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A OMITTED RESULTS

A.1 TABLES OF THE EXAMPLE IN SECTION 2

(U,W ) (0, 0) (0, 1) (1, 0) (1, 1)
E[Y |do(A = 0)] 0 0 1 1
E[Y |do(A = 1)] 10 10 0.9 0.9

Table 3: Reward table

(A,W ) (0, 0) (0, 1) (1, 0) (1, 1)
P(A,W ) 0.05 0.05 0.45 0.45

Table 4: Observation probability for agents

A.2 INCORPORATING ESTIMATION ERROR

Since θijk ∈ [0, 1], the variance of one sample is at most 1
4 . If θijk has n i.i.d. samples, then its

largest variance of the known θ̂ijk is 1
4n . We can simply set ε = 1

2
√
n

if n is given. For example, if
one want to reflect the concentration property, then one can choose the truncate Gaussian distribution
N (θ̂x,

1
4nx

) for x = ijk or x = l. If one expects the worst cases, then one can choose the uniform
distribution for θx with discrepancy parameter ε.

A.3 REFERRED ALGORITHMS

Algorithm 4 MC for causal bound

Input: cumulative distribution functions F̂ (a, y, w) and F̂ (u), discrepancy parameter ε, sampling
distribution Fs, batch size B

1: Discrete the variable domain A,Y,W,U
2: Select a linearly independent variable index set S with size nAnYnWnU − nAnYnW − nU + 1

for linear equations (2)
3: Compute each θ̂ijk and θ̂l according to (5)
4: for n = 1, 2 · · · , B do
5: Sample θx from the uniform distribution supported on [max{θ̂x − ε, 0},max{θ̂x + ε, 1}] for

all x = ijk or x = l
6: Sequentially solve LP (4) to find support [lijkl, hijkl] for each xijkl with (i, j, k, l) ∈ S and

sample a value from Fs truncated to [lijkl, hijkl]
7: Solving remaining xijkl by linear equations (2) for all (i, j, k, l) /∈ S
8: Compute the causal effect bn(a) by ÊM[Y |do(a)] for each a
9: For each a, sort B valid causal bound and get b(1)(a), b(2)(a), · · · , b(B)(a)

Output: l(a) = b(1)(a) and h(a) = b(B)(a) for a ∈ A

A.4 REFERRED THEOREMS

Theorem A.1 Given a causal diagram G and a distribution compatible with G, let {W,U} be a set
of variables satisfying the back-door criterion in G relative to an ordered pair (A, Y ), where {W,U}
is partially observable, i.e., only probabilities F̂ (a, y, w) and F̂ (u) with the maximum estimation
error ε, the causal effects of A on Y are then bounded as follows:

l(a0) ≤ E[Y |do(a0)] ≤ h(a0),
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Algorithm 5 Transfer learning in multi-armed bandit

Input: time horizon T , causal bound l(a) and h(a)
1: Remove the arm a for h(a) < maxi∈A l(i) and denote the remaining arm set as A∗
2: Initialize reward vector µ̂a(1) and the number of pull na(1) to zero, for all a ∈ A∗
3: for round t = 1, 2, · · · , T do
4: Compute the upper confidence bound Ua(t) = min{1, µ̂a(t) +

√
2 log T
na(t) }

5: Truncate Ua(t) to Ûa(t) = min{Ua(t), h(a)} for all a ∈ A∗
6: Choose the action at = arg maxa∈A∗ Ûa(t) and observe a reward yt
7: Update the empirical mean µ̂at(t+1) =

µ̂atnat (t)+yt
nat (t)+1 and the number of pulling nat(t+1) =

nat(t) + 1
8: For a 6= at, update µ̂a(t+ 1) = µ̂a(t) and na(t+ 1) = na(t)

Algorithm 6 MC for causal bound with w

Input: cumulative distribution functions F̂ (a, y, w) and F̂ (u), discrepancy parameter ε, sampling
distribution Fs, batch size B

1: Discrete the variable domain A,Y,W,U
2: Select a linearly independent variable index set S with size nAnYnWnU − nAnYnW − nU for

linear equations (2)
3: Compute each θ̂ijk and θ̂l according to (5)
4: for n = 1, 2, · · · , B do
5: Sample θx from the uniform distribution supported on [max{θ̂x − ε, 0},max{θ̂x + ε, 1}] for

all x = ijk or x = l
6: Sequentially solve LP (4) to find support [lijkl, hijkl] for each xijkl with (i, j, k, l) ∈ S and

sample a value from Fs supported on [lijkl, hijkl]
7: Solving remaining xijkl by linear equations (2) for all (i, j, k, l) /∈ S
8: Compute the causal effect bcnt(w, a) by ÊM[Y |do(a), w] for each a and w
9: For each w, a, sort B valid causal bound and get b(1)(w, a), b(2)(w, a), · · · , b(B)(w, a)

Output: l(w, a) = b(1)(w, a) and h(w, a) = b(B)(w, a) for (w, a) ∈ W ×A

where l(a0) and h(a0) are solutions to the following functional optimization problem for any given
a0

l(a0) = inf

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w, u)dF (w, u)

h(a0) = sup

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w, u)dF (w, u)

s.t.

∫
u∈U

dF (a, y, w, u) = F (a, y, w),∀(a, y, w) ∈ A×W × U∫
a∈A,y∈Y,w∈W

dF (a, y, w, u) = F (u),∀u ∈ U∫
y∈Y

dF (a, y, w, u) = F (a,w, u),∀(a,w, u) ∈ A×W × U∫
a∈A

dF (a,w, u)du = F (w, u),∀(w, u) ∈ W × U

F (y|a,w, u)F (a,w, u) = F (a, y, w, u),∀(a, y, w, u) ∈ A× Y ×W × U
|F (a, y, w)− F̂ (a, y, w)| ≤ ε,∀(a, y, w) ∈ A× Y ×W
|F (u)− F̂ (u)| ≤ ε,∀u ∈ U .

Here the inf/sup is taken with respect to all unknown cumulative distribution functions F (a, y, w, u),
F (a,w, u), F (y|a,w, u), F (w, u), F (a, y, w) and F (u).
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Theorem A.2 Consider a |A|-MAB problem with rewards bounded in [0, 1]. For each arm a ∈ A,
its expected reward µa is bounded by [l(a), h(a)]. Then in the Algorithm 5, the number of draws
E[Na(T )] for any sub-optimal arm is upper bounded as:

E[Na(T )] ≤



0, h(a) < max
i∈A

l(i)

π2

6
,max
i∈A

l(i) ≤ h(a) < µ∗

log T

∆2
a

, h(a) ≥ µ∗.

Theorem A.3 Consider a contextual bandit problem with |A| <∞ and |W| <∞. Denote›A∗(x) = A− {a ∈ A|h(x, a) < µ∗w}.

Then the regret of Algorithm 2 satisfies

lim sup
T→∞

E[Reg(T )]√
T log T

≤
∑
w∈W

»
8(|›A∗(w)| − 1)P(W = w).

A.5 IMPLEMENTATION DETAILS OF ALGORITHM 3

In Algorithm 3, one needs to compute F∗ and A∗(w). A naive way costs O(|F|) time complexity,
which becomes inefficient for large |F| and infeasible for infinite |F|. Actually, we can implicitly
compute F∗ by clipping, i.e., using min{max{f̂m(w, a), l(w, a)}, h(w, a)} as the estimator at the
epoch m. As f̂m gets closer to the true reward function f∗, which is within the causal bounds, the
causal bounds gradually lose their constraint effect. For computing A∗(w), we refer readers to the
section 4 of (Foster et al., 2020), where a systematic method for computing A∗(w) within a given
accuracy is provided.

Another option to implement Algorithm 3 is to compute EW [|A∗(W )|] using expert knowledge

F (a, y, w). We can set γt =
√

ηEW [|A∗(W )|]τm−1

log(2δ−1|F∗| log T ) , so that γt remains constant within an epoch. Our
proof still holds for this option, and the regret order is the same as in Theorem 3.3. Intuitively,
|A(wt)| is a sample from an induced distribution with a mean of EW [|A∗(W )|], so on average, the
regrets of both options are of the same order.

It is worth noting that Algorithm 3 and Theorem 3.3 can be easily extended to handle infinite F using
standard learning-theoretic tools such as metric entropy. Suppose F is equipped with a maximum
norm ‖ · ‖. We can consider an ε-covering F∗ε of F∗ under maximum norm. Since |F∗ε | is finite,
we can directly replace F∗ with F∗ε and do not change any algorithmic procedure. Thanks to the
property of ε-covering, there exists a function f∗ε ∈ F∗ε such that ‖f∗ε − f∗‖ ≤ ε. Hence, the regret
can be bounded by

Reg(T ) ≤ 8
»
EW [A∗(W )]T log(2δ−1|F∗ε | log T ) + εT.

By replacing the dependence on log |F∗| in the algorithm’s parameters with log |F∗ε | and setting
ε = 1

T , we obtain a similar result as Theorem 3.3 up to an additive constant of 1.

Definition A.1 ((Fan, 1953)) Let (F , ‖·‖) be a normed space. The set {f1, · · · , fN} is an ε-covering
of F if ∀f ∈ F , there exists i ∈ [N ] such that ‖f − fi‖ ≤ ε. The covering number N(F , ‖ · ‖, ε) is
defined as the minimum cardinality N of the covering set over all ε-coverings of F .

It clear that Reg(T ) scales with
√

logN(F∗, ‖ · ‖, ε). Note that N(F∗, ‖ · ‖, ε) ≤ N(F , ‖ · ‖, ε) as
F∗ ⊂ F . The covering number shows clearly how extra causal bounds help improve the algorithm
performance by shrinking the search space. Let m = infw,a l(w, a) and M = supw,a h(w, a).
These bounds chip away the surface of the unit sphere and scoop out the concentric sphere of radius
m. Therefore, the transfer learning algorithm only needs to search within a spherical shell with a
thickness of at most M −m.
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A.6 NUMERICAL SETUP

Causal bounds. To evaluate the effectiveness of our proposed Algorithm 4, we compare it with the
method proposed by Li and Pearl (2022) when all variables are binary. Specifically, we randomly
generate distributions P(a, y, w), as shown in Table 2, and set P(U = 1) = 0.1. We implement

(A, Y,W ) (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
P(a, y, w) 0.2328 0.1784 0.1351 0.1467 0.0304 0.1183 0.0149 0.1433

Algorithm 4 with a batch size of 20000, and set ε = 0 as Li and Pearl (2022) assume the given
distributions are accurate.

sample space for xijkl valid sample proportion
[0, 1] ≈ 0

[max{0, θijk + θl − 1},min{θijk, θl}] < 10−4

support found by LP(3) 0.3%
Algorithm 4 100%

Table 5: Valid sample proportion with different sample spaces for the given example in Section 4.

Transfer learning in MAB. We perform simulation for 5-armed Bernoulli bandits with proba-
bility 0.1, 0.2, 0.3, 0.6, 0.8. Simulations are partitioned into rounds of T = 105 trials averaged
over 50 repetitions. For each task, we collect 1000 samples generated by a source agent and
compute the empirical joint distribution. The estimated causal bounds without the knowledge of
F (u) (CUCB in Figure 2 (Zhang and Bareinboim, 2017)) are h(a) = 0.9, 0.35, 0.92, 0.96, 0.92,
and l(a) = 0, 0.08, 0.1, 0.3, 0.4. The estimated causal bounds with the knowledge of F (u) are
h(a) = 0.2, 0.25, 0.77, 0.7, 0.9, and l(a) = 0.01, 0.08, 0.19, 0.38, 0.71.

Transfer learning in contextual bandits. We generate a function space F = {(w−w0)>(a−a0)}
with a size of 50 by sampling parameters w0, a0 in Rd from N (0, 0.1), where d = 10. We then
randomly choose a function as the true reward function f∗ from the first 5 functions, and generate the
reward as Y = f∗(W,A) +N (0, 0.1), where the context W is drawn i.d.d. from standard normal
distributions and A is the selected action. The whole action set A is randomly initialized from
[−1, 1]d with a size of 10. We repeat each instance 50 times to obtain a smooth regret curve.

A.7 RELATED WORK

Partially Observable Markov decision process (POMDP), including general partially observable
dynamical systems (Uehara et al., 2022), also shares the similarity with our setting. Researchers
have developed various methods to address causal inference in POMDPs. For example, Guo et al.
(2022) use instrumental variables to identify causal effects, while Shi et al. (2022); Lu et al. (2023)
extend this approach to general proxy variables in offline policy evaluation. In online reinforcement
learning, Jin et al. (2019); Wang et al. (2021) use the backdoor criterion to explicitly adjust for
confounding bias when confounders are fully observable. They also incorporate uncertainty from
partially observable confounders into the Bellman equation and demonstrate provably optimal learning
with linear function approximation in both fully and partially observable tasks. However, due to
the complexity of reinforcement learning, transfer learning in POMDPs with the general function
approximation still remains unknown. In our task 3, we address the problem of partially observable
contextual bandit with the general function approximation under realizability assumption, which
shows the potential to generalize to POMDPs and other related settings.
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B DEFERRED PROOFS

B.1 PROOF OF MENTIONED FACTS

Fact B.1.1 Given a series of known observational distributions F 1, · · · , Fn, consider an optimiza-
tion problem for causal effects:

inf / supCE(M)

F iM = F i, i = 1, · · · , n,

where CE(M) is the desired casual effect and F iM is a distribution in the modelM. Here, the
inf/sup is taken with respect to all compatible causal modelsM. Then, a sufficient and necessary
condition to identify CE(M) is LB = UB, where LB and UB are the lower and upper bound
solutions to the optimization problem.

Proof. If LB = HB, then for any compatible modelM1 andM2, we have

LB = CE(M1) = CE(M2) = UB.

According the definition of causal identification, the required causal effect CE(M) can be fully
identified.

On the contrary, suppose CE(M) is causal identifiable. Then for any compatible model pairM1

andM2, we have CE(M1) = CE(M2). Traveling over all compatible models immediately yields

LB = CE(M1) = CE(M2) = UB.

�

Fact B.1.2 During discretization, equality constraints in Theorem A.1 are automatically satisfied in
the sense of integration.

Proof. The first constraint has been checked.

For the second equality, we integrate over Ul and have∫
u∈Ul

dF (u)du

=

∫
a∈A,y∈Y,w∈W,u∈Ul

dF (a, y, w, u)du

=
∑
ijk

∫
a∈Ai,∈Yj ,w∈Wk,u∈Ul

dF (a, y, w, u)du

=
∑
ijk

xijkl.

Hence, the second equality constraint holds in the sense of integration.

For the third and the fourth equality constrains, we can do integration over corresponding blocks and
check the equality in the same way.

The conditional distribution in the fifth equality can be approximated by xijkl. See details in the
proof of approximating objective ÊM[Y |do(a)].

�

Fact B.1.3 The object in Theorem A.1 after discretization is approximately equal to ÊM[Y |do(a)].

Proof. We use the average values to approximate distributions at certain points. First, we only need
to consider the value ∫

y∈Yj ,w∈Wk,u∈Ul
y
dF (a, y, w, u)dF (w, u)

dF (a,w, u)
,
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as summing over j, k, l can yield the object.

Suppose the given a ∈ Ai and let vol(·) denote the volume of the given block. For the values of
distributions in Ai × Yj ×Wk × Ul, we have

dF (a, y, w, u) ≈ dadydwdu

vol(Ai)vol(Yj)vol(Wk)vol(Ul)

∫
a∈Ai,y∈Yj ,w∈Wk,u∈Ul

dF (a, y, w, u)

=
xijkldadydwdu

vol(Ai)vol(Yj)vol(Wk)vol(Ul)
,

dF (a,w, u) ≈ dadwdu

vol(Ai)vol(Wk)vol(Ul)

∫
a∈Ai,w∈Wk,u∈Ul

dF (a,w, u)

=
dadwdu

vol(Ai)vol(Wk)vol(Ul)

∫
a∈Ai,y∈Y,w∈Wk,u∈Ul

dF (a, y, w, u)

=

∑
j′ xij′kldadwdu

vol(Ai)vol(Wk)vol(Ul)
,

dF (w, u) ≈ dwdu

vol(Wk)vol(Ul)

∫
w∈Wk,u∈Ul

dF (w, u)

=
dwdu

vol(Wk)vol(Ul)

∫
a∈A,y∈Y,w∈Wk,u∈Ul

dF (a, y, w, u)

=

∑
i′,j′ xi′j′kldwdu

vol(Wk)vol(Ul)
.

Plugging all above equalities yields∫
y∈Yj ,w∈Wk,u∈Ul

y
dF (a, y, w, u)dF (w, u)

dF (a,w, u)

≈
xijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl

∫
y∈Yj ,w∈Wk,u∈Ul

=
xijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl

∫
y∈Yj ,w∈Wk,u∈Ul

ydydydu/vol(Yj)vol(Wk)vol(Ul)

≈
yjxijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl
.

If yj is chosen to be
∫
y∈Yj

ydy∫
y∈Yj

dy
, then the last symbol of approximation can be replaced with the symbol

of equal. If Yj is an interval, yj can be chosen as the midpoint of Yj . �

The step of approximating dF is crucial in reducing the approximation error. For absolutely continu-
ous cumulative distribution functions, the approximation error will converge to zero as the diameter
of each block approaches zero. Furthermore, if all random variables are discrete, the approximation
error can be exactly zero when using the natural discretization. In this case, the original objective can
be expressed as ∑

y∈Y,w∈W,u∈U
y
P(A = a, Y = y,W = w,U = u)P(W = w,U = u)

P(A = a,W = w,U = u)
.

Our discretization method can be regarded as approximating probability mass functions.

Fact B.1.4 If the estimator θ̂x for θx ∈ [0, 1] has nx i.i.d. samples, then the variance of θ̂x is at most
1

4nx
.

Proof. Since θ2
x ≤ θx, then

V ar(θx) = E[θ2
x]− (E[θx])2 ≤ E[θx]− (E[θx])2 ≤ 1

4
.
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Hence, we have

V ar(θ̂x) =
1

nx
V ar(θx) ≤ 1

4nx
.

�

B.2 PROOF OF THEOREM A.1

Proof. Since W and U satisfies the back-door criterion, we can condition on W,U to identify the
causal effect E[Y |do(a0)] We have

E[Y |do(a0)] =

∫
w∈W,u∈U

E[Y |do(a0), w, u]dF (w, u)

=

∫
w∈W,u∈U

E[Y |a0, w, u]dF (w, u)

=

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w, u)dF (w, u).

The equalities come from the normalization properties of distribution functions. The inequalities
come from the estimation error. �

B.3 PROOF OF CONVERGENCE RESULTS OF ALGORITHM 4

We first prove the following lemma to show that our sampling algorithm can cover all values in the
feasible region D. We denote the truncated distribution to [l, h] from the user-given distribution Fs
when xi is given in sequential LPs as Fs(x|xi, [l, h]).

Lemma B.1 The Algorithm 7 induces a distribution on the given simplex D.

Proof. We need to prove the sample generated by Algorithm 7 can exactly cover the region of D. On
the one hand, for any output x, the feasibility of each component of x indicates that x must lie in D.
On the another hand, for any x̂ ∈ D, we show that this point can be generated by solving sequential
LPs. Since x̂ ∈ D, x̂ is a feasible solution to the first LP

min /maxx1

s.t.Ax ≤ b,x ≥ 0.

One can check the feasibility of x̂ in the following LPs

min /maxxi

s.t.Ax ≤ b,x ≥ 0

x1 = x̂1, · · · , xj = x̂j , j = 1, 2, · · · , i− 1,

because x̂ ∈ D and the previous i components are exactly equal to those of x̂.

Suppose that the number of components of x̂ is d. Then the induced distribution is

F (x̂) = Fs(x1|[l1, h1])

d∏
i=2

Fs(xi|[li, hi], xj , j = 1, 2, · · · , i− 1).

�

We now give the proof for Proposition B.1.

Proposition B.1 Assume that the sampling measure Ps satisfies ∀x ∈ D, and ∀δ > 0,

Ps(B(x, δ) ∩ D) > 0,

where B(x, δ) is a ball centered at x with radius δ. If the discrepancy parameter is set to 0, then
b(1)(a) converges to l̂(a) in probability and b(B)(a) converges to ĥ(a) in probability for B →∞.
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Proof. The discretization optimization problem (6) has one-to-one correspondence between x and
each causal model where all random variables are discrete. From Lemma B.1, we know the one-to-one
correspondence between each model and x. Therefore, [l̂(a), ĥ(a)] is the support of the induced
distribution on casual bounds.

As shown in ÊM[Y |do(a)], the object can be regarded as a function of x. We define φ =

ÊM[Y |do(a)] which is a continuous mapping from D to [0, 1]. The continuity of φ is clear for∑
j′xij′kl > 0. When

∑
j′ xij′kl = 0, the non-negativity of xijkl implies

∑
i′,j′ xi′j′kl = 0. In this

case, we can set the value of
yjxijkl

∑
i′,j′ xi′j′kl∑

j′ xij′kl
to be 0 to maintain continuity.

Given that D is a compact set, there exists xl such that φ(xl) = l̂(a). The continuity indicates that
∀ε > 0, there exists δ > 0 such that φ(x) < l̂(a) + ε for all x ∈ B(xh, δ), then

P(b(a) < l̂(a) + ε) = Ps

Ñ ⋃
b<l̂(a)+ε

{x ∈ D|φ(x) = b}

é
≥ Ps(B(xh, δ)) > 0.

This implies that

P(b(1)(a) < l̂(a) + ε) = 1− (1− P(b(a) < l̂(a) + ε))B → 1

as B →∞. Since b(1)(a) is a feasible solution to the discrete optimization problem, we have

P(l̂(a) ≤ b(1)(a) < l̂(a) + ε) = 1− (1− P(b(a) < l̂(a) + ε))B → 1

which implies b(1)(a)→ l̂(a) in probability.

Similarly, we can prove that P(b(B)(a) > ĥ(a)− ε) < 1 and thus b(B)(a)→ ĥ(a) in probability.

�

Proof. The one-to-one correspondence between x and each causal model has been proved in
Lemma B.1. Therefore, [l̂(a), ĥ(a)] is the support of the induced distribution on casual bounds. As
shown in the proof of Proposition B.1, the defined φ = ÊM[Y |do(a)] is a continuous mapping from
D to [0, 1].

Given that D is a compact set, there exists xl such that φ(xl) = l̂(a). The property of OPT implies
that there exists δ > 0 such that

OPT(min/max, ÊM[Y |do(a)],D,x) = xl,∀x ∈ B(xl, δ) ∩ D.
Hence, we have

P(b(a) = l̂(a)) ≥ Ps(B(xl, δ) ∩ D) > 0.

Due to Borel-Cantelli lemma we can prove that b(1)(a)→ l̂(a) almost surely, because each bi(a) is
independently sampled by Algorithm 1. Similarly, we can prove that b(B)(a)→ ĥ(a) almost surely.

�

B.4 PROOF OF REGRETS IN MAB

We first prove Theorem A.2.

Proof. Case 1: h(a) < maxi∈A l(i)

From the algorithmic construction, we know that such arm a is removed and thus

E[Na(T )] = 0.

Case 2: maxi∈A l(i) ≤ h(a) < µ∗.

Let a∗ = arg maxa∈A E[Y |do(a)] be the optimal action with respect to w. Define the following
event

E(t) =

ß
µ̂a ∈ [µa −

log t

na(t)
, µa +

log t

na(t)
],∀a ∈ A

™
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Then the Chernoff’s bound yields

P(E(t)) ≤
∑
a∈A

exp(−2na(t)× log t

na(t)
) ≤ |A|

t2

For any given w, the event {At = a} implies Ûa(t) > Ûa∗(t). However,

µ∗ > h(a) ≥ Ûa(t)

and
Ûa∗(t) ≥ µ∗

if E(t) holds. This leads to contradiction. Therefore,

E[Na(T )] =

T∑
t=1

P(At = a)

=

T∑
t=1

P(At = a|E(t))P(E(t)) + P(At = a|E(t))P(E(t))

≤
T∑
t=1

P(E(t))

≤
T∑
t=1

|A|
t2

≤ |A|π
2

6
.

Case 3: h(a) ≥ µ∗

We reuse the notation E(t) in the case 2. Condition on the event
⋂T
t=1 E(t), if na(t) ≥ 8 log T

∆2
a

, then

Ûa(t) ≤ Ua(t) = µa +

 
2 log t

na(t)
≤ µa +

1

2
∆a = µ∗ ≤ Ûa∗(t),

so Algorithm 2 will not choose the action a at the round t. Therefore,

E[Na(T )] ≤ E

[
Na(T )

∣∣∣∣ T⋂
t=1

E(t)

]
+ TP

Ñ
T⋂
t=1

E(t)

é
≤ 8 log T

∆2
a

+ TP

Ñ
T⋃
t=1

E(t)

é
.

We conclude the proof by showing

TP

(⋃
t=1

E(t)

)
≤ T

T∑
t=1

|A|
t2

< T × |A|
T

= |A|.

�

Actually, the proof is just a simple modification of that in Theorem 3.1, because MAB can be regarded
as a special case of contextual bandits.

Theorem B.1 Consider a MAB bandit problem with |A| <∞. Denote›A∗ = A− {a ∈ A|h(a) < µ∗}.

Then the regret of Algorithm 5 is upper bounded by

E[Reg(T )] ≤
»

8(|›A∗(w)| − 1)T log T .

20



Under review as a conference paper at ICLR 2024

Proof. Theorem A.2 shows that

E[Reg(T )] =
∑
a∈A

∆aE[Na(T )]

≤
∑
a∈Ã∗

8 log T

∆a
I {∆a ≥ ∆}+ T∆ +O(|A|)

≤ 8(|›A∗| − 1) log T

∆
+ T∆ +O(|A|).

Specifying ∆ =

√
8(|Ã∗|−1) log T

T concludes the proof. �

Denote the contextual bandit instances with prior knowledge l(a) and h(a) as
M = {MAB bandit instances with l(a) ≤ µa ≤ h(a),∀a ∈ A}.

Theorem B.2 Suppose |A| <∞. Then for any algorithm A, there exists an absolute constant c > 0
such that

min
A

sup
M

Reg(T ) ≥ 1

27

»
(|›A∗| − 1)T .

Proof. This is a direct corollary of MAB regret lower bound, because any arm in›A∗ cannot be the
optimal one. �

B.5 OMITTED THEOREMS IN TASK 3

From the rule of do-calculus, we have

E[Y |do(a), w] =

∫
u∈U

E[Y |do(a), w, u]dF (u)

=

∫
u∈U

E[Y |a,w, u]dF (u).

The last equality is due to the rule of do-calculus as W and U is sufficient to block all back-door
paths from A to Y .

Theorem B.3 Given a causal diagram G and a distribution compatible with G, let {W,U} be a set
of variables satisfying the back-door criterion in G relative to an ordered pair (A, Y ), where {W,U}
is partially observable, i.e., only probabilities F̂ (a, y, w) and F̂ (u) with the maximum estimation
error ε, the causal effects of A = a0 on Y when W = w0 occurs are then bounded as follows:

l(w0, a0) ≤ E[Y |do(a0), w0] ≤ h(w0, a0),

where l(w0, a0) and h(w0, a0) are solutions to the following functional optimization problem for any
given a0 and w0

l(w0, a0) = inf

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w0, u)dF (u)

h(w0, a0) = sup

∫
w∈W,u∈U

∫
y∈Y

ydF (y|a0, w0, u)dF (u)

s.t.F (y|a,w, u)F (a,w, u) = F (a, y, w, u),∀(a, y, w, u) ∈ A× Y ×W × U∫
y∈Y

dF (a, y, w, u) = F (a,w, u),∀(a,w, u) ∈ A×W × U∫
a∈A,y∈Y,w∈W

dF (a, y, w, u) = F (u),∀u ∈ U∫
u∈U

dF (a, y, w, u) = F (a, y, w),∀(a, y, w) ∈ A×W × U

|F (a, y, w)− F̂ (a, y, w)| ≤ ε,∀(a, y, w) ∈ A× Y ×W
|F (u)− F̂ (u)| ≤ ε,∀u ∈ U .
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Here the inf/sup is taken with respect to all unknown cumulative distribution functions F (a, y, w, u),
F (a, y, w), F (a,w, u), F (u).

Proof. The object is shown at the beginning of this subsection. The equalities come from the
normalization properties, and inequalities follow from estimation error. �

Denote the following optimization problem

max /min ÊM[Y |do(a), w]∑
l

xijkl = θijk,∀i ∈ [nA], j ∈ [nY ], k ∈ [nW ]∑
ijk

xijkl = θl,∀l ∈ [nU ].

(8)

where the objective ÊM[Y |do(a), w] after discretization is defined as

ÊM[Y |do(a), w] =
∑
jkl

yjθlxijkl∑
j′ xij′kl

. (9)

Denote the solutions to (8) as l̂(w, a) and ĥ(w, a). Note that the optimization problem (7) shares the
same feasible region with that of (1).

Proposition B.2 Assume that the sampling measure Ps satisfies ∀x ∈ D, and ∀δ > 0,
Ps(B(x, δ) ∩ D) > 0,

where B(x, δ) is a ball centered at x with radius δ. If the discrepancy parameter is set to 0, then
b(1)(w, a) converges to l̂(w, a) in probability and b(B)(w, a) converges to ĥ(w, a) in probability for
any given (w, a) and B →∞.

Proof. As shown in ÊM[Y |do(a), w], the object can also be regarded as a function of x. We define
φ = ÊM[Y |do(a), w] which is a continuous mapping from D to [0, 1]. The continuity of φ holds
similarly.

Given that D is a compact set, there exists xl such that φ(xl) = l̂(w, a). The continuity indicates
that ∀ε > 0, there exists δ > 0 such that φ(x) < l̂(w, a) + ε for all x ∈ B(xh, δ), then

P(b(w, a) < l̂(w, a) + ε) = Ps

Ñ ⋃
b<l̂(w,a)+ε

{x ∈ D|φ(x) = b}

é
≥ Ps(B(xh, δ)) > 0.

This implies that

P(b(1)(w, a) < l̂(w, a) + ε) = 1− (1− P(b(w, a) < l̂(w, a) + ε))B → 1

as B →∞. Since b(1)(a) is a feasible solution to the discrete optimization problem, we have

P(l̂(w, a) ≤ b(1)(w, a) < l̂(w, a) + ε) = 1− (1− P(b(w, a) < l̂(w, a) + ε))B → 1

which implies b(1)(w, a)→ l̂(w, a) in probability.

Similarly, we can prove that P(b(B)(w, a) > ĥ(w, a) − ε) < 1 and thus b(B)(w, a) → ĥ(w, a) in
probability.

�

We can also incorporate the optimization procedure OPT. Replacing the objective ÊM[Y |do(a)] in
Algorithm 1 with ÊM[Y |do(a), w], we can also prove the similar almost surely convergence result.

Proposition B.3 Assume that the sampling measure Ps satisfies ∀x ∈ D, and ∀δ > 0,
Ps(B(x, δ) ∩ D) > 0,

where B(x, δ) is a ball centered at x with radius δ. Given a deterministic procedure OPT which
satisfies for any local optima xloc, there exists δ > 0 such that for any initial guess x0 ∈ B(xloc, δ)∩
D, OPT can output xloc as a result. If the discrepancy parameter is set to 0, then b(1)(w, a) and
b(B)(w, a) converge almost surely to l̂(w, a) and ĥ(w, a) for B →∞, respectively.
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Proof. The one-to-one correspondence between x and each causal model has been proved in
Lemma B.1. Therefore, [l̂(w, a), ĥ(w, a)] is the support of the induced distribution on casual bounds.
As shown in the proof of Proposition B.1, the defined φ = ÊM[Y |do(a), w] is a continuous mapping
from D to [0, 1].

Given that D is a compact set, there exists xl such that φ(xl) = l̂(w, a). The property of OPT
implies that there exists δ > 0 such that

OPT(min/max, ÊM[Y |do(a)],D,x) = xl,∀x ∈ B(xl, δ) ∩ D.

Hence, we have
P(b(w, a) = l̂(w, a)) ≥ Ps(B(xl, δ) ∩ D) > 0.

Due to Borel-Cantelli lemma we can prove that b(1)(w, a) → l̂(w, a) almost surely, because each
bi(w, a) is independently sampled by Algorithm 1. Similarly, we can prove that b(B)(w, a)→ ĥ(w, a)
almost surely.

�

B.6 PROOF OF THEOREM 3.1

Proof. We consider any given w in the following proof.

Case 1: h(w, a) < maxi∈A l(w, i)

From the algorithmic construction, we know that such arm a is removed and thus

E[Na(Tw)] = 0.

Case 2: maxi∈A l(w, i) ≤ h(w, a) < µ∗w.

Let a∗w = arg maxa∈A E[Y |do(a), w] be the optimal action with respect to w. Define the following
event

Ew(t) =

ß
µ̂w,a ∈ [µw,a −

log t

nw,a(t)
, µw,a +

log t

nw,a(t)
],∀a ∈ A

™
Then the Chernoff’s bound yields

P(Ew(t)) ≤
∑
a∈A

exp(−2nw,a(t)× log t

nw,a(t)
) ≤ |A|

t2

For any given w, the event {At = a} implies Ûw,a(t) > Ûw,a∗w(t). However,

µ∗w > h(w, a) ≥ Ûw,a(t)

and
Ûw,a∗w(t) ≥ µ∗w

if Ew(t) holds. This leads to contradiction. Therefore,

E[Na(Tw)] =

Tw∑
t=1

P(At = a|wt = w)

=

Tw∑
t=1

P(At = a|wt = w, Ew(t))P(Ew(t)) + P(At = a|wt = w, Ew(t))P(Ew(t))

≤
Tw∑
t=1

P(Ew(t))

≤
Tw∑
t=1

|A|
t2

≤ |A|π
2

6
.
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Case 3: h(w, a) ≥ µ∗w
We reuse the notation Ew(t) in the case 2. Condition on the event

⋂Tw
t=1 Ew(t), if nw,a(t) ≥ 8 log Tw

∆2
w,a

,
then

Ûw,a(t) ≤ Uw,a(t) = µw,a +

 
2 log t

nw,a(t)
≤ µw,a +

1

2
∆w,a = µ∗w ≤ Ûw,a∗w(t),

so Algorithm 2 will not choose the action a at the round t. Therefore,

E[Na(Tw)] ≤ E

[
Na(Tw),

Tw⋂
t=1

Ew(t)

]
+ TwP

Ñ
Tw⋂
t=1

Ew(t)

é
≤ 8 log Tw

∆2
w,a

+ TwP

Ñ
Tw⋃
t=1

Ew(t)

é
.

We conclude the proof by showing

TwP

Ñ
Tw⋃
t=1

Ew(t)

é
≤ Tw

Tw∑
t=1

|A|
t2

< Tw ×
|A|
Tw

= |A|.

�

B.7 PROOF OF THEOREM A.3

Proof. Let ∆w be the constant with respect to w that we will specify later. From the proof of
Theorem 3.1, we know that the expected regret can be upper bounded as

E[Reg(T )] =
∑
w∈W

∑
a∈A

∆w,aE[Na(Tw)]

≤
∑
w∈W

Ñ ∑
a∈Ã∗(w)

8 log Tw
∆w,a

I {∆w,a ≥ ∆w}+ T∆w

é
+O(|A|)

≤
∑
w∈W

Ç
8(|›A∗(w)| − 1) log T

∆w
+ Tw∆w

å
+O(|A|).

We select ∆w =

√
8fi|A∗(w)| log T

Tw
so

E[Reg(T )] ≤
∑
w∈W

»
8(|›A∗(w)| − 1)Tw log T .

By strong law of large numbers, we have

lim inf
T→∞

E[Reg(T )]√
T log T

≤
∑
w∈W

 
8(|›A∗(w)| − 1) lim inf

T→∞

Tw
T

=
∑
w∈W

»
8(|›A∗(w)| − 1)P(W = w).

�

Proof. Consider |W|MAB instances. For any given context w, the set that the optimal arm will be
in is A∗(w). For any algorithm A, let Aw be the induced algorithm of A when w occurs. From the
minimax theorem for MAB instances (Lattimore and Szepesvári, 2020), we know that there exists a

MAB instance for each w such that the regret of Aw is at least 1
27

»
(|›A∗(w)| − 1)Tw, where Tw is

the number of occurrence of w. Hence,

Reg(T ) ≥
∑
w∈W

1

27

»
(|›A∗(w)| − 1)Tw.
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and almost surely,

lim inf
T→∞

Reg(T )√
T
≥ 1

27

∑
w∈W

 
(|›A∗(w)| − 1) · lim inf

T→∞

Tw
T

=
1

27

∑
w∈W

»
(|›A∗(w)| − 1)P(W = w).

�

B.8 PROOF OF THEOREM 3.3

The framework presented in (Simchi-Levi and Xu, 2021; Foster et al., 2020) provides a method to
analyze contextual bandit algorithms in the universal policy space Ψ. In this paper, we mainly focus
on a subspace of Ψ shaped by causal bounds. We demonstrate that the action distribution pm selected
in Algorithm 3 possesses desirable properties that contribute to achieving low regrets.

For each epoch m and any round t in epoch m, for any possible realization of γt, f̂m, we define the
universal policy space of Ψ:

Ψ =
∏
w∈W

A∗(w).

With abuse of notations, we define

R(π) = EW [f∗(W,π(W ))] and Reg(π) = R(πf∗)−R(π).

The above quantities do not depend on specific values of W . The following empirical version of
above quantities are defined as“Rt(π) = f̂m(t)(w, π(w)) and‘Regt(π) = EW [“Rt(πf̂m(t)

)− “Rt(π)],

where m(t) is the epoch of the round t.

Let Qm(·) be the equivalent policy distribution for pm(·|·), i.e.,

Qm(π) =
∏
w∈W

pm(π(w)|w),∀π ∈ Ψ.

The existence and uniqueness of such measure Qm(·) is a corollary of Kolmogorov’s extension
theorem. Note that both Ψ and Qm(·) are Hτm−1-measurable, where Ht is the filtration up to the
time t. We refer to Section 3.2 of (Simchi-Levi and Xu, 2021) for more detailed intuition for Qm(·)
and proof of existence. By Lemma 4 of (Simchi-Levi and Xu, 2021), we know that for all epoch m
and all rounds t in epoch m, we can rewrite the expected regret in terms of our notations as

E[Reg(T )] =
∑
π∈Ψ

Qm(π)Reg(π).

For simplicity, we define an epoch-dependent quantities

ρ1 = 1, ρm =

…
ητm−1

log(2δ−1|F∗| log T )
,m ≥ 2,

so γt =
√
|A∗(wt)|ρm(t) for m(t) ≥ 2.

Lemma B.2 (Implicit Optimization Problem). For all epoch m and all rounds t in epoch m, Qm is
a feasible solution to the following implicit optimization problem:∑

π∈Ψ

Qm(π)‘Regt(π) ≤ EW [
»
|A∗(W )|]/ρm (10)

EW
ï

1

pm(π(W )|W )

ò
≤ EW [A∗(W )] + EW [

»
|A∗(W )|]ρm‘Regt(π),∀π ∈ Ψ. (11)
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Proof. Let m and t in epoch m be fixed. Denote P(W) as the context distribution. We have∑
π∈Ψ

Qm(π)‘Regt(π)

=
∑
π∈Ψ

Qm(π)Ewt
î
(f̂m(wt, πf̂m(wt))− f̂m(wt, π(wt)))

ó
=Ewt∼P(W)

 ∑
a∈A∗(wt)

∑
π∈Ψ

I {π(wt) = a}Qm(π)(f̂m(wt, πf̂m(wt))− f̂m(wt, a))


=Ewt∼P(W)

 ∑
a∈A∗(wt)

pm(a|wt)(f̂m(wt, πf̂m(wt))− f̂m(wt, a))

 .
The first and second equalities are the definitions of‘Regt(π) and Qm(π), respectively.

Now for the context wt, we have∑
a∈A∗(wt)

pm(a|w)(f̂m(wt, πf̂m(wt))− f̂m(wt, a))

=
∑

a∈A∗(wt)−{πf̂m (wt)}

f̂m(wt, πf̂m(wt))− f̂m(wt, a)

|A∗(wt)|+ γt(f̂m(wt, πf̂m(wt))− f̂m(wt, a))

≤ [|A∗(wt)| − 1]/γt

≤
»
|A∗(wt)|/ρm.

We plug in the above term and apply the i.d.d. assumption on wt to conclude the proof of the first
inequality.

For the second inequality, we first observe that for any policy π ∈ Ψ, given any context w ∈ W ,

1

pm(π(w)|w)
= |A∗(w)|+ γt(f̂m(w, πf̂m(w))− f̂m(w, a)),

if a 6= πf̂m(w), and

1

pm(π(w)|w)
≤ 1

1/|A∗(w)|
= |A∗(w)|+ γt(f̂m(w, πf̂m(w))− f̂m(w, a)),

if a = πf̂m(w). The result follows immediately by taking expectation over w. �

Compared with IOP in (Simchi-Levi and Xu, 2021), the key different part is that EW [|A∗(W )|]
is replaced by the cardinality |A| of the whole action set. Another different part is the universal
policy space Ψ. We define Ψ as

∏
w∈W A∗(w) rather than

∏
w∈W A. These two points highlight the

adaptivity to contexts and show how causal bound affects the action selection.

Define the following high-probability event

Γ =

{
∀m ≥ 2,

1

τm−1

τm−1∑
t=1

Ewt,at [(f̂m(t)(wt, at)− f∗(wt, at))2|Ht−1] ≤ 1

ρ2
m

}
.

The high-probability event and its variants have been proved in literatures (Foster et al., 2018; Simchi-
Levi and Xu, 2021; Foster et al., 2020). Our result is slightly different from them as the whole
function space is eliminated to F∗. Since these results share the same form, it is straightforward to
show Γ holds with probability at least 1− δ/2. This is the result of the union bound and the property
of the Least Square Oracle that is independent of algorithm design.

Our setting do not change the proof procedure of the following lemma (Simchi-Levi and Xu, 2021),
because this lemma does not explicitly involve the number of action set. This lemma bounds the
prediction error between the true reward and the estimated reward.
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Lemma B.3 Assume Γ holds. For all epochs m > 1, all rounds t in epoch m, and all policies π ∈ Ψ,
then ∣∣∣“Rt(π)−Rt(π)

∣∣∣ ≤ 1

2ρm

Ã
max

1≤m′≤m−1
EW

[
1

pm′(π(W )|W )

]
.

The third step is to show that the one-step regret Regt(π) is close to the one-step estimated regret‘Regt(π). The following lemma states the result.

Lemma B.4 Assume Γ holds. Let c0 = 5.15. For all epochs m and all rounds t in epoch m, and all
policies π ∈ Ψ,

Reg(π) ≤ 2‘Regt(π) + c0
»
EW [A∗(W )]/ρm, (12)‘Regt(π) ≤ 2Reg(π) + c0
»
EW [A∗(W )]/ρm, . (13)

Proof. We prove this lemma via induction on m. It is easy to check

Reg(π) ≤ 1,‘Regt(π) ≤ 1,

as γ1 = 1 and c0EW
[
A∗(W )

]
≥ 1. Hence, the base case holds.

For the inductive step, fix some epoch m > 1 and assume that for all epochs m′ < m, all rounds t′ in
epoch m′, and all π ∈ Ψ, the inequalities (12) and (13) hold. We first show that for all rounds t in
epoch m and all π ∈ Ψ,

Reg(π) ≤ 2‘Regt(π) + c0
»

EW [A∗(W )]/ρm.

We have

Reg(π)−‘Regt(π)

=[R(πf∗)−R(π)]− [“Rt(πf̂m)− “Rt(π)]

≤[R(πf∗)−R(π)]− [“Rt(πf∗)− “Rt(π)]

≤|R(πf∗)− “Rt(πf∗)|+ |R(π)− “Rt(π)|

≤ 1

ρm

Ã
max

1≤m′≤m−1
EW

[
1

pm′(πf∗(W )|W )

]
+

1

ρm

Ã
max

1≤m′≤m−1
EW

[
1

pm′(π(W )|W )

]

≤
max

1≤m′≤m−1
EW

[
1

pm′ (πf∗ (W )|W )

]
5ρm

√
EW [A∗(W )]

+

max
1≤m′≤m−1

EW

[
1

pm′ (π(W )|W )

]
5ρm

√
EW [A∗(W )]

+
5
√

EW [A∗(W )]

8ρm
.

The last inequality is by the AM-GM inequality. There exists an epoch i such that

max
1≤m′≤m−1

EW

[
1

pm′(π(W )|W )

]
= EW

[
1

pi(π(W )|W )

]
.

From Lemma B.2 we know that

EW

[
1

pi(π(W )|W )

]
≤ EW [A∗(W )] + EW [

»
|A∗(W )|]ρi‘Regt(π),

holds for all π ∈ Ψ, for all epoch 1 ≤ i ≤ m− 1 and for all rounds t in corresponding epochs.
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Hence, for epoch i and all rounds t in this epoch, we have

max
1≤m′≤m−1

EW

[
1

pm′ (π(W )|W )

]
5ρm

√
EW [A∗(W )]

=

EW

[
1

pi(πf∗ (W )|W )

]
5ρm

√
EW [A∗(W )]

, (Lemma B.2:(13))

≤EW [A∗(W )] + EW [
√
|A∗(W )|]ρi‘Regt(π)

5
√
EW [A∗(W )]ρm

, (inductive assumption)

≤EW [A∗(W )] + EW [
√
|A∗(W )|]ρi[2Reg(π) + c0

√
EW [A∗(W )]/ρi]

5
√
EW [A∗(W )]ρm

, (Jensen’s inequality)

≤EW [A∗(W )] +
√
EW [|A∗(W )|]ρi[2Reg(π) + c0

√
EW [A∗(W )]/ρi]

5
√
EW [A∗(W )]ρm

, (ρi ≤ ρm for i ≤ m)

≤2

5
Reg(π) +

1 + c0
5ρm

»
EW [|A∗(W )|].

We can bound

max1≤m′≤m−1 EW

[
1

p
m′ (π(W )|W )

]
5ρm
√

EW [A∗(W )]
in the same way.

Combing all above inequalities yields

Reg(π)−‘Regt(π) ≤2(1 + c0)
√

EW [A∗(W )]

5ρm
+

4

5
‘Regt(π) +

5
√

EW [A∗(W )]

8ρm

≤‘Regt(π) + (
2(1 + c0)

5
+

5

8
)

√
EW [A∗(W )]

ρm

≤‘Regt(π) + c0

√
EW [A∗(W )]

ρm
.

Similarly, we have ‘Regt(π)−Reg(π)

=[“Rt(πf̂m)− “Rt(π)]− [R(πf∗)−R(π)]

≤[“Rt(πf̂m)− “Rt(π)]− [R(πf̂m)−R(π)]

≤|R(πf̂m)− “Rt(πf̂m)|+ |R(π)− “Rt(π)|.

We can bound the above terms in the same steps.

�

Proof. Our regret analysis builds on the framework in (Simchi-Levi and Xu, 2021).

Step 1: proving an implicit optimization problem for Qm in Lemma B.2.

Step 2: bounding the prediction error between “Rt(π) andRt(π) in Lemma B.3. Then we can show
that the one-step regrets‘Regt(π) and Reg(π) are close to each other.

Step 3: bounding the cumulative regret Reg(T ).

By Lemma 4 of (Simchi-Levi and Xu, 2021),

E[Reg(T )] =

T∑
t=1

∑
π∈Ψ

Qm(t)(π)Reg(π).
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From Lemma B.4, we know

Reg(π) ≤ 2‘Regt(π) + c0
»

EW [A∗(W )]/ρm

so

E[Reg(T )] =

T∑
t=1

∑
π∈Ψ

Qm(t)(π)Reg(π)

≤2

T∑
t=1

∑
π∈Ψ

Qm(t)(π)‘Regt(π) +

T∑
t=1

c0
»

EW [A∗(W )]/ρm(t)

≤(2 + c0)
»

EW [A∗(W )]

T∑
t=1

1

ρm(t)

≤(2 + c0)
»
EW [A∗(W )]

dlog Te∑
m=1

»
log(2δ−1|F∗| log T )τm−1/η

≤(2 + c0)
»

EW [A∗(W )]

dlog Te∑
m=1

»
log(2δ−1|F∗| log T )τm−1/η

≤(2 + c0)

Ã
EW [A∗(W )] log(2δ−1|F∗| log T )

dlog Te∑
m=1

τm−1/η

≤(2 + c0)
»

EW [A∗(W )] log(2δ−1|F∗| log T )T/η.

�

B.9 PROOF OF THEOREM 3.2

Proof. We first consider |W| <∞. Since the agent have knowledge about causal bound, any function
in F − F∗ can not be the true reward function. For any given context w, the set that the optimal
arm will be in is A∗(w). For any algorithm A, let Aw be the induced algorithm of A when w occurs.
Namely, the agent has access to a function space Fw = {f(w, ·)|∀f ∈ F∗} and an action set A∗(w).

From the minimax theorem 5.1 in (Agarwal et al., 2012), we know that there exists a contextual
bandit instance such that the regret of Aw is at least

√
A∗(w)Tw log |Fw| =

√
A∗(w)Tw log |F∗|,

where Tw is the number of occurrence of w. Hence,

Reg(T ) ≥
∑
w∈W

»
|A∗(w)|Tw log |F∗|

≥
 ∑
w∈W

|A∗(w)|Tw log |F∗|.

and almost surely,

lim inf
T→∞

Reg(T )√
T
≥
√∑
w∈W

|A∗(w)| log |F∗| · lim inf
T→∞

Tw
T

=

 ∑
w∈W

|A∗(w)| log |F∗|P(W = w)

=
»
EW [|A∗(W )|] log |F∗|.

Now assume |W| = ∞. Thanks to Glivenko-Cantelli theorem, the empirical distribution con-
verges uniformly to the true reward distribution. We conclude the proof by applying the dominated
convergence theorem and the Fubini’s theorem, because A∗(w) is uniformly bounded by |A|.

�
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C RELATED MATERIALS

Definition C.1 (Back-Door Criterion) Given an ordered pair of variables (X,Y ) in a directed
acyclic graph G, a set of variables Z satisfies the back-door criterion relative to (X,Y ), if no node
in Z is a descendant of X , and Z blocks every path between X and Y that contains an arrow into X .

Definition C.2 (d-separation) In a causal diagram G, a path P is blocked by a set of nodes Z if and
only if

1. P contains a chain of nodes A ← B ← C or a fork A → B ← C such that the middle
node B is in Z (i.e., B is conditioned on), or

2. P contains a collider A ← B → C such that the collision node B is not in Z, and no
descendant of B is in Z.

If Z blocks every path between two nodes X and Y , then X and Y are d-separated conditional on
Z, and thus are independent conditional on Z.

If X is a variable in a causal model, its corresponding intervention variable IX is an exogenous
variable with one arrow pointing into X . The range of IX is the same as the range of X , with one
additional value we can call “off”. When IX is off, the value of X is determined by its other parents
in the causal model. When IX takes any other value, X takes the same value as IX , regardless of
the value of X’s other parents. If X is a set of variables, then IX will be the set of corresponding
intervention variables. We introduce the following do-calculus rules proposed in (Pearl, 2009).

Rule 1 (Insertion/deletion of observations)

P(Y|do(X),Z,W) = P(Y|do(X),W)

if Y and IZ are d-separated by X ∪W in G∗, the graph obtained from G by removing all arrows
pointing into variables in X.

Rule 2 (Action/observation exchange)

P(Y|do(X), do(Z),W) = P(Y|do(X),Z,W)

if Y and IZ are d-separated by X ∪Z ∪W in G†, the graph obtained from G by removing all arrows
pointing into variables in X and all arrows pointing out of variables in z.

Rule 3 (Insertion/deletion of actions)

P(Y|do(X), do(Z),W) = P(Y|do(X),W)

if Y and IZ are d-separated by X ∪W in G∗, the graph obtained from G by removing all arrows
pointing into variables in X.

D SAMPLING ON GENERAL SIMPLEX

We generalize the sampling method for general simplex D

Ax ≤ b,x ≥ 0.

in Algorithm 7. Without loss of generality, we always assume D is not empty.

E CONCLUSIONS

In this paper, we investigate transfer learning in partially observable contextual bandits by converting
the problem to identifying or partially identifying causal effects between actions and rewards. We
derive causal bounds with the existence of partially observable confounders using our proposed
Monte-Carlo algorithms. We formally prove and empirically demonstrate that our causally enhanced
algorithms outperform classical bandit algorithms and achieve orders of magnitude faster convergence
rates.
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Algorithm 7 A sampling algorithm for the given simplex

Input: a simplex D, a sampling distribution Fs supported on [0, 1]
1: Denote the number of components of x as d
2: Solving the following LP

min /maxx1

Ax ≤ b,x ≥ 0.

to find the bound [l1, h1] for x1

3: Sample a value x̂1 from the truncated Fs supported on [l1, h1]
4: for i = 2, · · · , d do
5: Solving the follow LP

min /maxxi

Ax ≤ b,x ≥ 0

xj = x̂j , j = 1, · · · , i− 1.

to find the bound [li, hi] for x1

6: Sample a value x̂i from the truncated Fs supported on [li, hi]

Output: a valid sample x̂ = (x̂1, · · · , x̂d) ∈ D

There are several future research directions we wish to explore. Firstly, we aim to investigate
whether the solutions to discretization optimization converge to those of the original problem. While
the approximation error can be exactly zero when all referred random variables are discrete, it is
still unclear which conditions for general random variables and discretization methods can lead to
convergence. We conjecture that this property may be related to the sensitivity of the non-linear
optimization problem.

Lastly, we aim to extend our IGW-based algorithm to continuous action settings. IGW has been
successfully applied to continuous action settings and has shown practical advantages in large action
spaces. This extension may be related to complexity measures in machine learning.
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