazy tag and met by this query).

Proof. On each tree, the query starts with the root and ends at a leaf node, traversing a tree path
with at most dmax nodes, and the query on DYNFRS aggregates the results of all T trees, therefore
querying without bumping into a lazy tag yields a time complexity of O(Tdmax).

However, if the query reaches on a tagged node u, we need to perform a split on it, and
by the proof of Theorem 2 and Lemma 1, finding the best split of node u calls function
FINDATTRIBUTEBESTSPLIT(Su, ·, s) p times and results in a time complexity of O(p|Su| log s).
As nlzy denotes the sum of sample sizes of all nodes with lazy tags met by the query, handling these
lazy tags requires an additional time complexity of O(pnlzy log s).

A.3 IMPLEMENTATION

All of the experiments are conducted on a machine with AMD EPYC 9754 128-core CPU and 512
GB RAM in a Linux environment (Ubuntu 22.04.4 LTS), and all codes of DYNFRS are written
in C++ and compiled with the g++ 11.4.0 compiler and the -O3 optimization flag enabled. To
guarantee fair comparison, all tests are run on a single thread and are repeated 5 times with the mean
and standard deviation reported.

DYNFRS is tuned using 5-fold cross-validation for each dataset, and the following hyperparameters
are tuned using a grid search: Number of trees in the forest T ↓ {100, 150, 250}, maximum depth of
each tree dmax ↓ {10, 15, 20, 25, 30, 40}, and the number of sampled splits s ↓ {5, 15, 20, 30, 40}.

A.4 BASELINES

HedgeCut and OnlineBoosting can not process real continuous input. Thus, all numerical attributes
are discretized into 16 bins, as suggested in their works (Schelter et al., 2021; Lin et al., 2023).
Both of them are not capable of processing samples with sparse attributes, so one-hot encoding is
disabled for them. Additionally, it is impossible to train Hedgecut on datasets Synthetic and Higgs
in our setting due to its implementation issue, as its complexity degenerates to O(pn2) sometimes
and consumes more than 256 GB RAM during training.

A.5 DATASETS

Purchase (Sakar and Kastro, 2018; Dua and Graff, 2019) is primarily used to predict online shop-
ping intentions, i.e., users’ determination to complete a transaction. The dataset was col-
lected from an online bookstore built on an osCommerce platform.

Vaccine (Bull et al., 2016; DrivenData, 2019) comes from data-mining competition in Driven-
Data. It contains 26,707 survey responses, which were collected between October 2009
and June 2010. The survey asked 36 behavioral and personal questions. We aim to deter-
mine whether a person received a seasonal flu vaccine.

17



Published as a conference paper at ICLR 2025

Adult (Becker and Kohavi, 1996; Dua and Graff, 2019) is extracted from the 1994 Census database
by Barry Becker, and is used for predicting whether someone’s income level is more than
50,000 dollars per year or not.

Bank (Moro et al., 2014; Dua and Graff, 2019) is related to direct marketing campaigns of a Por-
tuguese banking institution dated from May 2008 to November 2010. The goal is to predict
if the client will subscribe to a term deposit based on phone surveys.

Heart (Kaggle, 2018) is provided by Ulianova, and contains 70,000 patient records about cardio-
vascular diseases, with the label denoting the presence of heart disease.

Diabetes (Strack et al., 2014; Dua and Graff, 2019) encompasses a decade (1999-2008) of clinical
diabetes records from 130 hospitals across the U.S., covering laboratory results, medica-
tions, and hospital stays. The goal is to predict whether a patient will be readmitted within
30 days of discharge.

Synthetic (Kaggle, 2016) focuses on the patient’s appointment information, such as date, number
of SMS sent, and alcoholism, aiming to predict whether the patient will show up after
making an appointment.

Higgs (Baldi et al., 2014; Dua and Graff, 2019) consists of 1.1 ′ 107 signals characterized by 22
kinematic properties measured by detectors in a particle accelerator and 7 derived attributes.
The goal is to distinguish between a background signal and a Higgs boson signal.

A.6 RESULTS

In this section, Table 3 presents the training time for each model, with OnlineBoosting being the
fastest in most datasets while DYNFRS ranks first among Random Forest based methods. Table 4, 5,
6, and 7 despicts the runtime for model simultaneously unlearning 1, 10, 100 instances or 0.1% and
1% of all samples, where DYNFRS consistently outperforms all others in all settings and all datasets.

Table 3: Training time (∞) of each model, measured in seconds (s), and the standard deviation is
given with the same unit in a smaller font. “/” means the model is unable to train on that dataset.

Datasets DaRE HedgeCut Online
Boosting

DYNFRS
(q = 0.1)

DYNFRS
(q = 0.2)

Purchase 3.10±0.0 1.05±0.0 0.27±0.0 0.38±0.0 0.72±0.0

Vaccine 4.78±0.0 431±14 1.05±0.0 1.12±0.0 2.27±0.0

Adult 5.02±0.1 11.8±0.5 0.77±0.0 0.61±0.0 1.15±0.0

Bank 8.26±0.2 8.44±0.3 0.92±0.0 1.15±0.0 2.37±0.0

Heart 12.1±0.2 3.51±0.0 1.02±0.0 1.04±0.0 1.96±0.0

Diabetes 123±1.0 162±3.3 3.51±0.0 8.67±0.0 18.2±0.0

NoShow 65.4±0.4 28.1±0.3 1.68±0.0 3.08±0.0 6.10±0.0

Synthetic 1334±6.3 / 40.7±0.9 66.3±0.2 128±0.4

Higgs 10793±48 / 460±13 548±1.2 1120±1.0

Table 4: Runtime (∞) for each model to unlearn 1 sample measured in milliseconds (ms), and the
standard deviation is given with the same unit in a smaller font. “/” means the model is unable to
train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS

Purchase 35.0±15 1245±343 83.4±9.0 0.40±0.2

Vaccine 16.0±15 33445±14372 222±53 1.40±0.9

Adult 10.6±5.0 3596±2396 249±62 1.10±1.5

Bank 33.2±17 2760±371 227±7.4 2.40±3.7

Heart 16.8±10 972±154 411±13 0.50±0.2

Diabetes 293±168 27654±10969 753±143 7.30±5.4

NoShow 330±176 1243±94 570±69 0.30±0.0

Synthetic 2265±3523 / 5225±241 2.50±3.7

Higgs 174±135 / 73832±4155 1.60±1.8
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Table 5: Runtime (∞) for each model to unlearn 10 samples measured in milliseconds (ms), and the
standard deviation is given with the same unit in a smaller font. “/” means the model is unable to
train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS

Purchase 295±54 10973±643 183±21 12.3±4.8

Vaccine 285±160 222333±64756 418±41 9.20±2.8

Adult 148±79 51831±2795 389±48 4.80±2.4

Bank 320±108 18091±1524 423±47 7.6±2.7

Heart 162±46 5524±335 625±36 6.80 ±2.8

Diabetes 2773±877 211640±79652 1096±172 85.5±38

NoShow 2217±723 17235±17905 712±74 18.2±123

Synthetic 92279±42634 / 6015±301 77.3±34

Higgs 20119±31897 / 104063±1258 32.1±8.6

Table 6: Runtime (∞) for each model to unlearn 100 samples measured in milliseconds (ms), and the
standard deviation is given with the same unit in a smaller font. “/” means the model is unable to
train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS

Purchase 3591±186 83649±2047 275±12 70.4±11

Vaccine 2385 ±408 1703355±157274 792±15.06 82.6±11

Adult 954±158 219392±34630 632±24 32.2±4.0

Bank 3546±302 195014±15854 740±20 78.8±13

Heart 1502±543 33806±5385 986±75 59.3±11

Diabetes 23833±10330 / 2071±115 578±50

NoShow 23856±3978 57021±6327 1120±92 117±10

Synthetic 1073356±420053 / 7609±171 889±287

Higgs 165122±149092 / 145386±5677 642±317

Table 7: Left: runtime (∞) for unlearning 0.1% of the training set between models. Right: runtime
(∞) for unlearning 1% of the training set between models. Each cell contains the elapsed time in
seconds (s), and the standard deviation is given with the same unit in a smaller font. “/” means the
model is unable to train on that dataset or unlearning takes too long.

Datasets DaRE HedgeCut Online
Boosting DYNFRS DaRE HedgeCut Online

Boosting DYNFRS

Purchase 0.35±0.1 11.25±1.5 0.17±0.0 0.01±0.0 3.39±0.7 76.0±3.0 0.28±0.0 0.07±0.0

Vaccine 0.47±0.1 404.73±69 0.61±0.1 0.02±0.0 5.01±1.0 4054±427 0.98±0.0 0.13±0.0

Adult 0.44±0.3 88.1±27 0.49±0.1 0.01±0.0 3.39±0.6 516±23 0.80±0.0 0.09±0.0

Bank 1.15±0.3 47.3±6.0 0.61±0.1 0.02±0.0 14.7±2.3 418±25 0.96±0.0 0.16±0.0

Heart 0.70±0.2 20.0±1.7 0.85±0.0 0.03±0.0 8.43±1.2 145±10 1.23±0.0 0.20±0.0

Diabetes 23.8±2.7 694±61 2.12±0.1 0.57±0.1 258±20 / 3.51±0.1 2.50±0.1

NoShow 18.8±2.7 57.0±6.3 1.10±0.1 0.10±0.0 268±7.5 / 1.90±0.1 0.56±0.0

Synthetic 10790±5348 / 13.1±0.6 5.68±0.2 / / 44.2±1.4 27.4±0.9

Higgs / / 188±7.1 39.2±0.7 / / 456±4.7 201±9.6

A.7 SPACE COMPLEXITY AND MEMORY CONSUMPTION

The space complexity of DYNFRS is O(qTn + Tvps) where T is the number of trees in the forest,
n is the number of samples in the training sets, q is the factor used in OCC, v is the average number
of nodes in each tree, p is the number of attributes considered by each node, and s is the number of
candidate splits. Since we store training samples on each leaf, and each tree occupies qn samples on
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average, then the leaf statistics sums up to O(qTn). As mentioned in section 4.3, we store an extra
O(ps) split statistics on each node so that these split statistics contribute up to O(Tvps) space.

We compare the maximum resident space of DYNFRS and DaRE for building on the training set. We
found that DaRE, which has a space complexity of O(Tn+Tvps), has larger memory consumption
than DYNFRS in all datasets. We use /usr/bin/time in Linux to evaluate the maximum resident
set size.

Table 8: The maximum resident set size (∞) of each model measured in megabytes with standard
deviation shown in a smaller font.

Datasets DaRE DYNFRS

Purchase 398.4±1.4 83.2±1.6

Vaccine 782.2±1.6 492.8±1.6

Adult 460.6±2.2 232.0±0

Bank 801.0±1.8 300.0±0

Heart 254.4±1.7 252.2±1.6

Diabetes 7148±39 2512±7.6

NoShow 3792±19 761.6±2.0

Synthetic 8526±65 5827±7.8

Higgs 60528±789 58263±52

A.8 MULTI-CLASS CLASSIFICATION

DYNFRS is capable of handling multi-class classification tasks since OCC(q) and LZY do not af-
fect the functionality of the forest. We tested DYNFRS’s prediction performance and unlearning
boost on 3 datasets — Optical (Hyafil and Rivest, 1976), Pen (Alpaydin and Alimoglu, 1996), and
Letter (Slate, 1991). Unfortunately, existing random forest unlearning methods (DaRE and Hedge-
Cut) have no implementation for multi-class classification, so we only include the Random Forest
Classifier implementation (we call it Vanilla in the following) in scikit-learn as our baseline.

Table 9: Datasets specifications. (# train: number of training samples; # test: number of testing
samples; # attr: number of attributes; # class: number of label classes.)

Datasets # train # test # attr # class

Optical 3823 1797 64 10
Pen 7494 3498 16 10
Letter 15000 5000 16 26

Table 10: Each model’s predictive performance, training time, and unlearning boost with standard
deviation shown in a smaller font.

Accuracy (⇑) Train Time (⇓,ms) Unlearn Boost (⇑)

Datasets Vanilla DYNFRS Vanilla DYNFRS Vanilla DYNFRS

Optical .9694±.002 .9707±.002 585.4±1.9 445.4±2.7 1±0 292.5±12.1

Pen .9649±.002 .9696±.002 996.2±1.7 813.2±8.0 1±0 603.0±44.8

Letter .9603±.002 .9624±.001 1666±7.6 1530±20 1±0 1006±54.2

Results show that DYNFRS outperforms the vanilla Random Forest in terms of predictive perfor-
mance and training time for all datasets. Additionally, DYNFRS still shows splendid unlearning
efficiency on these datasets. In all datasets, DYNFRS outperforms Vanilla by 2-3 order of magni-
tudes in terms of unlearning efficiency. Also notice that DYNFRS is poorly optimized for multi-class
classification tasks.

In the multi-class classification setting, we suggest picking q = 0.5 for OCC(q), because the rise in
class number leads to the drop of sample size to each class (roughly n/c, where n is the number of
training samples and c is the number of classes) and rising q enable each tree is accessible to more
samples belonging to a specific class and lead to better predictive performance eventually. For all
datasets, we set the hyperparameters of DYNFRS to T = 100, dmax = 20, and s = 1.
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A.9 REGRESSION

Regression tasks are not implemented and evaluated by any of the existing tree-based unlearning
methods. Since there is no such baseline, we compare DYNFRS’s predictive performance (via mean
squared error) and unlearning efficiency (via unlearning boost) against the naive retraining method.
We used a large and popular dataset Bike (Fanaee-T, 2013) for the regression task.

Table 11: Datasets specifications. (# train: number of training samples; # test: number of testing
samples; # attr: number of attributes.)

Datasets # train # test # attr

Bike 13903 3476 16

Table 12: Each model’s predictive performance, training time, and unlearning boost with standard
deviation are shown in a smaller font.

MSE (⇓) Train Time (⇓,ms) Unlearn Boost (⇑)

Datasets Vanilla DYNFRS Vanilla DYNFRS Vanilla DYNFRS

Bike 3.904±.071 3.011±.167 6796±6.5 3412±54 1±0 2368±118

Results show that DYNFRS outperforms the vanilla Random Forest in terms of predictive perfor-
mance and training time. Note that the implementation of DYNFRS regressor is rough and poorly
optimized due to short time slots. However, DYNFRS still shows outstanding unlearning efficiency
on regression task, as DYNFRS achieves an averaged 2368 unlearning boost in dataset Bike.

In the regression setting, we suggest picking q = 0.5 for lower mean squared error. In the experi-
ment, we set the hyperparameters of DYNFRS to T = 100, dmax = 15, and s = 5.

A.10 ONLINE MIXED DATA STREAM

Table 13: DYNFRS’s latency (∞) of sample addition/removal and querying in 4 scenarios measured
in microseconds (µs). # add/del/qry: the number of sample addition/removal/querying requests;
add/del/qry lat.: the latency of sample addition/removal/querying. Each cell contains the averaged
latency with its minimum and maximum values listed in a smaller font.

No. # add # del # qry add lat. (⇓, µs) del lat. (⇓, µs) qry lat. (⇓, µs)

1 5 · 105 5 · 105 106 406.2 [150, 450894] 437.6 [134, 394801] 3680 [209, 1885030]

2 5 · 105 5 · 105 106 122.7 [30, 168984] 120.2 [25, 146300] 1218 [23, 1026964]

3 5 · 104 5 · 104 106 140.0 [30, 81661] 139.2 [32, 101429] 299.5 [21, 861151]

4 5 · 103 5 · 103 106 145.5 [44, 55954] 140.5 [38, 29810] 72.3 [19, 212915]

To simulate a large-scale database, we use the Higgs dataset, the largest in our study. We train
DYNFRS on 88, 000, 000 samples and feed it with mixed data streams with different proportions of
modification requests. Scenario 1 is the vanilla single-thread setting, while scenarios 2, 3, and 4
employ 25 threads using OpenMP. DYNFRS achieves an averaged latency of less than 0.15 ms for
modification requests (Table 13 column # add and # del) and significantly outperforms DaRE, which
requires 180 ms to unlearn a single instance on average. Query latency drops from 1.2 ms to 0.07
ms as the number of modification requests declines, as fewer lazy tags are introduced to trees.

These results are striking: while it takes over an hour to train a vanilla Random Forest on Higgs,
DYNFRS maintains exceptionally low latency that is measured in µs, even in the single-threaded
setting. This makes DYNFRS highly suited for real-world scenarios, especially when querying con-
stitutes a large proportion of requests (Table 13 Scenario 4).
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A.11 EFFECTS ON NUMBER OF CANDIDATES

We assessed the predictive performance of DYNFRS with differnet candidate number s. We tested
DYNFRS(q = 0.1) with s ↓ {1, 5, 10, 20, 30, 50} and report the predictive performance on all the
binary classification datasets (same settings as in Section 5.2). The results are summarized in the
table below:

Table 14: The predictive performance (∈) of DYNFRS(q = 0.1) with s ↓ {1, 5, 10, 20, 30, 50}.

Datasets s = 1 s = 5 s = 10 s = 20 s = 30 s = 50

Purchase .9242±.001 .9313±.000 .9323±.000 .9329±.001 .9328±.001 .9330±.001

Vaccine .7911±.002 .7910±.000 .7908±.001 .7910±.002 .7911±.002 .7912±.001

Adult .8558±.001 .8610±.001 .8624±.001 .8635±.001 .8635±.000 .8640±.001

Bank .9323±.000 .9399±.000 .9409±.000 .9414±.001 .9417±.000 .9417±.001

Heart .7365±.001 .7359±.001 .7357±.001 .7359±.002 .7357±.000 .7351±.001

Diabetes .6429±.001 .6453±.001 .6451±.001 .6446±.001 .6442±.001 .6443±.001

NoShow .7278±.001 .7332±.000 .7328±.000 .7332±.000 .7323±.001 .7328±.000

Synthetic .9352±.000 .9415±.000 .9421±.000 .9422±.000 .9424±.000 .9423±.000

Higgs .7277±.000 .7409±.000 .7423±.000 .7431±.000 .7431±.000 .7431±.000

From the result, we find that the performance peaks around s = 20 in most datasets, and the result of
s = 30 and s = 50 has no significant difference. However, in datasets Heart, Diabetes, and NoShow,
a smaller s has an even higher predictive performance, suggesting that considering more candidates
might not always be the best choice. These results indicate that the optimal s is dataset-specific and
can be tuned for improved predictive performance in DYNFRS.

A.12 HYPERPARAMETERS

All hyperparameters of DYNFRS are listed in Table 15. Specially, we set the minimum split size of
each node to be 10 for all datasets.

Table 15: Hyperparameters used by DYNFRS with both q = 0.1 and q = 0.2 setting.

Datasets T dmax s

Purchase 250 10 30
Vaccine 250 20 5
Adult 100 20 30
Bank 250 25 30
Heart 150 15 5
Diabetes 250 30 5
NoShow 250 20 5
Synthetic 150 40 30
Higgs 100 30 20
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