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1. Introduction
Sparse autoencoders (SAEs) have recently

emerged as a powerful tool for interpreting the
internal representations of large language mod-
els (LLMs), revealing latent latent features with
semantical meaning [1]. This interpretability has
also proven valuable in biological domains: apply-
ing SAEs to protein language models uncovered
meaningful features related to protein structure
and function [2]. More recently, SAEs have been
used to analyze genomics-focused models such as
Evo 2 [3], identifying interpretable features in gene
sequences. However, it remains unclear whether
SAEs can extract meaningful representations from
small gene language models, which have fewer
parameters and potentially less expressive capacity.
To address it, we propose applying SAEs to the
activations of a small gene language model. We
demonstrate that even small-scale models encode
biologically relevant genomic features, such as
transcription factor binding motifs, that SAEs can
effectively uncover. Our findings suggest that com-
pact gene language models are capable of learning
structured genomic representations, and that SAEs
offer a scalable approach for interpreting gene
models across various model sizes.

2. Methods
To uncover interpretable structures in small gene

language models, we trained sparse autoencoders
(SAEs) on embeddings derived from HyenaDNA-
small-32k [4], a compact gene language model pre-
trained at single-nucleotide resolution on thehuman
reference genome [5]. The overall pipeline is illus-
trated in Figure 1. For training, we extracted latent
representations from the third layer of HyenaDNA-
small-32k using sequences sampled from the human
reference genome, each of length 32k nucleotides.
To prevent model overfitting to specific genomic
contexts, we globally shuffled these activations, en-
suring that representations derived from the same
input sequence were unlikely to appear together in
the same training batch. These processed activa-
tions were then used to train SAEs with an expan-
sion factor of 32×, creating feature dictionaries of
size 8,192. The learning rate was linearly warmed up
over thefirst 5%of training steps and thenfixed at 1e-
6, with an L1 penalty of 0.1 and a batch size of 2,048.
To evaluate whether the resulting sparse features

correspond to biologically meaningful genomic el-
ements, we annotated chromosome 14 with JAS-

PAR transcription factor binding sites (TFBS) [6], ac-
cessed via the UCSC Table Browser [7]. We then ap-
plied quality filtering based on motif frequency and
p-value thresholds to retain high-confidence anno-
tations. To facilitate a direct comparison between
features and annotations, we converted motif-level
annotations into nucleotide-level labels, and used an
activation threshold of 0.15 to determine whether an
SAE feature was activated or not. This allowed us
to systematically assess the alignment between SAE
features and known regulatory elements with met-
rics such as precision, recall, and F1 score, consis-
tentwithmethodologies introduced by InterPLM [2].

3. Results
By applying SAEs to embeddings from

HyenaDNA-small-32k, we successfully identi-
fied sparse features corresponding to individual
nucleotides and biologically relevant transcription
factor binding sites (TFBS). As shown in Figure 3-A,
nucleotide-specific features exhibit high precision,
which indicates that the learned representations are
selective for specific nucleotide identities, although
recall varies. This is consistent with prior findings
from Evo 2 [3]. Figure 2 presents the activation
pattern of feature f/357 across a 500 bp segment
of human chromosome 14. Notably, the activation
peaks consistently align with cytosine positions
throughout the sequence, demonstrating that this
feature has independently learned to recognize this
specific nucleotide.
Beyond nucleotide-level features, we identified

sparse dimensions aligned with known transcrip-
tion factor motifs, as illustrated in Figure 3-B. No-
tably, these factors have well-established biological
roles: MA1596.1 and MA2121.1 belong to the C2H2
zinc finger factor class, which plays crucial roles in
gene regulation. MA0052.5 belongs to the MADS-
box class, known for its involvement in muscle de-
velopment, cell proliferation, and differentiation in
animals. The relatively high precision of these fea-
tures indicates that even compact models capture
transcription factor binding specificity effectively.
Nevertheless, the observed variability in recall high-
lights the inherent complexity and redundancy of
regulatory elements in genomic sequences.
Overall, we demonstrate that small gene language

models encode structured and biologically relevant
representations, spanning both nucleotide composi-
tion and transcription factor binding patterns.
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Fig. 1: Overall pipeline for training SAEs on genomes, followed by identifying biologically relevant features.
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Fig. 2: Activation pattern of feature f/357 across a 500 bp segment of human chromosome 14. Orange peaks
represent activation values, while blue bars indicate cytosine positions starting at position 87,049,332, re-
vealing a strong correlation between the feature and this specific nucleotide.
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Fig. 3: Sparse autoencoders reveal interpretable nucleotide and transcription factor binding site (TFBS) fea-
tures in HyenaDNA-small-32k. (A) Performance metrics for sparse features corresponding to individual nu-
cleotides (A, T, C, G). (B) Metrics for sparse features associated with known TFBSs from JASPAR database [6].
Strand specificity was indicated by the +/-.

4. Conclusion
Our study demonstrates that sparse autoencoders

(SAEs) can extract biologicallymeaningful represen-
tations from small gene language models, reveal-
ing structured features at both the nucleotide and
regulatory element levels. By applying SAEs to em-
beddings from HyenaDNA-small-32k, we identified
sparse dimensions corresponding to individual nu-
cleotides as well as transcription factor binding mo-
tifs, highlighting the ability of compact models to
capture essential genomic features. Future research
could extend this approach to other genomic con-
texts, such as non-coding regions or species-specific
variations, and explore how SAEs could aid model
refinement and interpretability across different ar-

chitectures. Additionally, SAEs could be applied
to other modalities of biological models and data,
such as single-cell gene expression and multi-omics
datasets, to uncover interpretable representations
across diverse biological systems.
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