
Supplementary Materials: SM4Depth: Seamless Monocular Metric Depth
Estimation across Multiple Cameras and Scenes by One Model
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Figure 1: Principle and examples of FOV Alignment. (a) Side
view of the pinhole camera model. (b) Cases of FOV align-
ment.

1 MORE DETAILS OF SM4DEPTH
1.1 Role of FOV in reducing metric ambiguity

According to Metric3D [24], due to different intrinsic parame-
ters, two cameras produce different projections when observing
an object at the same distance, which is well known as “metric
ambiguity”. Next, we investigate the key of eliminating metric am-
biguity by Fig. 1 that illustrates the imaging process of the pinhole
camera model. Assuming that 𝑑 denotes the depth of the object,
and fy denotes the focal length in the Y direction of the camera,
measured in pixels. According to the similarity principle, there is
an equation:

𝑑

𝑆
=

fy
𝑠

(1)

where 𝑆 and 𝑠 are the actual height (in millimeters) and the imaging
height (in pixels) of the object respectively. On the basis of Eq.
(1), the object’s depth can be formulated as 𝑑 = 𝑆

[ fy
𝑠

]
. Therefore,

a fixed value of
[ fy
𝑠

]
is crucial for a consistent depth 𝑑 between

different cameras. In practice, all images need to be resized into the
same resolution before being fed into the deep network:

𝑑 = 𝑆

[ (f ′y/fy)fy
(h′/h)𝑠

]
(2)

where f
′
y and h

′
are the focal length and height of the network input,

h is the original height of the image, and (f ′y/fy) = (h′/h). Note
that, since f

′
y and h

′
are two pre-set values, the consistency of h

fy
ensures a consistent depth 𝑑 across different cameras. Furthermore,
the value h

fy
follows an arc-tangent function relationship with the

camera’s vertical FOV denoted as 𝜔y:

𝜔y = 2 arctan( h
2fy

) (3)

Thus, the consistency of 𝜔y is essential for consistent depth and
eliminating metric ambiguity across different cameras. The same
applies to the horizontal FOV indicated as 𝜔x. Unlike transforming
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Figure 2: Range domain (RD) visualization. Different colors
on the scatter plot represent images within different RDs.

images to the same intrinsic parameter [24], our method ensures
consistent inputs by unifying the FOV of images.

1.2 Visualization of images in different RDs
Fig. 2 visualizes the RDs in different colors with 𝐾 = 4. It can be

observed that the images of the same RD exhibit different appear-
ances but similar depth ranges.

1.3 Loss Function of SM4Depth
Our network is supervised by multiple loss functions. As defined

in the main paper, D represents the ground truth depth map, while
𝐷 signifies the predicted depth map. 𝐷

′
𝑠 denotes the depth map of

the 𝑠th stage in the HSC-decoder. Additionally, c ∈ R𝑁×1 refers
to the combined metric bin centers, and 𝑦 ∈ R𝐾×1 signifies the
generated probabilities for 𝐾 RD. At the pixel level, we employ
scale-invariant logarithmic (Silog) loss [8] to minimize per-pixel
depth errors:

L𝑠𝑖𝑙𝑜𝑔 (𝐷,D)=

√√√
1
𝑇

𝑇∑︁
𝑖=1

(
ln
𝐷 (𝑖)
D(𝑖)

)2
− 𝜆

𝑇 2

( 𝑇∑︁
𝑖=1

ln
𝐷 (𝑖)
D(𝑖)

)2
(4)

where 𝑇 denotes the number of pixels with valid ground truth
values, and we set 𝜆 = 0.85. Then, we employ a multi-scale gradient
matching term [16] to supervise the discontinuities between pixels
in the depth map:

L𝑔𝑟𝑎𝑑 (𝐷,D) =
1
𝑇

𝑀∑︁
𝑚=1

𝑇∑︁
𝑖=1

( |∇𝑥𝐺𝑚𝑖 | + |∇𝑦𝐺𝑚𝑖 |) (5)

where 𝐺𝑖 = 𝐷 (𝑖) − D(𝑖). 𝐺𝑚 denotes the difference in disparity
maps at scale𝑚, and𝑀 = 4 is the scale level. Overall, the pixel-wise
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Training Datasets Scene Capture # Img Range(m)

ScanNet [7] Indoor RGB-D 24,834 [0, 10]
Hypersim [17] Indoor Synthetic 15,229 [0, 80]
DIML Sample [5] Indoor RGB-D 1,609 [0, 6]
DIML Indoor [5] Indoor RGB-D 26,039 [0, 8]
DIML Outdoor [5] Outdoor Stereo*♯ 24,031 [0, 35]
UASOL [1] Outdoor Stereo*♯ 36,386 [0, 35]
ApolloScape [11] Outdoor LiDAR♯ 14,908 [0, 80]
Cityscapes [6] Outdoor Stereo*♯ 11,486 [0, 80]
total 154,522

Validation Datasets Scene Capture # Img Range(m)

NYUD [14] Indoor RGB-D 654 [0, 10]
KITTI [20] Outdoor LiDAR 652 [0, 80]
total 1,306

Test Datasets Scene Capture # Img Range(m)

SUN RGB-D [19] Indoor RGB-D 4,395 [0, 8]
iBims-1 [12] Indoor LiDAR 100 [0, 50]
ETH3D Indoor [18] Indoor LiDAR 219 [0, 56]
DIODE Indoor [21] Indoor LiDAR 325 [0, 50]
nuScenes-val [3] Outdoor LiDAR 1,138 [0, 140]
DDAD [10] Outdoor LiDAR 3,950 [0, 80]
ETH3D Outdoor [18] Outdoor LiDAR 235 [0, 73]
DIODE Outdoor [21] Outdoor LiDAR 446 [0, 80]
BUPT Depth Both-continuous Stereo*♯ 14,932 [0, 30]
total 25,740

Table 1: The metric depth datasets used in this paper. ∗ de-
notes the re-generation of metric depth by CREStereo [13],
and ♯ indicates the removal of sky regions in ground truth
by ViT-Adapter [4].

loss function can be formulated as follows:

L𝑝𝑖𝑥𝑒𝑙 (𝐷,D) = 𝛼𝐿𝑠𝑖𝑙𝑜𝑔 (𝐷,D) + 𝛽𝐿𝑔𝑟𝑎𝑑 (𝐷,D) (6)

where the coefficients 𝛼 = 10 and 𝛽 = 0.5 are used in Eq.(6), learning
the depth primarily and recovering the depth boundary secondarily.
Then, the virtual normal loss [23] is employed to optimize the 3D
structure:

L𝑣𝑛𝑙 (𝐷,D) =
1
𝑉

𝑉∑︁
𝑖=1

(∥ 𝑛𝑖 − n𝑖 ∥1) (7)

where 𝑉 = 0.15𝑇 is the sampling number of virtual planes. 𝑛𝑖 is
the normal vector of the 𝑖th virtual plane in the output 𝐷 and n𝑖
corresponds to the normal vector in D.

At the scene level, the bi-directional Chamfer Loss [9] is em-
ployed to optimize the combination of bin centers c, making them
closer to the ground truth D as shown in Eq.(7) of the main paper:
L𝑏𝑖𝑛 (c,D), with 𝑁 = 256 bins. Furthermore, the cross entropy loss
is applied on the classification head (CLS):

L𝑐𝑒𝑙 (𝑦, y) = −
𝐾∑︁
𝑘=1

(y𝑘 ln𝑦𝑘 ) (8)

where y ∈ R𝐾×1 is the one-hot RD label of the input image.
Finally, the total loss of SM4Depth can be formulated as follows:

L = L𝑝𝑖𝑥𝑒𝑙 (𝐷,D) +
4∑︁
𝑠=2

(L𝑝𝑖𝑥𝑒𝑙 (𝐷
′
𝑠 ,D))+

𝜇L𝑣𝑛𝑙 (𝐷,D) + 𝛾L𝑏𝑖𝑛 (c,D) + L𝑐𝑒𝑙 (𝑦, y)
(9)

where the coefficients 𝜇 and 𝛾 are empirically set to 5 and 0.1
respectively.

2 DATASETS DETAIL AND PRE-PROCESSING
Table 1 shows all datasets used for training, validation and testing.

We conduct the same pre-processing operations before training as
[2, 16].

Depth Re-generation: UASOL [1], CityScapes [6], and DIML
[5] provide depth using a hand-crafted stereo matching method,
which is not accurate enough. For this reason, we employ an ad-
vanced algorithm called CREStereo [13] to re-generate the ground
truth.

Sky Removal: The images of outdoor datasets contain large ar-
eas of the sky, such as DIML, UASOL, ApolloScape, and CityScapes.
We use ViT-Adapter [4] to extract sky areas and invalidate the depth
values within these regions.

3 MORE DETAILS OF BUPT DEPTH
BUPT Depth dataset differs in three ways: Shooting style: we

employ continuous filming, allowing the camera to traverse various
scenes, thus better simulating everyday use. Scene variety: besides
common scenes like streets and corridors, our dataset includes
unique environments like patios, building underpasses, and irreg-
ular landscapes, etc. Evaluation focus: BUPT Depth prioritizes
consistent accuracy across various environments, rather than the
precision of individual images.

For reliability, we follow the precedent set by ZoeDepth using
the DIML dataset and use the ZED2 camera to capture depth for
evaluation. According to its official datasheet, ZED2 maintains an
error rate of less than 1% within 3 meters and less than 5% within
15 meters across all scenes, significantly outperforming existing
multimodal depth estimation (MMDE) systems. However, ZED2
outputs often exhibit holes and imprecise edges, which we mitigate
using CREStereo.

RGB GT SM4Depth Metric3D

KITTI

ETH3D

DIODE

Figure 5: Failure cases sampled from KITTI, ETH3D, DIODE.

RGB-D Pairs SUN RGB-D ETH3D DIODE DDAD mRI𝜂 ↑
50K 0.391 2.527 5.655 6.159 -11.9%
100K 0.333 2.480 5.766 5.374 -3.62%
150K 0.310 2.373 5.605 5.390 0.00%
300K 0.313 2.607 5.946 5.502 -4.74%

Table 2: RMSE of models trained on different numbers of
images and datasets. Gray indicates the setting used for our
model.
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Figure 3: Qualitative results in indoor scenes. The depth distribution is under the depth maps with green for ground truth and
red for prediction. Our method performs better on images with multiple viewpoints and diverse scenes.

4 ADDITIONAL EXPERIMENTS
4.1 Ablation about Training Data Amount

Table 2 gives the ablation study on the amount of training data.
As the data increases from 50K to 150K, the RMSE decreases, while
increases at 300K. The reason behind the increased RMSE is that
when the number of images is less than 150K the number of data

in each range domain is balanced, which is broken unexpectedly
when the data size is larger than 150K. The indoor datasets lack
sufficient data, causing the data amount gap between different RDs
to be widened.
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Figure 4: Qualitative results in outdoor scenes. The depth distribution is under the depth maps with green for ground truth and
red for prediction. Our method performs better on images with multiple viewpoints and diverse scenes.

4.2 More Visualization Comparison
Fig. 3 and Fig. 4 gives more qualitative comparisons of indoor

and outdoor scenes, respectively. Compared with Metric3D [24],
DepthAnything [22], and ZoeDepth [2], SM4Depth can generally
obtain more accurate metric scales. Compared with UniDepth [15],
our method achieves comparable accuracy in metric scale estima-
tion, but obtains sharper depth.

5 FAILURE CASES
As shown in Fig. 5, describing the limited robustness for turn-

ing view in street scenes and rare camera poses. In the ETH3D
and DIODE examples, Metric3D, although limited, outperforms
SM4Depth in depth range due to its higher diversity of camera pose
during training.
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