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ABSTRACT

Binary classification involves predicting the label of an instance based on whether
the model score for the positive class exceeds a threshold chosen as per application
needs (e.g., maximizing recall at a precision bound). However, model scores are
often not aligned with the true conditional probability of the positive class. This is
especially true when the training involves differential sampling across classes or
there is distributional drift between train and test settings. In this paper, we pro-
vide theoretical analysis and empirical evidence of the dependence of model score
estimation bias on both uncertainty and score. Further, we formulate the decision
boundary selection in terms of both model score and uncertainty, prove that it is
NP-hard, and present algorithms based on dynamic programming and isotonic re-
gression. Evaluation of the proposed algorithms on three real-world datasets yield
25%-40% gain in recall at high precision bounds over the traditional approach of
using model score alone, highlighting the benefits of leveraging uncertainty.

1 INTRODUCTION

Many real-world applications such as fraud detection and medical diagnosis can be framed as bi-
nary classification problems, with the positive class instances corresponding to fraudulent cases and
disease prevalence, respectively. When the predicted labels from the classification models are used
to drive strict actions, e.g., blocking fraudulent orders and risky treatments, it is critical to minimize
the impact of erroneous predictions. This warrants careful selection of the class decision boundary
using the model output while managing the precision-recall trade-off as per application needs.

Typically, one learns a classification model from a training dataset. The class posterior distribution
from the model is then used to obtain the precision-recall (PR) curve on a hold-out dataset with
distribution similar to the deployment setting. Depending on the application need, e.g., maximiz-
ing recall subject to a precision bound, a suitable operating point on the PR curve is identified to
construct the decision boundary. The calibration on the hold-out set is especially important for ap-
plications with severe class imbalance, since it is a common practice to downsample the majorit
class during model training. This approach of downsampling followed by calibration on hold-out set
is known to both improve model accuracy and reduce computational effort (Arjovsky et al.,2022).

A key limitation of the above widely used approach is that the decision boundary is based solely
on the classification model score and does not account for the prediction uncertainty, which has
been the subject of active research (Zhou et al.| [2022; [Sensoy et al., [2018). A natural question
that emerges is whether two regions with similar scores but different uncertainty estimates should be
treated identically when constructing the decision boundary. Recent work points to potential bene-
fits of combining model score with estimates of uncertainty (Kendall & Gall [2017) for specialized
settings (Dolezal et al.,|2022) or via heuristic approaches (Pocevivciite et al.,[2022)). However, there
does not exist an in-depth analysis on why incorporating uncertainty leads to better classification,
and how it can be adapted to any generic model in a post-hoc setting.

In this paper, we focus on binary classification with emphasis on the case where class imbal-
ance requires differential sampling during training. For brevity, we refer to the conditional prob-

"Without loss of generality, we assume that the downsampling is performed on the -ve class (label=0) and
the model score refers to +ve class (label=1) probability.
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ability of the positive class as the positivity rate. Cognizant of the differences between the un-
derlying distribution, train, and test sets, we refer to the corresponding positive class probabil-
ities as true, train and test positivity respectively. We investigate four questions: RQ1: Does
model score estimation bias (deviation from test positivity) depend on uncertainty? RQ2: If
so, how can we construct an optimal 2D decision boundary using both model score and un-
certainty and what is their relative efficacy? RQ3: Under what settings of undersampling of
negative class and precision range do we gain the most in recall from incorporating uncer-
tainty? RQ4: Do uncertainty estimates also aid in better calibration of class probabilities?

Intuitively, choosing the decision boundary based
on test positivity rate is likely to yield the best per-
formance. However, the test positivity rate is not
¢ available beforehand and tends to differ from the
£ model score as shown in Fig. [[(a). Our exami-
80.0%3 nation of RQ1 indicates that the score estimation
bias, i.e., difference between test positivity rate
Model Scor and the model score often varies with uncertainty
in a systemic fashion. Specifically, for a represen-
(@) (b) . . . . .
tative setting with Beta priors, using Bayes rule,
Figure 1: (a) Test positivity rate vs. model score we observe that for input regions with a certain
for different uncertainty levels on Criteo with empirical train positivity rate, the “true positivity”
33% undersampling of negatives during training. (b) (and hence test positivity rate) is shifted towards
Heatmap of test positivity for different score and un- the global prior, with the shift being stronger for
certainty ranges. Proposed method(red) yields better . . . . .
recall over vanilla score-based threshold (yellow). regions Wlth,low eVldepce. While Bayes%ap mod-
els try to adjust for this effect by combining the
evidence, i.e., the observed train positivity with “model priors”, there is still a significant bias when
there is a mismatch between the model priors and true prior in regions of weak evidence (high un-
certainty). Differential sampling across classes during training further contributes to this bias. This
finding that the same model score can map to different test positivity rates based on uncertainty lev-
els indicates that the decision boundary chosen using score alone is likely to be suboptimal relative
to the one optimized using uncertainty and model score. Fig. [T(b) depicts maximum recall bound-
aries for a specified precision bound using score alone (yellow) and with both score and uncertainty
estimates (red) validating this observation, which motivates the subsequent questions RQ2-RQ4.
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Contributions. Below we summarize our contributions on leveraging the relationship between score
estimation bias and uncertainty to improve classifier performance.

1. To motivate the need for incorporating uncertainty into decision making, we consider a repre-
sentative Bayesian setting with Beta priors and Posterior Network (Charpentier et al.| [2020) as an
exemplary uncertainty estimation method, and demonstrate that the test positivity rate depends on
both score and uncertainty, and monotonically increases with score for a fixed uncertainty. There is
also a dependence on the downsampling rate in case of differential sampling during training

2. We introduce the 2D decision boundary optimization problem in terms of maximizing recall for
a target precision (or vice versa) using both uncertainty and model score. Keeping in view com-
putational efficiency, we partition the model score X uncertainty space into bins, demonstrate that
the 2D decision boundary optimization problem is connected to bin-packing, and prove that it is
NP-hard (for variable bin sizes) via reduction from the subset-sum problem (Caprara et al.,[2000).
This formulation is independent of the choice of modeling and uncertainty estimation method.

3. We present multiple algorithms for solving the 2D binned decision boundary problem defined over
score and uncertainty derived from any blackbox classification model. We propose an equi-weight
bin construction by considering uncertainty quantiles that are further split into score quantiles. For
this case, we present a polynomial time DP algorithm with optimality guarantees. Additionally, we
propose a greedy algorithm that first performs isotonic regression (Stout,|[2013) independently for
each uncertainty level, and selects a global threshold on calibrated probabilities.

4. We present results on three real-world datasets to demonstrate that our proposed 2D decision
boundary algorithms yield 25%-40% gain in recall@precision over vanilla score-thresholding.

2 RELATED WORK

Uncertainty Modeling. Existing approaches for estimating uncertainty can be broadly categorized
as Bayesian methods (Xu & Akella, 2008; Blundell et al., [2015b; [Kendall & Gal, |2017), Monte
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Carlo methods (Gal & Ghahramanil[2016) and ensembles (Lakshminarayanan et al.|[2017). Dropout
and ensemble methods estimate uncertainty by sampling probability predictions from different sub-
models during inference, and are compute intensive. Recently, |(Charpentier et al.|(2020) proposed
Posterior Network to directly learn the posterior distribution over predicted probabilities, enabling
fast uncertainty estimation for input samples in a single forward pass and providing an analytical
framework for estimating both aleatoric and epistemic uncertainty, which makes it amenable for our
analysis of score estimation bias. While Bengs et al.| (2022) provides a detailed discussion on Pos-
terior Networks highlighting the gaps in using learning with uncertain cross-entropy loss function
to accurately estimate epistemic uncertainty, this aspect is orthogonal to our results since we only
employ Posterior Network as an exemplar of uncertainty estimation.

Uncertainty-based Decision Making. (Blundell et al.l 2015a) use uncertainty along with model
score to drive explore-exploit style online-learning, but leveraging uncertainty to improve precision
and recall has not been rigorously explored in the literature. Approaches in the digital pathology
domain either use heuristics to define a 2D decision boundary using model score and estimated un-
certainty (Pocevivciute et al., [2022), or use static uncertainty thresholds to withhold predictions for
low-confidence samples from the test dataset, to boost model accuracy (Dolezal et al., 2022} Zhou
et al., [2022). [Troffaes| (2007) and Denceux| (2019) focus on decision-making using a risk-adjusted
utility function that incorporates uncertainty modeled via belief functions and is determined by ax-
iomatic criteria such as minmax and Hurwicz criterion without any data-based calibration.

Model Score Recalibration. These methods transform the model score into a well-calibrated prob-
ability using empirical observations on a hold-out set. Earlier approaches include histogram bin-
ning (Zadrozny & Elkanl 2001])), isotonic regression (Stout, [2013)), and temperature scaling (Guo
et al., 2017), all of which consider the model score alone during recalibration. Uncertainty Tool-
box (Chung et al.,2021)) implements recalibration methods taking into account both uncertainty and
model score but is currently limited to regression. In our work, we propose an algorithm (MIST [3))
that first performs 1D-isotonic regression on samples within an uncertainty level to calibrate prob-
abilities and then selects a global threshold. In addition to achieving a superior decision boundary,
this results in lower calibration error compared to using score alone.

3 RELATIONSHIP BETWEEN SCORE ESTIMATION BIAS AND UNCERTAINTY

To demonstrate the dependence of score estimation bias on uncertainty, we consider a representative
data generation scenario and a common uncertainty modeling method Posterior NetworkE]

Notation. Let x denote an input point and y the corresponding target label that takes values from
the set of class labels C = {0, 1} with ¢ denoting the index over the labels. See Appendix [} We use
P(-) to denote probability and [i]%® to denote an index iterating over integers in {lb, - - - , ub}.

3.1 Background: Posterior Network Posterior Network (Charpentier et al. |2020) estimates a
closed-form posterior distribution over predicted class probabilities for any new input sample via
density estimation as described in Appendix |D| For binary classification, the posterior distribution
at x is a Beta distribution with parameters estimated by combining the model prior with pseudo-
counts generated based on the learned normalized densities and observed class counts. Denoting the
model prior and observed counts for the class ¢ € C by BF and N,, the posterior distribution of pre-
dicted class probabilities at x is given by ¢(x) = Beta(a1(x), ap(x)) where a.(x) = B + B.(x)
and B.(x) = N.P(z(x)|c; ), Ve € C. Here, z(x) is the penultimate layer representation of x and
¢ denotes parameters of a normalizing flow. Model score S™°%!(x) for positive class is given by

Smodel(x) _ ﬂiD + Bl (X) _ al(x) (1)

PeeclBE +Be(x)] a1(x) + ao(x)

Uncertainty u(x) for x is given by differential entropy of distribution H (¢(x) )} Since g(x) is Beta
distribution, for same score,(i.e., a1 (x)/ag(x)), uncertainty is higher when ) . a.(x) is lower.

3.2 Analysis of Score Estimation Bias: For an input point x, let S"¢(x), St (x), S5t (x),
and S™°%€! (x) denote the true positivity, empirical positivity in the train and test sets, and the model

>Theorem a) connecting train, true, and test positivity is independent of the uncertainty modeling.
*H(q(x)) = log B(ao, a1) — (an+ a1 —2)¢(ao+a1) = co (e — 1)1 (o) where (- is the digamma
function and B(-, -) is the Beta function.
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score respectively. Assuming the train and test sets are drawn from the same underlying distribution
with possible differential sampling across the classes, these variables are dependent on each other
as shown in Fig. 2] We consider the following generation mechanism (Appendix [E) where the true
positivity rate is sampled from a global beta prior, i.e., S7“¢(x) ~ Beta(3T, 8{'). The labels y(x)
in the test set are generated from Bernoulli distribution centered at S*"“¢(x). In the case of training
set, we assume that the negative class is sampled at rate % compared to positive class. Note that
7 > 1 indicates undersampling, and 7 < 1 indicates oversampling of the negative class. We define
v(x) = %, i.e., the ratio of combined priors to the combined likelihood evidence.

Using Bayes’ rule, one can estimate the expected true
and test positivity rates conditioned on train positivity
in terms of available evidence. For Posterior Networks, o Deyeson ogeng
one could further use the relationship between the train

strain » stest(x)
positivity rate and the model score to obtain the expected =

score estimation bias. For ease of presentation, we show o Emmem G Lorterental

the result for 7 = 1 in Theorem [3.1] below with the gen-

eral case (Theorem [E.4) and proof details in Appendix ——

Theorem 3.1. For data generated as per Fig. 2| but no

differential sampling (T = 1), the below results hold: Figure 2: Dependencies among various
(a) The expected test and true positivity rate conditioned positivity rates and the model score.

on the train positivity are equal and given by

E[Strue (X) ‘Strm’n (X)] — E[Stest (X) |Strain (X)] — S Tm: (—’)_()/\_(Fxg/\(x)

BT +84

T
Bi - is the positive global prior, and \(x) = BB is its ratio to evidence.

B +85
(b) For Posterior Networks, test and true positivity rate conditioned on model score Smodel(x) can
be obtained using S " (x) = S™odel(x) — (w — S™o%l(x))y(x). Hence, the estimation bias,
(8™ (x) (v=1) +w—Ev)¥(x)

where £ =

i.e., difference between model score and test positivity is given by T () , where
B P _Ax) _ BT+BE . .

w = 76{’-&/35 andv = 6 = ﬂ%-&ﬁ% is the ratio of global and model priors.

Relationship of ~(x) and u(z): Note that 35 ac(x) = [XC.8]](1 + 55)-  For

a fixed score, > a.(x) varies inversely with uncertainty u(x) = H(g(x)), mak-

ing the latter positively correlated with ~(x). Further details in Appendix
No differential sampling (7 = 1). Since the
model scores are estimated by combining the

gLo —— low uncertain . g10 — 1=1 . . .
T e unconaiey P = model priors and the evidence, S™°d!(x) =
0C 0.8{ — high uncertainty 0.8 — t=6 e . . IS .
2 [ mowtsoretmn Z | S s(x) differs from the train positivity rate in the
= L = -~ model-score (y=x) ,* 2 . . .
2% / 2°° 2 '|  direction of the model prior ratio w. On the other
8o y 8o hand, expected true and test positivity rate dif-
T +02 fer from train positivity rate in the direction of
(0] (U] . . .
F ool - Fo.0] 7 true class prior ratio £&. When the model prior
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 . .,
Model Score Model Score matches true class prior both on positive class ra-
(a) (b) tio and magnitude, ¢.e.,v = 1,{ = w, there is

Figure 3: Test positivity vs. model score curves for no estimation bias. In practlce,'model priors are
(a) few choices of v(x) with w = 0.5, 7 = 3, and then (.:h0§en to haye lgw magnitude and estima-
(b) few values of 7 with w = 0.5 and medium uncer- tion bias is primarily influenced by global prior
tainty using data simulation as per Fig. ratio with overestimation (i.e., expected test pos-

itivity < model score) in the higher score range
(€ < s(x)) and the opposite is true when (§ > s(x)). The extent of bias depends on relative
strengths of priors w.r.t evidence denoted by ~(x), which is correlated with uncertainty. For this
case, the expected test positivity is linear and monotonically increasing in model score. The trend
with respect to uncertainty depends on sign of (s(x)(v — 1) + w — &v).

General case (7 > 1, Theorem [E.4) Here, the expected behavior is affected not only by the inter-
play of the model prior, true class prior and evidence as in case of 7 = 1, but also the differential
sampling. While the first aspect is similar to the case 7 = 1, the second aspect results in overes-
timation across the entire score range with the extent of bias increasing with 7. Fig. [}[a) shows
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the expected positivity rate for a few different choices of y(x) and a fixed choice of w = 0.5 and
7 = 10 while Fig.[3(b) shows the variation with different choices of 7. We validate this behavior by
comparison with empirical observations in Sec. [6}

The primary takeaway from Theorems [3.1|and [E.4]is that the score estimation bias depends on both
score and uncertainty for common scenarios. For a given model score, different samples can corre-
spond to different true positivity rates based on uncertainty level, opening an opportunity to improve
the quality of the decision boundary by considering both score and uncertainty. However, a direct
adjustment of model score based on Theorems|[3.1|and [E.4]is not feasible or effective since the actual
prior and precise nature of distributional difference between test and train settings might not follow
Fig. [2] or even be known (see Appendix [H). Further, even when there is information on differential
sampling rate used in training, class-conditional densities learned from sampled distributions tend
to be different from original distribution especially over sparse regions.

4 2-D DECISION BOUNDARY PROBLEM

Given an input space X" and binary labels C, binary classification typically involves finding a map-
ping ¥, : X — C that optimizes application-specific performance. Fig. ] depicts a typical super-
vised learning setting where labeled training data Dy, created via differential sampling along
classes, is used to learn a model. A hold-out labeled set Dy, 4, disjoint from training and similar in
distribution to deployment setting is used to construct a labeling function 1y, based on model output.

Traditionally, we use the labeling function
Yp(x) = 1[s(x) > b] with boundary b =
[b] defined in terms of a score threshold opti-
o ﬁLd mized based on the hold-out set Dy,;q. When

e |t the model outputs both score and uncertainty
] f f (s(x),u(x)), we have a 2D space to be par-

Decision Boundary
Detection

Dian Dhaa Dus titioned into positive and negative regions. In
) ot L Sec. 3] we observ;:d that the true posf1t1v1tyﬁrat§,
saneing Sy is monotonic with respect to score for a fixe

uncertainty. Hence, we consider a boundary of
the form ¢, (x) = 1[s(x) > b(u(x))], where

. . e o b(u) is the score threshold for uncertainty u.
Figure 4: Binary classification with model training fol-

lowed by decision boundary selection on hold-out set.  To ensure tractability of decision boundary se-

lection, a natural approach is to either limit b
to a specific parametric family or discretize the uncertainty levels. We prefer the latter option as it
allows generalization to multiple uncertainty estimation methods. Specifically, we partition the 2D
score-uncertainty space into bins forming a grid such that the binning preserves the ordering over
the space. (i.e., lower values go to lower level bins). This binning could be via independent splitting
on both dimensions, or by partitioning on one dimension followed by a nested splitting on the other.

Let S and U denote the possible range of score and un-

certainty values, respectively. Assuming K and L de- argmax recall ()
note the desired number of uncertainty and score bins, |y g1 precision(vp)>o; 0<bli]<L

letp:UXxS— {1,--- K} x{1,---, L} denote a ®)
partitioning such that any score-uncertainty pair (u, s)

is mapped to a unique bin (i,j) = (pY(u), p%(s)) in the K x L grid. We capture relevant infor-
mation from the hold-out set via two K x L matrices [p(4, j)] and [n(i, j)] where p(i, j) and n(, j)
denote the positive and the total number of samples in the hold-out set mapped to the bin (4, j) in the
grid. Using this grid representation, we now define the 2D Binned Decision Boundary problem. For
concreteness, we focus on maximizing recall subject to a precision bound though our results can be
generalized to other settings where the optimal operating point can be derived from the PR curve.

2D Binned Decision Boundary Problem (2D-BDB): Given a K x L grid of bins with positive
sample counts [p(, j)] i x . and total sample counts [n(, j)] k x . corresponding to the hold-out set
Dh1a and a desired precision bound o, find the optimal boundary b = [b(7)]% | that maximizes
recall subject to the precision bound as shown in Eqn. Here recall(1y) and precision(iyp)
denote the recall and precision of the labeling function 1, (x) = 1[p° (s(x)) > b(p" (u(x)))] with
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respect to true labels in Dyq. While Dy is used to determine the optimal boundary, actual
efficacy is determined by performance on unseen test data.

Connection to Knapsack Problem. Note that the 2D decision boundary problem has similarities to
the knapsack problem in the sense that given a set of items (i.e., bins), we are interested in choosing
a subset that maximizes a certain “profit” aspect while adhering to a bound on a specific “cost”
aspect. However, there are two key differences - 1) the knapsack problem has notions of cost and
profit, while in our case we have precision and recall. On the other hand, our cost aspect is the false
discovery rate (i.e., 1- precision) which is not additive, and the change in precision due to selection
of a bin depends on previously selected bins, and 2) our problem setting has more structure since
bins are arranged in a 2D-space with constraints on how these are selected.

5 2-D DECISION BOUNDARY ALGORITHMS

We provide results of computational complexity of 2D-BDB problem along with various solutions.

5.1 NP-hardness Result: It turns out the problem of computing optimal decision boundary over a
2D grid of bins (2D-BDB) is intractable for general case where bins have different sizes. We use a
reduction from NP-hard subset-sum problem (Garey & Johnson| [1990) for the proof (Appendix [F).

Theorem 5.1. The problem of computing an optimal 2D-binned decision boundary is NP-hard. [J

5.2 Equi-weight Binning Case A primary rea-
son for the intractability of 2D-BDB problem
is that one cannot ascertain the relative “good-
ness” (i.e., recall subject to precision bound)
of a pair of bins based on their positivity rates
alone. For instance, it is possible that a bin

Algorithm 1 Optimal Equi-weight DP-based

Multi-Thresholds [EW-DPMT]

Input: Equi-sized K x L grid with positive sample
counts [p(4, j)] k x L, total count N, precision level o

Output: maximum (unnormalized) recall R* and corre-

A with lower positivity rate might be prefer-
able to a bin B with higher positivity rate since
the choice would be based on the overall posi-
tivity accounting for the current selected bins.
Specifically, for current selection, bin A, bin
B with total samples and positives given by
(N, P), (na,pa)and (np, pp), we could have
pa/na >pg/npand (P+pp)/(N +ng) >
(P4+pa)/(N+mna)forns # ng). To address
this, we propose a binning policy that preserves
the partial ordering along score and uncertainty
yielding equal-sized bins. We design an opti-
mal algorithm for this special case using the
fact that a bin with higher positivity is prefer-
able among two bins of the same size.

Binning strategy: To construct an equi-weight
K x L grid, we first partition the samples in
Dpo1q into K quantiles along the uncertainty
dimension and then split each of these into L
quantiles along the score. The bin indexed by
(i,4) contains samples from ‘" global uncer-
tainty quantile and the j** score quantile local

to i*" uncertainty quantile. This mapping pre-

sponding optimal boundary b* for precision > o
// Initialization
R(i,m) = —oo;
V[, [, [mlo "
// Pre-computation of cumulative sums of positives
7(i,0) =0, [
m(i,7) = Z]L'I’:L—]!i»l p(i,j'), [ZH<7 []HJ
// Base Case: First Uncertainty Level
R(1,m) = 7(1,m); b(1,m, 1) = L —m, [m]§
// Decomposition: Higher Uncertainty Levels
for i = 2to K do
form = 0to:L do
0<4<L
b(i,m,:) =b(i —1,m —j*,:)
b(i,m,1) = L — j*

b(i,m,i') = —1;

end for
end for
// Maximum Recall for Precision
m" = argmax [R(K,m)]

0<m<KL s.t. L R(K,m)>o

R* = R(K,m"*);b* = b(K,m",)
return (R, b")

serves the partial ordering that for any score level, the uncertainty bin indices are monotonic with
respect to its actual values. Note that while this yields equal-sized bins on Dy, 4, using same bound-
aries on the similarly distributed test set will only yield approximately equal bins.

Dynamic Programming (DP) Algorithm: For equi-weight binning, we propose a DP algorithm
(Algorithm [T)) for the 2D-BDB problem that identifies a maximum recall decision boundary for a
given precision bound by constructing possible boundaries over increasing uncertainty levels. For
1<i< K,0<m < KL,let R(i,m) denote the maximum true positives for any boundary over
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the sub-grid with uncertainty levels up to the i*” uncertainty level such that the boundary has exactly
m bins in its positive region. Further, let b(¢, m, :) denote the optimal boundary that achieves this
maximum with b(¢, m, ") denoting the boundary position for the uncertainty level (< 4). Since
bins are equi-sized, for a fixed positive bin count, the set with most positives yields the highest
precision and recall. For the base case ¢ = 1, a feasible solution exists only for 0 < m < L
and corresponds to picking exactly m bins, i.e., score threshold index b(1,m,1) = L — m. For
i > 1, we can decompose the estimation of maximum recall as follows. Let j be the number of
positive region bins from the i uncertainty level. Then the budget available for the lower (i — 1)
uncertainty levels is exactly m — j. Hence, we have, R(i,m) = 01<nja<xL[7r(i, J)+ R —1,m —j)],

where 7(i,j) = Zf/:L—j-H p(i,j'), i.e., the count of positives in the j highest score bins. The
optimal boundary b(%, m, :) is obtained by setting b(é, m,4) = L — j* and the remaining thresholds
to that of b(i — 1, m — j*,:) where j* is the optimal choice of j in the above recursion. Performing
this computation progressively for all uncertainty levels and positive bin budgets yields maximum
recall over the entire grid for each choice of bin budget. This is equivalent to obtaining the entire
PR curve and permits choosing the optimal solution for a given precision bound. From R(K,m),
we can choose the largest m that meets the desired input precision bound to achieve optimal recall.
The overall computation time complexity is O(K?L?). More details in Appendix@

5.3 Other Algorithms Even though the 2D-BDB problem with variable sized bins is NP-hard,
it permits an optimal pseudo-polynomial time DP solution similar to the one presented above.
VARIABLE-WEIGHT DP BASED MULTI-THRESHOLDS (VW-DPMT)) (@) tracks best recall at
sample level instead of bin-level as in EW-DPMT (I). We also consider two greedy algorithms
with lower computational complexity than the DP solution that are applicable to both variable and
equal-size bins. The first, GREEDY-MULTI-THRESHOLD (GMT), computes score thresholds that
maximize recall at a precision bound independently for each uncertainty level. The second, MULTI-
ISOTONIC-SINGLE THRESHOLD (MIST) is based on recalibrating scores within each uncertainty
level independently using 1-D isotonic regression. We identify a global threshold on calibrated prob-
abilities that maximizes recall over the entire grid so that the precision bound is satisfied. Since the
recalibrated scores are monotonic with respect to model score, the global threshold maps to distinct
score quantile indices for each uncertainty level. This has a time complexity of O(K Llog(KL)).

6 EMPIRICAL EVALUATION

6.1 EXPERIMENTAL SETUP

Datasets: For evaluation, we use three binary classification datasets: (i) Criteo: An online ad-
vertising dataset consisting of ~45 MM ad impressions with click outcomes, each with 13 contin-
uous and 26 categorical features. We use the split of 72% : 18% : 10% for train-validation-test
from the benchmark, (ii)) Avazu: Another CTR prediction dataset comprising ~40 MM samples
each with 22 features describing user and ad attributes. We use the train-validation-test splits of
70% : 10% : 20%, from the benchmark, (iii) E-Com: A proprietary e-commerce dataset with ~4
MM samples where the positive class indicates a rare user action. We create train-validation-test
sets in the proportion 50% : 12% : 38% from different time periods. In all cases, we train with
varying degrees of undersampling of negative class with test set as in the original distribution.

Training: For Criteo and Avazu, we use the SAM architecture| (Cheng & Xue, [2021) as the
backbone with 1 fully-connected layer and 6 radial flow layers for class distribution estimation. For
E—-Com, we trained a FT-Transformer (Gorishniy et al., 2021) backbone with 8 radial flow layers.
Binning strategies: We consider two options: (i) Equi-span where the uncertainty and score
ranges are divided into equal sized K and L intervals, respectively. Samples with uncertainty
in the 7*" uncertainty interval, and score in the j** score interval are mapped to bin (i, 7). (ii)
Equi-weight where we first partition along uncertainty and then score as described in Sec. [
Algorithms: We compare our proposed decision boundary selection methods against (i) the baseline
of using only score, SINGLE THRESHOLD (ST) disregarding uncertainty, and (ii) a state-of-the-art
2D decision boundary detection method for medical diagnosis (Pocevivciute et al.,[2022), which we
call HEURISTIC RECALIBRATION (HR). The greedy algorithms (GMT, MIST), variable weight
DP algorithm (VW-DPMT) are evaluated on both Equi-weight and Equi-span settings, and
the equi-weight DP algorithm (EW-DPMT) only on the former. All results are on the test sets.


https://github.com/openbenchmark/BARS/tree/main/datasets/Criteo#Criteo_x1
https://github.com/openbenchmark/BARS/tree/main/datasets/Avazu#avazu_x1
https://github.com/openbenchmark/BARS/tree/main/ctr_prediction/benchmarks/SAM/SAM_avazu_x1
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[ Criteo, 90% Precision

Avazu, 70% Precision

[ E-Com, 70% Precision

7=3, Pos:Neg = 1:3

7=5, Pos:Neg = 1:5

7=5, Pos:Neg = 1:24

Algorithm || Equi-Span | Equi-weight [| Equi-Span | Equi-weight || Equi-Span | Equi-weight
Score only
ST [ 23%+05% | 22%s02% || 1.92%+0.6% | 1.92%r0.6% || 17.6%-+9.79% | 17.6%19.7%
Score and Uncertainty based
HR 1.2%41.19% | 0.8%+0.7% 0.4%10.4% | 0.4%104% || 11.5%+08% | 11.5%+0.8%
GMT 2.4%+0.5% | 2.6%+0.3% 2.6%+0.3% | 2.6%+0.3% 17.8%+s.7% | 20.3%-+6.7%
MIST 2.5%+0.2% | 2.7%+0.3% 2.7%z+03% | 2.7%+0.3% || 18.7%x0.2% | 21.6%16.7%
EW-DPMT - 2.7%0.3% - 2.7%0.3% : 22.3% 6.7%
VW-DPMT || 2.7%+0.3% 2.7%+0.3% 2.4%+0.3% 2.4%+10.3% 20.0% 4579 | 22.3%46.3%

Table 1: Recall@PrecisionBound of various decision boundary methods on Criteo, Avazu & E—Com data.

6.2 RESULTS AND DISCUSSION

RQ1: Estimation Bias Dependence on Score & Uncertainty. From Sec. (3| we observe that the
estimation bias and thus the test positivity rate is dependent on both uncertainty and the model score.
Fig. [[|and Fig. [3|show the empirically observed behavior on the Criteo dataset and synthetic data
generated as per Fig. [2] respectively with w = 0.5, 7 = 3,£ = 0.25 in both cases. The observed
empirical trends are broadly aligned with the theoretical expectations in Sec. |3| even though the
assumption of a global Beta prior might not be perfectly valid. In particular, the separation be-
tween uncertainty levels is more prominent for the higher score range in these imbalanced datasets,
pointing to the criticality of considering uncertainty for applications where high precision is desir-
able. To validate this further, we examine subsets of data where the algorithms EW-DPMT and
ST differ on the decision boundary for 90% precision (with #score-bins = 500, #uncertainty-bins
= 3) on Criteo dataset. We observe that the bin [(s(x), u(x)) = (0.984,0)] with positivity rate
0.91 is labeled as positive by EW-DPMT but negative by ST, while the reverse is true for the bin
[(s(x),u(x)) = (0.996,0.667)] with a positivity rate 0.87. Note that ((s(x), u(x)) are percentiles
here. This variation of positivity with uncertainty for the same score substantiates the benefits of
flexible 2D decision boundary estimation. More analysis of these bins in Appendix [C.1]

RQ2: Relative Efficacy of Decision boundary Algorithms. Table [T| shows the recall at high pre-
cision bounds for various decision boundary algorithms on three large-scale datasets with 500 score
and 3 uncertainty bins, averaged over 5 runs with different seeds. Since Avazu and E-com did not
have feasible operating points at 90% precision, we measured recall@70% precision. Across all the
datasets, we observe a significant benefit when incorporating uncertainty in the decision boundary
selection (paired t-test significance p-values in Table[3)). At 90% precision, EW-DPMT onCriteo
is able to achieve a 22% higher recall (2.7% vs 2.2%) over ST. Similar behavior is observed on
Avazu and E-com datasets where the relative recall lift is 42% and 26% respectively. Further, the
Equi-weight binning results in more generalizable boundaries with the best performance coming
from the DP algorithms (EW-DPMT, VW-DPMT) and the isotonic regression-based MIST. The
heuristic baseline HR (Pocevivciuté et al.| [2022) performs poorly since it implicitly assumes that
positivity rate monotonically increases with uncertainty for a fixed score. While both EW-DPMT
and MIST took similar time (~ 100s) for 500 score bins and 3 uncertainty bins, the run-time of the
former increases significantly with increase in the bin count. Considering the excessive computation
required for VW-DPMT, isotonic regression-based algorithm MIST and EW-DPMT seem to be
efficient practical solutions. Results on statistical statistical significance and runtime comparison are
in Appendix [C.3]and Appendix [C.4] Fig. [6fa) and Table [2] show the gain in recall for uncertainty-
based 2D-decision boundary algorithms relative to the baseline algorithm ST highlighting that the
increase is larger for high precision range and decreases as the precision level is reduced. Experi-
ments with other uncertainty methods such as MC-Dropout (Gal & Ghahramani, 2016) (see Table E]
) also point to some but not consistent potential benefits possibly because Posterior networks capture
both epistemic and aleatoric uncertainty while MC-Dropout is restricted to the former.

RQ3: Dependence on choice of bins and undersampling ratio.: Binning configuration. Fig. [5{(a)
and [5b) show how performance (Recall @PrecisionBound) of EW-DPMT varies with the number
of uncertainty and score bins for Criteo and Avazu datasets. We observe a dataset dependent
sweet-spot (marked by star) for the choice of bins. Too many bins can lead to overfitting of the
decision boundary on the hold-out set that does not generalize well to test setting, while under-
binning leads to low recall improvements on both hold-out and test sets.
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Figure 5: Impact of # bins along uncertainty and score for EW-DPMT on (a) Criteo (7 = 3, Recall@90%
Precision) and (b) Avazu (7 = 5, Recall@70%Precision). (c) Impact of undersampling level (7) during
training on Recall@70%Precision for ST and EW-DPMT on Avazu.
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Figure 6: (a) Relative gain in recall on uncertainty-based 2-D decision boundary algorithms over the base-
line ST on Criteo dataset (r = 3) for different precision bounds. (b) Cumulative Expected Calibration
Error(ECE) between MIST and IST baseline on Avazu dataset (7 = 5).

Undersampling Ratio. Fig. 5|c) captures the Recall@70% Precision performance of EW-DPMT
and ST for different levels of undersampling () of the negative class on the Avazu dataset averaged
over 5 seeds. For both the algorithms, we observe an improvement in recall performance initially
(till 7 = 2.5) which disappears for higher levels of downsampling in accordance with prior stud-
ies (Arjovsky et al [2022). We observe that EW-DPMT consistently improves the Recall@70%
precision over ST with more pronounced downsampling (i.e., higher values of 7).

RQ4: Impact of leveraging uncertainty for probability calibration. To investigate the potential
benefits of incorporating uncertainty in improving probability calibration, we compared the proba-
bilities output from MIST algorithm with those from a vanilla isotonic regression (IST) baseline on
Expected Calibration Error (ECE) for every score-bin, averaged across different uncertainty levels.
Fig. |§| (b) demonstrates that the difference between ECE for MIST and IST increases as we move
towards higher score range. Thus, the benefit of leveraging uncertainty estimates in calibration is
more pronounced in high score range (i.e. at high precision levels). More details in Appendix [C.6]

7 CONCLUSION

Leveraging uncertainty estimates for ML-driven decision-making is a key research area. In this pa-
per, we examined potential benefits of utilizing uncertainty along with model score for binary clas-
sification. We provided theoretical analysis that points to the discriminating ability of uncertainty
and formulated a novel 2-D decision boundary estimation problem based on score and uncertainty
that is NP-hard. We also proposed practical solutions based on dynamic programming and isotonic
regression. Empirical evaluation on real-world datasets point to the efficacy of utilizing uncertainty
in improving classification performance. Future research directions include (a) designing efficient
algorithms for joint optimization of binning configuration and boundary detection, (b) utilizing un-
certainty for improving ranking performance and explore-exploit strategies in applications such as
recommendations where the relative ranking matters and addressing data bias is critical, and (c)
extensions to regression and multi-class classification settings (see Appendix [H).
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A  REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide details of hyperparameters used for
training posterior network model with details of model (backbone used and flow parameters) in Sec.
[6.1] All models were trained on NVIDIA 16GB V100 GPU. We provide the pseudo code of binning
and all algorithms implemented in Sec. [5|and Appendix [G] with details of bin-configuration in Sec
All binning and decision boundary related operations were performed on 4-core machine using
Intel Xeon processor 2.3 GHz (Broadwell E5-2686 v4) running Linux. Moreover, we will publicly
open-source our code later after we cleanup our code package and add proper documentation for it.

B ETHICS STATEMENT

Our work is in accordance with the recommended ethical guidelines. Our experiments are performed
on three datasets, two of which are well-known click prediction Datasets (Criteo, Avazu) datasets
in public domain. The third one is a proprietary dataset related to customer actions but collected with
explicit consent of the customers while adhering to strict customer data confidentiality and security
guidelines. The data we use is anonmyized by one-way hashing. Our proposed methods are targeted
towards classification performance for any generic classifier and carry the risks common to all Al
techniques.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 BENEFITS OF 2D-DECISION BOUNDARY ESTIMATION

To anecdotally validate the benefits of 2D decision boundary estimation, we run the algorithms EW-
DPMT and ST on Criteo dataset and examine bins where the algorithms differ on the decision
boundary for 90% precision. As mentioned earlier, the bin (bin A) with [(s(x), u(x)) = (0.984,0)]
and positivity rate 0.91 is included in the positive region by EW-DPMT but excluded by ST while
the reverse is true for the bin (bin B) with [(s(x), u(x)) = (0.996,0.667)] and positivity rate 0.87.
Note that ((s(x),u(x)) are the score and uncertainty percentiles and not the actual values. We
further characterise these bins using informative categorical features. Fig. [7]depicts pie-charts of the
feature distribution of one of these features ”C19” for both these bins as well as the corresponding
score bins across all uncertainty levels and the entire positive region as identified by EW-DPMT.
From the plots, we observe that the distribution of C19 for the positive region of EW-DPMT (Fig.
(a)) is similar to that of the bin A (Fig. [/|(b)) which is labeled positive by EW-DPMT and negative
by ST and different from that of bin B (Fig. [/|(c)) that is labeled negative by EW-DPMT but positive
by ST in terms of feature value V1 being more prevalent in the latter. We also observe that bins A
and B diverge from the corresponding entire score bins across uncertainty-levels, i.e., Fig. [/|(c) and
Fig. [/| (e) respectively. This variation of both feature distribution and positivity with uncertainty
for the same score range highlights the need for flexible 2D decision boundary estimation beyond
vanilla thresholding based on score alone.

C.2 RECALL IMPROVEMENT AT DIFFERENT PRECISION LEVELS

To identify the precision regime where the 2D-decision boundary algorithms are beneficial, we mea-
sure the recall from the various algorithms for different precision bounds. Table [2|shows the results
on CRITEO dataset (7 = 3) highlighting that the relative improvement by leveraging uncertainty
estimation in decision boundary estimation increases with precision bound. This empirically ties to
the observation that the separation between different uncertainty levels is more prominent for higher
score range, as this separation is used by 2D-decision boundary algorithms for improving recall.

C.3 STATISTICAL SIGNIFICANCE OF VARIOUS ALGORITHMS VS ST

Table [3| captures the significance levels in the form of p-values on paired t-test (one-sided) com-
paring the different algorithms against the single-threshold (ST). It is evident that algorithms that
leverage both score and uncertainty such as EW-DPMT, MIST, VW-DPMT and GMT signifi-
cantly outperform ST, improving recall at fixed precision for all datasets.
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(a) Pos @90% Precision  (b) A: Pos[EW-DPMT] & Neg[ST]

(c) FullScore Bin A (d) B: Neg[EW-DPMT] & Pos[ST]

(e) FullScore Bin B
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Figure 7: Distribution of subsets of data from Criteo with 7 = 3 across a key categorical feature
(C19): (a) All positive samples as per the 90% precision decision boundary by EW-DPMT, (b) Bin
A included by EW-DPMT in the positive region but excluded by ST, (c) Score bin corresponding
to the bin A across all uncertainty levels, (d) Bin B excluded by EW-DPMT in the positive region
but included by ST, and (e) Score bin corresponding to the bin B across all uncertainty levels. Here,
V1 refers to C19 with value 1533924, V2 with 1533929, V3 with 1533925.

Algorithm Recall@ Recall@ Recall@ Recall@
60 % Precision 70 % Precision 80 % Precision 90 % Precision
Score only
ST H 46.6%+0.9% [ 27.7%+1.1% [ 12.0%40.8% [ 2.2%+0.2%
Score and Uncertainty based

GMT 46.8%i0'9% (+0.4%) 28.0%i1_0% (+1.0%) 12-5%i0.8% (+3.5%) Q.G%io,g% (+18.2%)

MIST 46.7%:{:0‘9% (+0.1%) 27.8%:&10% (+0.4%) 12.4%:&06% (+2.7%) 2.7%:(:()‘3% (+22.7%)
EW-DPMT 46-9%i0,8% (+0.6%) 28.2%i1_0% (+1.6%) 12-6%i0.8% (+4.8%) 2~7%i0.3% (+22.7%)

Table 2: Recall@ different precision levels for Criteo dataset (r = 3) for various decision boundary algo-
rithms along with relative gains for each uncertainty level (in brackets) relative to the ST algorithm.

Criteo Avazu E-Com
90% Precision 70% Precision 70% Precision
7=3, Pos:Neg = 1:3 7=5, Pos:Neg = 1:5 7=5, Pos:Neg = 1:24
Algorithm Equi-Span | Equi-weight || Equi-Span | Equi-weight || Equi-Span | Equi-weight
Score and Uncertainty based
ST vs. HR 0.99 0.98 0.99 0.99
ST vs. GMT 0.08 0.03 0.03 0.42 0.07
ST vs. MIST 0.05 0.03 0.02 0.02 0.1 0.03
ST vs. EW-DPMT - 0.03 - 0.02 - 0.01
ST vs. VW-DPMT 0.03 0.03 0.02 0.02 0.02 0.01

Table 3: Significance level (p-values) of Paired t-test on Recall @PrecisionBound of different decision bound-
ary algos on Criteo, Avazu and E-Com test datasets with #bins chosen same as per TableE}
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C.4 RUNTIME OF VARIOUS ALGORITHMS

Table [ shows the run-times (in seconds) for the best performing algorithms: MIST (Multi Isotonic
regression Single score Threshold) and EW-DPMT (Equi-Weight Dynamic Programming based
Multi threshold on Criteo (7 = 3) dataset for different bin sizes with 64-core machine using
Intel Xeon processor 2.3 GHz (Broadwell E5-2686 v4) running Linux. The runtimes are averaged
over 5 experiment-seeds for each setting. The run-times do not include the binning time since this
is the same for all the algorithms for a given binning configuration. It only includes the time taken
to fit the decision boundary algorithm and obtain Recall @ PrecisionBound.

Table 4: Wallclock runtime (in seconds) of various algorithms on Criteo Dataset (7 = 3).

Score-bins 100 500 1000
Uncertainty-bins || EW-DPMT | MIST | EW-DPMT | MIST | EW-DPMT | MIST
3 8 92 98 99 530 80
7 42 154 830 146 3434 99
11 106 233 1976 162 11335 99

From the theoretical analysis, we expect the runtime of decision boundary estimation for MIST
to be O(K Llog(KL)). However, in practice there is a strong dependence only on K i.e., the
number of uncertainty bins since we invoke an optimized implementation of isotonic regression
K times. Furthermore, we perform the isotonic regression over the samples directly instead of
the aggregates over the L score bins which reduces the dependence on L. The final sorting that
contributes to the K L log(K L) term is also optimized and does not dominate the run-time. For EW-
DPMT, we expect a runtime complexity of O(K?2L?), i.e., quadratic in the number of bins. From
decision-boundary algorithm fitting perspective, the observed run-times show faster than linear yet
sub-quadratic growth due to fixed costs and python optimizations. Overall, MIST performs at par
with EW-DPMT on the decision quality but takes considerably less time.

C.5 RESULTS USING MC-DROPOUT

To understand the impact of choice of uncertainty estimation method, we report experiments on
MC-Dropout (Gal & Ghahramani, [2016) algorithm in Table [I| MC-Dropout estimates epistemic
uncertainty of a model by evaluating the variance in output from multiple forward passes of the
model for every input sample. Resuts in Table [5] are from models trained for each dataset without
any normalizing flow. While we observe substantial relative improvement when the recall is already
low as in the case of Avazu, the magnitude of improvement is much smaller than in the case of
Posterior Network possibly because the MC-Dropout uncertainty estimation does not account for
aleatoric uncertainty.

[ [ criteo, 90% Precision [| Avazu, 70% Precision [| E-Com, 70% Precision |

7=3, Pos:Neg = 1:3 7=5, Pos:Neg = 1:5 7=5, Pos:Neg = 1:24
Algorithm Equi-weight Equi-weight Equi-weight
Score only
ST | 4.2% +0.19% | 1.28%+0.1% | 22.8%+4.79%
Score and Uncertainty based
MIST 4.3%+0.29%(+2.4%) 1.8%10.09 (+40%) 23.1%+3.6%(+1.3%)
EW-DPMT 4.3%i01%(+2.4%) 1‘9%:“)'2%(4'48%) 23.7%i3‘300(+3.9%)

Table 5: Performance of different decision boundary algorithms as measured Recall @PrecisionBound on
Criteo, Avazu and E-Com test datasets with MC-Dropout as uncertainty estimation method.

C.6 IMPACT OF USING UNCERTAINTY ESTIMATION ON CALIBRATION ERROR

For applications such as advertising, it is desirable to have well-calibrated probabilities and not just
a decision boundary. To investigate the potential benefits of incorporating uncertainty in improving
probability calibration, we compared the calibrated scores from MIST algorithm with those from a
vanilla isotonic regression (IST) baseline. MIST fits a separate isotonic regression for each uncer-
tainty level while IST fits a single vanilla isotonic regression on the model score. We evaluate the
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Expected Calibration Error in the " score-bin, EC EQj as

Z (score[x] — label[x])|,

xEBin(i,j5)

ECEQj = % >

i€[1,K]

n(i, j)

where for each bin (i, j), calibration error (CE) is evaluated on samples from the bin. CE is the
absolute value of the average difference between the score and label for each sample x € Bin(i, j),
where j € [1, L],i € [1, K]. n(4, ) is the number of samples in the Bin(i, j) . For both MIST and
IST, we use the respective isotonic score for CE calculation. In Fig. [§|(a) and (c), we plot EC EQj
for all score bins for MIST and IST decision boundary algorithms on Criteo and Avazu datasets
respectively, averaged over 5 different experiment seeds. The difference between EFC EQj MIST
vs IST is pronounced at high-score levels, aligning with our primary observation that leveraging
uncertainty estimates in decision boundary estimation helps improve recall at high precision levels.

We also define the cumulative- EC'EQj as the averaged calibration error for all bins with model-
score percentile greater than j. The cumulative- EC' E@Qj results in a smoothened plot and the dif-
ference between the cumulative- EC' EQj for IST with that of MIST increases with model-score.

oo | st oo | | —MIST
\ o M« L 15T = T Y st
o IR ) | e s, IRl | g e
Iy | oo i | o
W st ¢ w o= misT ‘ g
O ool 1T || 5oos O ool 1ST [| Zoos
" _isT- misT [| 2 ST - misT | ‘ &
- I | Zooo I 2o
* AN AL A .A.“l S o A w“‘i ‘ £
0000 “‘ww VA a \«“‘Nww\",ﬂ V“‘y'&"v‘a”\;l 5 0005 0,000 “;‘w\/\"‘m“yr \,\“‘JW\JMUV N\AJ\ v‘” ‘ a 005!
|
0005 00001 00051 I T T | oo
G @2 s o5 o8 W oz i 06 a8 C I S o w4 o5
Model Score Percentile Model Score Percentile Model Score Percentile Model Score Percentile
(@) (b) (© (d)

Figure 8: Impact of leveraging uncertainty in calibration by comparing MIST vs IST (a) EC EQi for Criteo
(tr = 3) (b) Cumulative-EC EQj for Criteo (7 = 3) (¢) ECEQj for Avazu (7 = 5) (d) Cumulative-
ECEQj for Avazu (1 = 5).

C.7 IMPACT OF UNCERTAINTY BASED MONOTONIC CONSTRAINTS

In the Equi-Weight DP (EW-DPMT) formulation, there is a separate threshold b; for each uncertainty
level ¢. In other words, we assume monotonicity of the true conditional probability of the positive
class with respect to the model score for a fixed uncertainty but not with respect to uncertainty for
a fixed model score. This is because monotonicity with respect to uncertainty does not hold true
across the entire score range. Fig. [3[a) shows the behavior (flipped trends for different score ranges)
for the case of Beta priors with uncertainty estimated using Posterior Networks.

To empirically validate this observation, we consider EW-DPMT-MONO, a variant of the EW-
DPMT algorithm where the decision boundary is constrained such that the true conditional prob-
ability is monotonically decreasing in uncertainty (i.e., b; > b; for i > j so that the boundary
function looks like a staircase). This variant has higher computational complexity O(/K?L?) than
EW-DPMT where K and L are the number of uncertainty and score bins. Table [6]shows a compar-
ison of the performance of the two algorithms for the same bin configuration. We observe that for
high precision bound (as in Criteo), the monotoncity assumption does hold, but that is not true for
lower precision bounds with the unconstrained version resulting in better performance. This aligns
with the expected behavior in Fig. [3(a).

C.8 IMPACT OF BINNING ALONG SCORE BEFORE UNCERTAINTY

In Sec. [5] we introduced the equi-weight nested binning strategy where samples in Dj, ;¢ are first
partitioned into K quantiles along the uncertainty dimension with each of these K quantiles fur-
ther split into L quantiles along the score dimension. It is also possible to adopt an alternative
binning strategy based on partitioning first on the score followed by uncertainty. Table [7| captures
the Recall @Precision bound using the two equi-weight binning strategies for various 2-D decision
boundary algorithms indicating that both the strategies yield similar results.
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[ criteo, 7=3,90% Precision || Avazu, 7=5, 70% Precision

Score only
ST I 2.2%10.2% | 1.9%10.6%
Score and Uncertainty based
EW-DPMT 2.6%40.3% 2.6%-+0.3%
EW-DPMT - MONO 2.6%10.6% 1.9%+0.6%

Table 6: Performance with different unconstrained and monotonic variants of EW-DPMT with uncertainty
bins = 100 and score bins = 3. Note that here we used a smaller number of uncertainty bins instead of 500 (in
the paper) to reduce computational effort.

Criteo, 7=3, 90% Precision Avazu, 7=5, 70% Precision
Algorithm Score-Unc (500,3) [ Unc-Score (3,500) || Score-Unc (500,3 [ Unc-Score (3,500)
Score only
ST I 2.2%10.2% [ 22%t0.2% I 1.9%i06% | 1.9%10.6%
Score and Uncertainty based
MIST 2.6%+0.2% 2.6%40.3% 2.9%40.2% 2.6%+0.3%
GMT 2.6%+0.4% 2.7%+0.3% 2.9%+0.2% 2.7%+0.3%
EW-DPMT 2.7%4+0.0% 2.7%+0.3% 2.9%+0.2% 2.7%40.3%

Table 7: Performance with different equi-weight binning strategies. Score-Unc involves splitting on score
quantiles followed by that of uncertainty while it is the opposite for Unc-Score. Same number of score and
uncertainty bins were used for both experiments.

D POSTERIOR NETWORKS

Posterior Network (PostNet) (Charpentier et al., |2020) builds on the idea of training a model to
predict the parameters of the posterior distribution for each input sample. For classification, the
posterior distribution (assuming conjugacy with exponential family distribution) would be Dirichlet
distribution, and PostNet estimates the parameters of this distribution using Normalising Flows.

They model this by dividing the network into two components:

* Encoder: For every input x, encoder (fg) computes z = fy(x), a low-dimensional latent
representation of the input sample in a high-dimensional space, capturing relevant features
for classification. The encoder also yields sufficient statistics of the likelihood distribution
in the form of affine-transform of z(x) followed by application of log-softmax. Instead of
learning a single-point classical softmax output, it learns a posterior distribution over them,
characterized by Dirichlet distribution.

* Normalizing flow (NF): This models normalized probability density p(z|c, ¢) per class on
the latent space z, intuitively acting as class conditionals in the latent space. The ground
truth label counts along with normalized densities are used to compute the final pseudo
counts. Thus, the component yields the likelihood evidence that is then combined with the
prior to obtain the posterior for each sample.

The model is trained using an uncertainty aware formulation of cross-entropy. Here 6 and ¢ are
the parameters of the encoder and the NF respectively. Since both the encoder network fy and the
normalizing flow parameterized by ¢ are fully differentiable, we can learn their parameters jointly
in an end-to-end fashion. ¢(x) is the estimated posterior distribution over p(y|x). The model’s
final classification prediction is the expected sufficient statistic and the uncertainty is the differential
entropy of the posterior distribution. The model is optimised using stochastic gradient descent using
loss function that combines cross entropy with respect to true labels and the entropy of ¢(x).

E ESTIMATION BIAS ANALYSIS: PROOFS OF THEOREMS

E.1 DATA GENERATION PROCESS
The true positivity rate S%¢(x) is generated from a global Beta prior with parameters 57 and 37,

ie.,
Shrue(x) ~ Beta(ﬁlT,,BOT).
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The train and test samples at an input region x (modeled in a discrete fashion) are generated from
the true positivity rate following a Bernoulli distribution with the negative train samples being un-
dersampled by factor 7. Let N"*"(x) and N'®s!(x) denote the number of train and test samples
at x. Let NI"%"(x) and N!°*(x), c¢ € {0, 1} denote the class-wise counts. The positive counts for
the train and test count are given by

Niest(x) ~ Binomial(N**5*(x), S'""¢(x))

Tstrue (X)
(r — 1)Stree(x) + 1

NI (x) ~ Binomial (N (x), )-

. train test
The train and test positivity rates are given by S*"(x) = %Tngg and S (x) = xieitg; The
model score S™°%!(x) is obtained by fitting a model on the train set with no additional dependence
on the test and true positivity rates. Fig. [2|shows the dependencies among the different variables.

Lemma E.1. The relationship between train positivity S " (x) and model score for positive class
Smodel (x) from Posterior Network is given by

Strain(x) — Smodel(x) _ (w _ Smodel(x)),.y(x)_
where

Bf+8E

¢ w

. __ Bf+st
%) = 5eTa@

Proof. Using the notation in Sec. 3} the pseudo-counts 3.(x), ¢ € {0, 1} correspond to the observed
positive and negative counts at x. Hence, the train positivity is given by

train — ﬂ
S (X) - /81 (X) + BO (X)
This gives us fo(x) = 31(x) (%)

Using the definitions of w and (x), the model score S™°%¢!(x) from Posterior Network (Eqn.
can now be expressed in terms of w, S*%" (x) and ~y(x) as follows:

Smodel (X) _ B{D + ﬁl (X) _ W’Y(X) + Strain(x)
Zcec[ﬂf + ﬁc(x)] 1+ 7v(x) ’
Hence, 517417 (x) = 741 (x) — (1 = §741(x))5(x). =

Theorem E.2. For the case where data is generated as per Fig. [2|and negative class is undersam-
pled at the rate %, the following results hold:

(a) The expected true positivity rate conditioned on the train positivity is given by the expectation of
the distribution,

C , .
r) = ———————— Beta(n(éX(x) + S (x)), n((1 — )A(x) + 1 — ST (x))).
Q(r) AT (=D (n(§A(x) (%)), n((1 = A(x) (x)))
* n = B1(x) + Bo(x) denotes evidence, C' is a normalizing constant, § = BTﬂ +1T 5T s the
1 0
positive global prior, and \(x) = % is the ratio of global priors to evidence.

(b) When there is no differential sampling, i.e., T = 1, the expectation has a closed form and is given
by

- 5700 (3x) + EA(x)

E Strue Strazn —

517 ()87 ()] = Sy s
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Proof. Let N'r%"(x)and N{"*"(x) denote the number of train samples and positive samples asso-
Nltru.in (X)

ciated with any input region x. Then the train positivity S*"%"(x) = Neratn(x)

Since N'*in(x) corresponds to the probability mass and pseudo counts at x, we consider re-
gions with a fixed size N¥"%"(x) = n. The expected true positivity rate for all x with size
N'rain(x) = n conditioned on S (x) = % is given by E[S'™"¢(x)|S!" " (x) = k/n] =
BT ()| N{T () = k).
For brevity, we omit the explicit mention of the dependence on x for variables S"°%! (x), S*r@in (x),
Stest(x)’ and Strue(x).
The conditional probability p( St “¢| Nir@n = k) is given by the Bayes rule. Specifically, we have
p(Strue — ,,,)p(Nltrain — k,|Strue — T‘)

PN =H) |

p(Strue _ T|Nfrain — ]{i) —

Here S'"“¢ follows a global Beta prior and N{"%" a Binomial distribution with downsampling of
negative examples at the rate % For Sir4e = 7, the success probability of the Binomial distribution

(probability of obtaining a sample with y = 1) is given by T+7{1 = +(:’;1)T). Hence,

Beta(B], By ) <Z> <1 + (:7“_ 1)r>k (1 +1(7___r 1)T)nk

GO Beta(8T 1k, BT+ n— k)
= ————Deta , n—k),
(I+(r—1r) ' ’
where Cj is a normalizing constant independent of r and 7. While the integral fr p(Strue =
r)p(Nirein = k|Stue = r)dr over [0,1] does not have a closed form, we do observe that the
desired conditioned distribution will have a similar form with a different normalizing constant C
since the denominator is independent of r:

p(Strue _ T)p(Nfrain — k|5true _ 7")

p(strue — ,r.)p(Nltrain — k‘Strue — ,,,)
T, p(ST = r)p(Nfram = R[S = r)dr
C

_ - . B
= mBeta(Bl + kBT +n—k).

p(strue _ 7,|N{,Tain _ k) _

The expected true positivity rate conditioned on N{"%" = k is the mean of this new distribution,
which does not have a closed form but can be numerically computed and will be similar to the
simulation results in Fig. [3[b).

Using the definitions of £ = BT and \(x) = %, we can rewrite 3§ = né\(x) and
B =n(1 — £)A(x). Further, observmg that S*"%"(x) = k/n, we can express this distribution as
c trai trai
= — rawm 1— 1— rain
Q) = =g BetanlEA) + 57 60).n((1 = OAx) + 1 = §7 ()

which yields the desired result.

Part b: For the case where 7 = 1, the term W = 1 and the distribution Q(r) reduces

to just the Beta distribution Beta(n(¢A(x) + Strain(x)), n((1—§Ax) +1-— Strain(x))). Note
the normahzmg constant C' = 1 since the Beta distribution itself integrates to 1. The expected true
positivity is the just the mean of this Beta distribution, i.e.,

true train _ n(fA(X) + Strain (X))
FISTHOIIST0N = Sex e + 57 () + (1 — OAx) + 1= 57 ())
Strain ) 1 €A(x)

14+ A(x) '
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Theorem E.3. For the case where data is generated as per Sec. the expected test and true
positivity rate conditioned either on the train positivity rate or model score for positive class are
equal, i.e.,

E [Stest (X) |Strain (X)] E[strue (X) |Strain (X)] ,
E[Stest (X) ‘Smodel (X)] — E[Strue (X) |Smodel (X)}

Proof. From the data generation process in Sec. [E.Il we observe that the test label samples
Yiest(X) at the input region x are generated by Bernoulli distribution centered around S'"“¢(x)
i.e., Yiest(x) ~ Bernoulli(S?¢(x)) and S**** is the mean of Y**** over the test samples.

Hence, the test labels Y°**(x) and test positivity rate S****(x) are independent of the model score
Smedel(x) and S (x) given the S™"“¢(x). For brevity, we omit the explicit mention of the
dependence on x for variables Y *f(x), S™od¢l (x), Strain(x), Stest(x), and STTU€(x).

As Yt is conditionally independent of S'"*™ given S'"“¢, we observe that

E[YtESt |Strain} == EStv‘ue |St7‘ain [E[YteSt |St’l’u€“ .

However, since Yiest ~ Bernoulli(S'"¢(x)), we have E[Ytest|§true] = Girue Therefore,

E[ytest|5train} _ Estme|strmn [E[Ytest|Strue]] _ E[Strue|strain]
Since St%t is itself the expectation over Y;.s;, by the law of iterated expectations, we have,

E[Stest‘strain] — E[ytest|5train] — E[Strue‘strm'n]’

which is the desired result. The same result holds true even when conditioning on the model score
Smedel gince Yt and S*°** are also conditionally independent of S™°%! given St

O

Theorem E.4. For the case where data is generated as per Fig. 2] and negative class is undersam-
pled at the rate %

(a) The expected test and true positivity rate conditioned on the train positivity are equal and corre-
spond to the expectation of the distribution,

C

mBeta(n(f)\(x) + 57 (x)), n((1 — HA(x) + 1 = ST (x))).

Q(r) =

When there is no differential sampling, i.e., T = 1, the expectation has a closed form and is given by

E[strue(x)‘strain(x)} _ E[Stest(x)|strain(x)] _ S rmn(x) + f)\(X)

14+ A(x)
T
* n = B1(x) + Bo(x) denotes evidence, C'is a normalizing constant, £ = ﬁT’ﬁ 5T IS the
1 0
T T
positive global prior, and \(x) = % is the ratio of global priors to evidence.

(b) For Posterior Networks, the test and true positivity rate conditioned on the model score

Smedel(x) can be obtained using STU"(x) = Smodel(x) — (w — S™o%l(x))y(x). For
T = 1, the estimation bias, i.e., difference between model score and test positivity is given by
(S™odel (x) (v—1)+w—Ev)y(x)
14+vy(x) :
* w= . and v = 28 = By +hg is the ratio of global and model priors
BY+8S v(x) T BLHBT '
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Proof. Part a:

From Theorem[E.2] we directly obtain the result on the expectation of true positivity rate in terms of
the train positivity both for the general case where 7 # 1 and for the special case of 7 = 1. Further,
from Theorem [E.3] we observe that the expected true positivity is also the same as the expected test
positivity conditioned on the train positivity, which yields the desired result.

Part b:

From Lemma|E.1} we obtain the relationship between the train positivity and the model score, i.e.,
Strain(x) = §model(x) — (w — Smedel(x))y(x). which can be used to expression the expected
train and test positivity directly in terms of the model score.

For the case 7 = 1, in particular, since S"¥"(x) is deterministic function of $™°4¢!(x) for a fixed
~v(x), we observe that

E[stest(x)|gtrain(x)] _ S Tm:(j_())\—(’_ng(X)

Expressing this in terms of $™°%!(x) and y(x) = A(x)/v gives us

_ Smodel(x) + (Smodel (X) + fV - W)"Y(X) )

E[Stest (X)‘SmOdEZ(X)] T V’y(x)

Thus, the estimation bias is given by

(St (x) (v = 1) +w = Ev)y(x)

model o test < model x)] =
5700 () — B[S () 7 ()] ey

O

Theorem E.5. [Restatement of Theorem[3.1]| For data generated as per Fig. [2|but no differential
sampling (i.e., T = 1), the following results hold:

(a) The expected test and true positivity rate conditioned on the train positivity are equal and given
by

E[Strue (X) ‘Strain (X)] — E[Stest (X) |Strain (X)] — S Tm: (—’)_())\_(Fxﬁ/\(x)

BT
BT +Bg

BT +85

where § = = B OTA

is the positive global prior, and \(x) is the ratio of global priors

to evidence.
(b) For Posterior Networks, test and true positivity rate conditioned on model score S™°%!(x) can

be obtained using S " (x) = S™odel(x) — (w — S™o%l(x))y(x). Hence, the estimation bias,
(8™l (3) (1) +w— €0}y (x)

i.e. difference between model score and test positivity is given by T () , where
w = A and v = 2 — By By is the ratio of global and model priors

BY+8F v(x) T BL B ’
Proof. Current claims are a special case of Theorem [E.4 when 7 = 1. O

E.2 RELATIONSHIP OF ¥(x) AND u(x)

From Theorem [3.1] of Sec. 3] we find that the model score estimation bias, (i.e., difference between
model score and test positivity) for the case of no differential sampling (7 = 1) is given by

(S0l (x) (v — 1) + w — Ev)y(x)
[+ 7(x) |

Bl o= B
BT+83° BY+BE

which is the ratio of model’s prior

Here, the bias depends on the model score, multiple constants £ =

Ax) _ Bi+Bg BY 485
v(x) T BLHBE B1(x)+Bo(x)°
evidence to the combined likelihood evidence for a sample x.

vV =

and a variable quantity y(x) =
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As mentioned earlier in Sec. ~v(x) is inversely correlated to the sum of the parameters
(a1(x), ap(x)) of the epistemic Beta distribution ¢(z) of the Posterior Network. Specifically,
Yoac(x) =8P+ ﬁ) Increasing y(z) corresponds to a decreasing ) - cv.(x), which in

turn results in higher entropy H (¢(x)) for the epistemic distribution, i.e., higher uncertainty w(x).
Fig. |§| depicts the monotonic relationship between uncertainty u(x) = H (q(m))ﬂ and ~y(x) for
various fixed values of model score and varying amount of evidence computed using a numerical
simulation. Here, the global prior parameters are chosen as (3, 3) = (5, 10) and the total evi-
dence (By(x) + B1(x)) varies in the range (1,40). Note that the entropy computation is performed
using an approximation series summation and for extreme values of the model score, the compu-
tation of entropy and thus, uncertainty estimation does become unstable. The primary takeaway is
that the score estimation bias depends on relative strengths of priors and evidence, i.e., y(x), which
as shown is positively correlated with uncertainty. This observation holds even for the general case
where there is differential sampling 7 > 1.

-10
)
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3-14
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c
g -1.6 = score = 0.9
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S ~1.8 = score = 0.7
’ score = 0.5
1 2 3 4 5

Figure 9: Relation between uncertainty u(x)(= H(g(z))) and y(x) for a fixed score. Here, global prior
parameters (57, Br)—(5,10) and total evidence (Bo(x) + B1(x)) varies in the range (1, 40).

F COMPUTATIONAL COMPLEXITY OF DECISION BOUNDARY ALGORITHMS

Lemma F.1. Given a K x L grid with positive sample counts [p(i, )]k x 1, and total sample counts
[n(i, 7))k x 1 and any boundary b = [b(i)]X, that satisfies precision(b) > o and recall(b) > n,
let b°"P (i) denote the minimum score threshold j such that Z%% > o forall j’ > j, i.e., contiguous
high precision region. Then, then the new boundary b’ defined as b' (i) = min (b(i),b*"? (i), V[i]¥
also satisfies precision(b) > o and recall(b) > .

Proof. Let B't denote the positive region for the new boundary b’ and B"P the contiguous high
precision bins for each uncertainty level, i.e., B"? = {(i, j)|5 > b°"?(3), V[i]¥, [j]§}.

By definition, we have, B'" = {(i,j)|7 > ¥'(i), V[i]¥, [j]§} = B* | B"*. Given a set of bins
B, let P(B) and N(B) denote the net positive and total samples within this set of bins. Since
precision(b) > o, we have P(BT) > oN(B™). Since Z((ZZ;)) > o, V(i,7) € B"P, we also note
that P(B) > o N(B) for any set B C B"?,

Now, the precision for the new boundary is given by

Z(i,j)eB“r p(i,J) . Z(i,j)EBJr p(i,7) + Z(m)eschp\BJr p(i, J)

Z(i,j)eBH— n(i,j) Z(i,j)eB+ n(i, j) + Z(i,j)eBchp\B+ n(i, j)

P(B*Y) + P(B°\ BY)

N(B*) + N(Bchr \ Bt)

< oMz N(B\ BY)
N(B*t) + N(Beh» \ Bt)

precision(b’) =

) {since (B"?\ B*) C B'?}

= O

*H(q(x)) = log B(aw, o) — (0 + a1 —2)pp(an+ 1) = 3 e (e — 1) (xe) where t)(-) is the digamma
function and B(-, -) is the Beta function.
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Let Py denote the total number of positive samples. Then the recall for the new boundary is given
by
> en+Pi,J)  P(BY) 4 P(B*\ B*) _ P(B")

recall(b’) = = > > .
() Py Py B 7

Hence, b’ also satisfies the precision and recall bounds. O

Theorem F.2. [Restatement of Theorem The problem of computing the optimal 2D- binned
decision boundary (2D-BDB) is NP-hard.

Proof. The result is obtained by demonstrating that any instance of the well-known subset-sum
problem defined below can be mapped to a specific instance of a reformulated 2D-BDB problem
such that there exists a solution for the subset-sum problem instance if and only if there exists a
solution for the equivalent decision boundary problem.

Specifically, we consider the following two problems:

Subset-sum problem: Given a finite set A = {aq,...,a;} of ¢ non-negative integers and a target
sum T, is there a subset A" of A such that Yaen ar=T.

Reformulated 2D-BDB problem: Given a K x L grid with p(, j) and n(i, j) denoting the positive

and total number of samples for bin (i, j), is there a decision boundary b = [b(i)]X ; such that
precision(b) > o and recall(b) > 7.

Let BT denote the positive region of the boundary, i.e., BT = {(i,j)|[1 <i < K,1<j < L; j >
b(i)} and Py denote the total number of positive samples. Then, we require

Z(i,j)€3+ p(%,5)

* precision(b) = I o) I

* recall(b) = Zapent PED)

Py =

Note that maximizing recall for a precision bound is equivalent to reformulation in terms of the
existence of a solution that satisfies the specified precision bound and an arbitrary recall bound.
Given any instance of subset-sum problem with ¢ items , we construct the equivalent decision bound-
ary problem by mapping ittoa (¢ + 1) x 1 grid (i.e., K = ¢t + 1, L = 1 with bins set up as follows.
* n(i,1)=T; p(i,1) = 20T,
e n(i+1,1) =a;; p(i+1,1) = 2eay,

where the parameters o, €, 77 can be chosen to be any set of values that satisfy

_ 2(oc4)T )

. 1 __o
0§‘7§270<6<2(T+1)v77— 7

We prove that the problems are equivalent in the sense that the solution for one can be constructed
from that of the other.

Part 1: Solution to subset sum = Solution to decision boundary

Suppose there is a subset A’ such that Zai e @i = T. Then, consider the boundary b defined as
b(1) = 1 and b(i) = 1[a; ¢ A'], i.e., the positive BT = {(1,1)} J{(¢ + 1,1)|a; € A'}. This leads
to the following precision and recall estimates.

i j p(i,j) 20T +2Y . a; 2 T
precision(b) = Lgent ( ) — 2aicA _2(0+e >0
2ijen+ i) T+ cn i 2T
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i p(i, 20T + 2¢ e 2 T
recall(b) = Z( LJ)EBT (i.J) = 2iaca - (o +¢) =1.
Py &) B

Since this choice of b is a valid boundary satisfying the precision and recall requirements, we have
a solution for the decision boundary problem.

Part 2: Solution to decision boundary =- Solution to subset sum

Let us assume we have a solution for the decision boundary, i.e., we have a boundary b with
precision(b) > o and recaﬁ)) > 1 respectively. Since the positivity rate of the bin (1,1) is
20T

=%+~ = 20 > o, from Lemma F.1|we observe that the boundary b is such that (1, 1) is in the positive

region of the boundary B+.

Consider the subset A’ = {a;|(i +1,1) € B*}. We will now prove that 3,  ,, = T which makes
it a valid solution for the subset-sum problem.

Suppose that ZaieA, =T >T,ie., T > T+ 1since T is an integer. For this case, we have

sion(b) = Yijyent Pid) 20T 423, cqai 20T + 2T
precsen a Z(i,j)€B+ n(i,j) T+ ZaieA/ a  TH+T

Since € < we have

(T+1)’

20T +2eT" 20T + 527 o7 + A5 g
precision(b) = s AT+ _0'<T+1) = ( _|_T+1)

T+17 - T1T T+1 T+1
T’

T_T+1 (1" -T-1) : /
—_— p— —_— < . >
U<1+ TrT ) a(l (T+1)(T+T’)> <o. {since T" > T+ 1}

In other words, precision(b) < o, which is a contradiction since b is a valid solution to the decision
boundary problem.

Next consider the case where Za,' car =T" < T. Then, we have,

7,7 Pl,j 20’T+26 @ e 20T 2T 25T 2%T
recall(b) = Zigpent PL-J) - 2aiea _ 20T 421" 20T 42T _
PO Po PO PO

This again leads to a contradiction since b is a solution to the decision boundary problem requiring
recall(b) > n. Hence, the only possibility is that Z 4 = T, ie., we have a solution for the
subset-sum problem. Since the subset-sum problem is’ NP hard (Caprara et al., |2000), from the
reduction, it follows that the 2D-BDB problem is also NP-hard. O

G DECISION BOUNDARY ALGORITHMS

Here, we provide additional details on the following proposed algorithms from Sec. [3] that are used
in our evaluation. These are applicable for both variable or equi-weight binning scenarios.

Equi Weight DP-based Multi-Threshold algorithm (EW-DPMT) : We detail the EW-DPMT
(Algorithm |1) ' presented in Sec. I 5|here. Let R(i,m), [i]X, [m]&" denote the maximum true pos-
itives for any decision boundary over the sub-grid with uncertainty levels 1 to ¢ and entire score
range, such that the boundary has exactly m bins in its positive region. Further, let b(i, m, :) denote
the optimal boundary that achieves this maximum with b(i, m, ') denoting the boundary position
for the ¢/(< i) uncertainty level. For the base case when i = 1, there is a feasible solution only for
0 < m < L which is the one corresponding to b(1,m, 1) = L — m, since the score threshold index
for picking m bins in the positive region will be L —m. Now, for the case 7 > 1, we can decompose
the estimation of maximum recall as follows. Let j be the number of bins chosen as part of positive
region from the ‘" uncertainty level, then the budget available for the lower (i — 1) uncertainty
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levels is exactly m — j. Hence, we have, R(i,m) = Or<na<xL[7r(i,j) + R(i — 1,m — j)], where
<<

(i, j) = Zf,:L_jH p(i,J'), i.e., the sum of the positive points in the j highest score bins. The

optimal boundary b(i,m, :) is obtained by setting b(¢,m, i) = L — j* and the remaining thresholds

to that of b(i — 1,m — j*,:) where j* is the optimal choice of j in the above recursion.

Performing this computation progressively for all uncertainty levels and positive region bin bud-
gets yields maximum recall over the entire grid for each choice of bin budget. This is equivalent
to obtaining the entire PR curve and permits us to pick the optimal solution for a given precision
bound. Since the bin-budget can go up to K L and the number of uncertainty levels is K, the number
of times the maximum recall optimization is invoked is K2L. The optimization itself explores L
choices, each being a O(1) computation since the cumulative sums of positive bins can be computed
progressively. Hence, the overall algorithm has O(K?2L?) time complexity and K2 L storage com-
plexity. Algorithm [[EQUI-WEIGHT DP-BASED MULTI-THRESHOLDS (EW-DPMT) shows steps
for computing the optimal 2D-decision boundary. Note that if a solution is required for a specific
precision bound o, then complexity can be reduced by including all contiguous high score bins with
positivity rate > o since those will definitely be part of the solution (Lemma [F.T)).

Variable Weight DP-based Multi-Threshold algorithm (VW-DPMT) As discussed in Sec. [5] the
general case of the 2D-BDB problem with variable-sized bins is NP-hard, but it permits a pseudo-
polynomial solution using a dynamic programming approach. Similar to the equi-weight DP algo-
rithm EW-DPMT, we track the maximum recall solutions of sub-grids up to i uncertainty level
with a budget over the number of positive samples.

Let RV (¢, m) denote the maximum true positives for any decision boundary over the sub-grid with
uncertainty levels 1 to 7 and the entire score range such that the boundary has exactly m samples in
its positive region. We can then use the decomposition,

R™"(i,m) = Og@&[ﬂi) + R (i = 1,m —v(j))],

o L . . L .
where 7(i, j) = > 25 _p s p(, ") and v(i, j) =3 5 . n(i, J).

Algorithm [] provides details of the implementation assuming a dense representation for the matrix
RY“" (Eqn. |G) that tracks all the maximum true positive (i.e., unnormalized recall) solutions for sub-
grids up to different uncertainty levels and with a budget on the number of samples assigned to the
positive region. For our experiments, we implemented the algorithm using a sparse representation
for R"“" that only tracks the feasible solutions.

Greedy Multi-Thresholds (GMT) Algorithm 2]provides the details of this greedy approach where
we independently choose the score threshold for each uncertainty level. Since all the score bin
thresholds are progressively evaluated for each uncertainty level, the computational time complexity
is O(K L) and the storage complexity is just O(K). However, this approach can even be inferior
to the traditional approach of picking a single global threshold on the score, which is the case cor-
responding to a single uncertainty level. ST algorithm can be viewed as a special case of GMT
algorithm where only one uncertainty level is considered (i.e. K = 1).

Multi Isotonic regression Single Threshold (MIST) As mentioned earlier, the isotonic regression-
based approach involves performing isotonic regression (Barlow & Brunkl|1972) on each uncertainty
level to get calibrated scores that are monotonic with respect to the score bin index. Bins across the
entire grid are then sorted based on the calibrated scores and a global threshold on the calibrated
score that maximizes recall while satisfying the desired precision bound is picked. In our imple-
mentation, we use the isotonic regression implementation is scikit—learn, which has linear
time in terms of the input size for Ly loss (Stout,|2013)). Since the sorting based on calibrated scores
is the most time consuming part, this algorithm has a time complexity of O(K Llog(K L)) and a
storage complexity of O(K L). For our experiments, we performed isotonic regression for each of
the K uncertainty levels directly using the samples instead of the aggregates at L score bins. When
the K uncertainty bins are equi-weight, this is essentially the case where L = N/ K.
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Algorithm 2 Greedy Decision Boundary - Multiple Score Thresholds [GMT]

Input: Variable-sized K x L grid with positive sample counts [p(7, j)] x x 1, and total sample counts
[n(i, 7)] k x 1, overall sample count N, precision bound o.
Output: (unnormalized) recall R* and corresponding boundary b* for precision > o with greedy
approach.
Method:
// Pre-computation of cumulative sums of positives
fori =1to K do
7m(i,0) =0
v(i,0) =0
for j =1to Ldo
71—(7’7]) = ﬂ—(ivj - 1) +p(27L - J + 1)
v(i,j)=v(i,j—1)+n(i,L—j+1)
end for
end for
// Initialization
R=0
// Independent Greedy Score Thresholds
fori =1to K do
jf=  argmax  [n(i,j)]
0<5<L, s.t.%za
bi) = j°
R=R+n(i,j*)
end for
R* =R, b*=b(:)
return (R*,b*)
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Algorithm 3 Greedy Decision Boundary - Global Threshold on Score Recalibrated with Isotonic
Regression [MIST]

Input: Variable-sized K x L grid with positive sample counts [p(i, j)] k- x . and total sample counts
[n(i, 7)] k x 1, overall sample count N, precision bound o.
Output: (unnormalized) recall R* and corresponding boundary b* for precision > ¢ with greedy
approach.
Method:
// Recalibrate each row using isotonic regression
for i =1to K do
[s7°0(i, j)] -, = ISOTONICREGRESSION([(p(i, ), n(i, )],
end for
// Get a global threshold on calibrated score
// rank is descending order 0 to maxrank - low rank means high positivity
[rank(i, j)]x <. = SORT((s%*°(i, )] xcx )
mazrank = max rank(i,j)
[ BE
m(0) =0,v(0) =0
r=20
repeat
r=r+1 '
m(r) =7(r = 1) + 26 )) rank(ig)=rls" (6 3)n(i, j)]
V(T) = V(T - 1) + Z(i,j)| rank:(i,j):'r’[n(i’j)]

until ((:é:; < o)V (r > maxrank)

r*=r—1
// Obtain score thresholds for different uncertainty levels
R=0

for: = 1to K do
if {j|rank(i,j) > r*} = () then
Jr=1L
else
j*= argmin [j]
jlrank(i,j)>r*
end if
bi) = j*
for j = 57"+ 1to Ldo
R=R+p(,j)
end for
end for
R* =R, b*=b(:)
return (R*, b*)
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Algorithm 4 Optimal Decision Boundary for Variable-Weight Bins [VW-DPMT]

Input: Variable-sized K x L grid with positive sample counts [p(7, j)] x x 1, and total sample counts
[n(i, 7)] k x 1, overall sample count N, precision bound o.
Output: maximum (unnormalized) recall R* and corresponding optimal boundary b* for precision

> 0.
Method:
// Initialization
R(i,m) = —o0; b(i,m,i') = =1; [i], [I']f, [m]d")

// Pre-computation of cumulative sums of positives
fori=1to K do
7(i,0) =0
v(i,0) =0
for j =1to Ldo
V(Zvj) = V(ivj - 1) + TL(Z,L - J + 1)
end for
end for
// Base Case: First Uncertainty Level
for j =0to L do
m = v(1,j)
R(1,m) ==(1,})
b(l,m,1)=L—j
end for
// Decomposition: Higher Uncertainty Levels
fori=2to K do
form =0to > ;,_, N“m(:3) do
J* =argmax[r(i,7) + R(i — 1,m — v(i,7))]
0<j<L
R(i,m) =n(i,5%) + R(i — 1,m — v(i,5%))
b(iama :) = b(Z - lam - V(iaj*)7 :)
b(i,m,i) =L — j*

end for
end for
// Maximum Recall for Precision
m* = argmax [R(K,m)]

0<m<KL s.t. 2 > 5
R* = R(K,m*); b* = b(K, m*,:)
return (R*, b*)

H EXTENSION OF RESULTS TO OTHER SETTINGS

We briefly discuss the possibility of extending our results to broader settings.

H.1 GENERAL PRIORS AND UNCERTAINTY MODELING.

The primary objective of the analysis in Sec. [3] was to demonstrate that there is a systemic depen-
dence of model score estimation bias on uncertainty for common scenarios. In our current work, we
characterise this relationship (Theorems and @]) for the case where (i) the data is generated as
per Fig. 2] with global Beta distribution prior, and (ii) the estimation of model score and uncertainty
is performed using Posterior Network.

Note that the first part of the result, i.e., the relationship between the expectation of test and true
conditional class probabilities conditioned on the train positive class probability holds true indepen-
dent of (ii). The second part of the result, which is the relationship with model score depends on the
choice of uncertainty modeling approach (ii).

When the first condition(i) does not hold, i.e., it becomes intractable to obtain an equivalent
closed form result. However, for a global unimodal prior (not necessarily a Beta distribution), the
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expectation of test and true conditional class probabilities conditioned on the train positive class
probability is still shifted away from the train distribution in the direction of the global prior since
the posterior distribution of the true positivity conditioned on the train positivity combines the
effects of the evidence (train positivity) and the global prior.

H.2 MULTI-CLASS CLASSIFICATION.

In our current work, we focused on binary classification . However, the analysis in Sec. [3]on the
relationship between model score estimation bias and uncertainty (Theorems [3.1] and [E.4] ) readily
generalize to a multi-class classification with more than two classes when the data generation in
Figure [2]uses a global Dirichlet prior instead of Beta prior with a fixed re-sampling policy. For such
scenario, one can derive the expectation of true and test conditional class probabilities conditioned
on the train conditional class probabilities using Bayes law. As before, when the modeling and
uncertainty estimation is based on Posterior Networks, we can obtain the relationship with respect to
the model’s conditional class probabilities. Intuitively, the true and test conditional class probability
distribution diverges from the corresponding train distribution in the direction of the global prior
with the magnitude of divergence determined by the strength of evidence, which correlates with
models’ epistemic uncertainty.

On the other hand, generalization of the decision-making strategy to more than two classes is some-
what non-trivial since the notion of decision boundary becomes more complex in the case of more
than two classes and requires characterization of the objective function that the decision boundaries
are meant to optimize. One possible formulation that suits many real-world applications is to define
the decision boundaries so as to maximize micro-average recall with an overall or class-wise pre-
cision bounds. Monotone operators over the conditional probability distributions that also combine
uncertainty-based discriminating signals is a possible research direction to explore. Previous works
based on set predictions (Mortier et al., 2021} /Angelopoulos et al.,2021)) also attempt to address this
problem scenario but without explicit use of uncertainty estimates.
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I NOTATIONS

Table 8: Notations used within the paper and their definitions.

Definition

an input instance or region

target label for an input sample x

set of class labels {0, 1}

index over the labels in C

index iterating over integers in {lb,--- ,ub}

Estimation Bias and Posterior Network Related

H{(q(x))

Beta(ao, 011)

Parameters of Beta distribution ¢(x) for class C

P
C

C

Be(x)
N,

z(x)

Probability distribution

Distribution over class posterior at x output by
Posterior Network

differential entropy of distribution ¢(x)

Beta distribution with parameters ag, aq . (X)

Parameters of Model prior for class C

Parameters of True prior for class C

Pseudo counts for class C

observed counts for class C

penultimate layer representation from the model
parameters of normalizing flow in Posterior Net-
works

Uncertainty for x

Model score for positive class

true positivity in input region x

empirical positivity in the train set for input region
X

empirical positivity in the test set for input region
X

differential sampling rate for negaatives

evidence at input region x given by 3 (x) + f2(x)
positive class fraction in global prior

positive class fraction in model prior

ratio of global priors to evidence

ratio of model priors to evidence

ratio of global priors to model priors

distribution of true positivity conditioned on a
fixed train positivity rate

Decision Boundary Related

|

Data split for training the model, calibrating the
decision boundary and testing

decision boundary defined in terms of score and
uncertainty thresholds

labeling where samples that satisfy boundary
thresholds are positives

decision boundary specified by a score threshold
for a fixed uncertainty level

Range of score values

Range of uncertainty values

Number of uncertainty bins

Number of score bins

Partitioning function that maps score and uncer-
tainty values to bin-index (i, )

Continued on next page
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Table 8 — continued from previous page

Symbol Definition

R(i,m) max. true positives for any boundary upto the "
uncertainty level with
exactly m positive bins in EW-DPMT

b(i,m,:) max. recall boundary for the sub-grid upto uncer-
tainty level ¢, with exactly m positive bins

p(i,7) count of positives in the (4, j)th bin

n(i,7) count of samples in the (z, j)th bin

(1, 7) count of positive samples in the j highest score

bins for uncertainty level ¢
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