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ABSTRACT
With the rise of immersive media applications such as digital mu-
seums, virtual reality, and interactive exhibitions, point clouds, as
a three-dimensional data storage format, have gained increasingly
widespread attention. The massive data volume of point clouds im-
poses extremely high requirements on transmission bandwidth in
the above applications, gradually becoming a bottleneck for immer-
sive media applications. Although existing learning-based point
cloud compression methods have achieved specific successes in
compression efficiency by mining the spatial redundancy of their
local structural features, these methods often overlook the intrin-
sic connections between point cloud data and other modality data
(such as image modality), thereby limiting further improvements in
compression efficiency. To address the limitation, we innovatively
propose a view-guided learned point cloud geometry compression
scheme, namely ViewPCGC. We adopt a novel self-attention mech-
anism and cross-modality attention mechanism based on sparse
convolution to align the modality features of the point cloud and the
view image, removing view redundancy through Modality Redun-
dancy Removal Module (MRRM). Simultaneously, side information
of the view image is introduced into the Conditional Checkboard
Entropy Model (CCEM), significantly enhancing the accuracy of the
probability density function estimation for point cloud geometry. In
addition, we design a View-Guided Quality Enhancement Module
(VG-QEM) in the decoder, utilizing the contour information of the
point cloud in the view image to supplement reconstruction details.
The superior experimental performance demonstrates the effective-
ness of our method. Compared to the state-of-the-art point cloud
geometry compression methods, ViewPCGC exhibits an average
performance gain exceeding 10% on D1-PSNR metric.

CCS CONCEPTS
• Theory of computation→ Data compression.

KEYWORDS
Point Cloud, Geometry Compression, Multimodal Learning, Deep
Learning

1 INTRODUCTION
As 3D data acquisition technology progresses swiftly, point clouds
have emerged as a crucial format for 3D data. They are widely used
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in various fields such as digital museums [3, 41], virtual reality
[1, 12], 3D reconstruction [7, 26, 50], cultural heritage preservation
[31, 39], andmedical imaging [38, 42]. In contrast to 2D data (such as
images), point clouds have become indispensable due to their ability
to describe objects in the physical world more accurately. However,
high-quality point cloud data often comes with a huge volume
of data, posing significant challenges to storage and transmission.
Therefore, efficient point cloud geometry compression technology
is particularly important.

In fact, point cloud geometry compression methods have de-
veloped rapidly in the past decade. Before 2020, research in the
field primarily focused on optimizing the MPEG standardized point
cloud compression method G-PCC [15]. G-PCC is well known
for its excellent compatibility and standardization across differ-
ent application scenarios and platforms. Nonetheless, the advent
of learning-based point cloud compression techniques has ampli-
fied the limitations of G-PCC concerning the performance of point
cloud geometry compression. Researchers’ attention has shifted
towards deep learning-based approaches. In the early stages, numer-
ous point-based methods [14, 17, 19, 48] are developed for object
point clouds. These methods perform excellently when dealing
with simple structures and fewer points, such as ShapeNet [5], but
their performance degrades with dense point clouds due to the mas-
sive number of points and poor compression effects. Subsequently,
researchers design voxel-based methods [29, 30, 45] targeting the
spatial structure of dense point clouds. Point clouds are discretely
depicted as three-dimensional grids, enabling more efficient stor-
age and processing of point cloud data. However, the extensive
spatial scale of dense point clouds results in many voxels being
unoccupied, leading to spatial wastage and significantly affecting
computational efficiency. In order to address the shortcoming, some
studies [43, 44, 47] reduce the computational complexity by em-
ploying sparse convolution [9], which significantly improved the
compression efficiency of learning-based models in dense point
cloud geometry.

However, the above learning-based models usually extract fea-
tures from the intrinsic geometric structure of the point cloud,
reducing spatial redundancy through successive downsampling.
Although they effectively utilize the intrinsic attributes of point
clouds, they often overlook the potential insights gained from ex-
ternal views. Compared to point clouds, the bit cost of the view
image during transmission is almost negligible. Such view image
can provide additional contextual information, which is not eas-
ily visible from the point clouds alone, leading to more efficient
compression. In light of this, we propose View-Guided Learned
Point Cloud Geometry Compression (ViewPCGC) in this paper.
The core of this framework is the use of view information to assist
in point cloud compression. By leveraging self-attention and cross-
attention mechanisms based on sparse convolution, we designed
Modal Redundancy Reduction Module (MRRM) to eliminate the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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redundancy between modalities. In the entropy model, we adopt
a conditional entropy model, introducing side information of the
view hyperprior as context for point cloud encoding, making the
probability estimation of entropy parameters more accurate. At the
end of the decoder, to fully utilize the view information, we design
a quality enhancement network that further uses the structural
information of the view to restore local details of the point cloud.

The contributions of our proposed method can be summarized
as follows:

• We propose a View-Guided Learned Point Cloud Geome-
try Compression (ViewPCGC) framework by utilizing view
information. To the best of our knowledge, it is the first
work to leverage modality information from the projected
view in deep learning-based object point cloud geometry
compression.

• Modality Redundancy Removal Module (MRRM) is crafted
to eliminate redundancy across modalities, aiming for an
enhanced compression ratio. Specifically, it harnesses both
self-attention and cross-attention mechanisms, which are
built upon sparse convolution, to facilitate a more effective
fusion of information across channels and modalities.

• Conditional Checkboard Entropy Model (CCEM) is engi-
neered to uncover the interdependencies among modalities.
It employs the side information from the latent representa-
tion of view images as a prior for estimating the probability
of entropy parameters, which significantly enhances the
compression efficiency.

• View-Guided Quality Enhancement Module (VG-QEM) is
designed to leverage the structural information of the view
for the purpose of restoring local details in the point cloud,
which significantly preserves the edge features and geo-
metric integrity of the point cloud, maintaining its detailed
structure and quality.

• Experimental results demonstrate that ViewPCGC achieves
state-of-the-art performance when compared to existing
point cloud geometry compression methods.

2 RELATEDWORK
2.1 Learning-based Point Cloud Compression
Over recent years, the field of deep learning has seen significant
growth, leading to an increased number of learning-based meth-
ods in point cloud geometry compression. According to the data
structure, the leading point cloud geometry compression frame-
works can be classified into three main types: point-based methods,
octree-based methods, and voxel-based methods. Point-based meth-
ods draw inspiration from works like PointNet [33] and PointNet++
[34], utilizing 3D convolutional networks to primarily extract fea-
tures from point clouds and restore them at the decoding end. Yan
et al. [48] introduce the first learning-based point cloud compres-
sion framework, defining a series of optimization paradigms for
this field. Gao et al. [14] employ graph convolutional methods to
construct local graphs for the neighbors of each point and asso-
ciate attributes, performing well on the ShapeNetCorev2 dataset
[5]. He et al. [17] focus more on modeling local representations,
learning three types of feature embeddings to encode local geomet-
ric features effectively, thus efficiently solving the point clustering

problem. The research on point-based methods primarily targets
datasets with fewer point cloud points, such as ShapeNet [5]. With
the expansion of the point cloud size, the temporal and spatial com-
plexity of these methods escalates rapidly. Octree-based methods
address the spatial sparsity of lidar point clouds by recursively
partitioning the three-dimensional space into progressively smaller
regions to organize the point cloud data. Huang et al. [18] pioneer
the first octree-based learned point cloud compression framework,
devising an entropy model based on octree to forecast symbol prob-
abilities. Fu et al. [13] apply a large-scale transformer structure,
utilizing the prior information of sibling and ancestor nodes, which
enhances the probability prediction capability of the entropy model
and achieves significant performance breakthroughs. Song et al.
[40] design grouped contexts, which greatly accelerate the encoding
and decoding time of the model without sacrificing performance.
Voxel-based methods encode continuous three-dimensional space
into regular, discrete grids, demonstrating strong adaptability for
dense object point clouds that occupy a smaller spatial scale but
have a larger number of points. PCGCv1 [45] is a representative
work in the field, which voxelizes the point cloud geometry and
feeds it into a variational autoencoder for sampling. It replaces the
traditional MSE loss with a binary cross-entropy loss based on oc-
cupancy grids. Building on PCGCv1, PCGCv2 [44] employs sparse
convolution to further eliminate the vast spatial redundancy of
point clouds, achieving a compact representation and significantly
improving Rate-Distortion (RD) performance. SparsePCGC [43]
designs multiple groups context strategies, further enhancing en-
coding performance. Despite the emergence of numerous efficient
point cloud geometry compression methods, these methods are all
striving to harness the spatial redundancy inherent in point clouds,
overlooking the gains from other modality information on point
clouds, which also makes performance improvements in recent
point cloud geometry compression work challenging.

2.2 Multimodal Compression
Multimodal compression aims to enhance data compression ef-
ficiency by fusing diverse data types. The core advantage of the
method lies in its ability to leverage the complementary information
among different modalities, thus achieving a higher compression ra-
tio than single-modality compression. To date, image compression
has witnessed the emergence of an extensive array of multimodal
compression schemes across its various subfields. In stereo image
compression, Liu et al. [24] are the first to propose a learning-based
stereo image compression network that uses a parameter skip func-
tion to remove modality redundancy between two views. Although
the performance improvement is not significant, it lays the founda-
tion for subsequent research. Deng et al. [10] utilize a homography
matrix to apply a transformation from the left view to the right view
and obtained performance gains based on residual encoding. Zhang
et al. [51] propose CAMSIC, introducing a novel content-aware
masking image modeling technique and adopting a transformer-
based entropy model to capture spatial and disparity dependencies,
achieving a performance breakthrough.

In RGB-X image compression, Chen et al. [8] use a prior fusion
method to extract multiscale information from the encoder and
decoder, fusing cross-modality features to assist in the generation
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Figure 1: The overall network architecture of ViewPCGC. "DIS" denotes a composite module that encompasses downsampling,
an Inception-Residual Network (inherited from [44]), and a sparse self-attention (SSA) module. Conversely, the "UIS" module
parallels "DIS" in structure but diverges by substituting downsampling with upsampling processes. "MRRM" is an acronym
for Modality Redundancy Removal Module. The abbreviations "Conv" and "SConv" refer to 2D convolution for image data
and 3D sparse convolution for point cloud data, respectively. "CCEM" represents Conditional Checkerboard Entropy Model.
"RFD" and "RFU" are acronyms for residual feature downsampling and upsampling. "VG-QEM" denotes View-Guided Quality
Enhancement Module. "Q" denotes Quantization. "AE" and "AD" are arithmetic encoder and decoder, while "OE" and "OD" are
octree encoder and decoder.

of depth maps. Lu et al. [25] design a multimodal compression
framework that uses learnable parameters to perform affine trans-
formations, converting the latent features of infrared features into
RGB features and aggregating the features to achieve efficient mul-
timodal compression. Zheng et al. [52] introduce intra-modality
attention and cross-modality attention, effectively eliminating re-
dundancy between modalities and significantly enhancing com-
pression performance. In text-guided image compression, Jiang et
al. [21] address issues such as blurriness and loss of detail at low
bitrates by using text as semantic prior information to guide image
compression, significantly enhancing compression quality at low
bitrates. Qin et al. [35] leverage the CLIP text encoder, integrat-
ing text-level semantic details into image decoding to enhance the
compression process.

In the field of point cloud geometry compression, attention is in-
creasingly attracted towards the utilization of view information. Lin
et al. [23] introduce a pioneering multimodal compression frame-
work specifically designed for lidar point clouds. This innovative
approach leverages depth estimation techniques to reconstruct 3D
scene information from 2D images. The reconstructed scene infor-
mation is then systematically aligned with different levels within
an octree structure, aiding in the accurate estimation of symbol
probability densities.

From the analysis above, we can infer that current multimodal
compression works are primarily concentrated in the image com-
pression domain, with multimodal compression targeting point
clouds being exceedingly rare. This scarcity is attributed to the
highly sparse and irregular characteristics of point cloud data,
which make it challenging to effectively extract and utilize high-
level abstract semantic features, thereby limiting the ability to align
information with other modalities. The work proposed by Lin et
al. [23] presents one of the few multimodal compression endeav-
ors involving point clouds and images. However, this work fails
to adequately address modal redundancy, which in turn limits the

potential for notable performance improvements. Therefore, in the
current field of point cloud geometric compression, particularly
for dense object geometries, there is an urgent need for targeted
multimodal compression works.

3 METHODOLOGY
3.1 Overview
The overall architecture of ViewPCGC is depicted in Fig. 1. The
network is innovatively designed with a dual-branch structure. It
integrates a framework based on sparse convolution to compress
point cloud data, while utilizing a local attention module to ex-
tract features from images. The original point cloud 𝑥𝑝 and the
corresponding view image 𝑥𝑣 are fed into the encoder. Here, 𝑥𝑝 is
subjected to downsampling and feature aggregation through DIS,
while 𝑥𝑣 undergoes downsampling and residual feature extraction
via RFD. Subsequently, the latent representations of both modal-
ities are fed into the MRRM for modality interaction, effectively
reducing the redundancy in the point cloud modality. Following
the encoding process, we obtain the latent representations for the
point cloud, 𝑦𝑝 , and the view image, 𝑦𝑣 . The 𝑦𝑝 is then divided
into the coordinate component, 𝑦𝑝𝑐 , and the feature component,
𝑦𝑝𝑓 , to facilitate further compression. Both 𝑦𝑝𝑓 and 𝑦𝑣 are directed
to the quantizers, while 𝑦𝑝𝑐 undergoes octree-based compression
through OE and OD. The quantized latent representations for the
point cloud features, 𝑦𝑝𝑓 , and the image, 𝑦𝑣 , are then input into
CCEM for precise symbol probability estimation. On the decoder
side, 𝑦𝑝𝑓 and 𝑦𝑝𝑐 are concatenated to obtain 𝑦𝑝 , which is used
for point cloud feature reconstruction. Both 𝑦𝑝 and 𝑦𝑣 are then
processed through UIS and RFU, respectively, for upsampling and
feature restoration. Finally, the VG-QEM is utilized to enhance
the geometry structure and finer details of the point cloud further,
thereby yielding the reconstructed point cloud 𝑥𝑒𝑝 . We designate the
encoder, split operation, quantizer, concat operation, and decoder
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with the symbols 𝐸 (·), 𝑆𝑝𝑙𝑖𝑡 (·), 𝑄 (·),𝐶𝑎𝑡 (·), and 𝐷 (·), respectively.
The primary inference process, excluding the entropy model, is

Figure 2: The architecture of MRRM and sparse cross-
attention (SCA). "Reshape" represents the mapping of im-
age features to two-dimensional tensors matching the point
cloud feature dimensions, and "Linear" stands for the fully
connected layer. "RB" indicates the residual block. "SRB"
represents the sparse residual block. "ReLU" stands for the
Rectified Linear Unit. "Sigmoid" is the Sigmoid function.

succinctly represented as follows:
𝑦𝑝 , 𝑦𝑣 = 𝐸 (𝑥𝑝 , 𝑥𝑣),

𝑦𝑝𝑐 , 𝑦𝑝𝑓 = 𝑆𝑝𝑙𝑖𝑡 (𝑦𝑝 ),
𝑦𝑝𝑓 , 𝑦𝑣 = 𝑄 (𝑦𝑝𝑓 , 𝑦𝑣),

𝑦𝑝 = 𝐶𝑎𝑡 (𝑦𝑝𝑐 , 𝑦𝑝𝑓 ),
𝑥𝑒𝑝 = 𝐷 (𝑦𝑝 , 𝑦𝑣).

(1)

To clearly describe the details of each module, we illustrate the
detailed structures of certain modules (including DIS, UIS, RFD,
RFU, SSA) in the Supplementary Materials. It should be emphasized
that due to the massive volume of point cloud data, we adopt linear
residual mechanism in place of non-local attention mechanism [46],
which significantly improves the inference speed while essentially
maintaining consistent performance.

3.2 Modality Redundancy Removal Module
In the encoder and decoder stages, we utilize the MRRM to elimi-
nate modal redundancy. The framework of the MRRM is shown in
Fig. 2. MRRM contains two branches, each receiving the input latent
representations of the point cloud 𝑓𝑝 and the image 𝑓𝑣 , respectively.
For point cloud processing, SRB is used to obtain aggregated point
cloud features 𝑓 ∗𝑝 , while RB is employed on the image side to attain
extracted image features 𝑓 ∗𝑣 . Subsequently, the features extracted
from both are input into sparse cross-attention (SCA) to get the
output point cloud latent representation 𝑓 ′𝑝 . Similar to sparse self-
attention (SSA), we adopt the residual mechanism instead of scale
dot-product attention to accelerate the inference process. Within
SCA, the latent representation of the image is reshaped into a two-
dimensional tensor 𝑓 𝑠𝑣 that resembles the sparse tensor feature
structure. Through continuous linear layer transformations, chan-
nel dimension alignment is achieved. The Sigmoid function maps
image features to a mask 𝑓𝑚𝑣 with values ranging from [0, 1], which
is then used to weight the extracted point cloud latent representa-
tion 𝑓 𝑒𝑥𝑝 . 𝑓 𝑒𝑥𝑝 is obtained from 𝑓 ∗𝑝 through consecutive SRBs and

SConv. The final output is the point cloud latent representation
𝑓 ′𝑝 , which have undergone modality interaction. The processing of
SCA can be summarized as:

𝑓 ′𝑝 = 𝑓 𝑒𝑥𝑝 ∗ 𝑓𝑚𝑣 + 𝑓 ∗𝑝
with 𝑓𝑚𝑣 = 𝜎

(
𝐹𝐿

(
𝑓 𝑠𝑣
) )
,

(2)

where 𝜎 (·) represents the Sigmoid function, and 𝐹𝐿 (·) encompass
the continuous linear layers. After the application of SCA, we con-
catenate 𝑓 ′𝑝 with 𝑓 ∗𝑝 along the channel dimension. The concate-
nation facilitates the feature fusion, resulting in a refined latent
representation denoted as 𝑓 𝑟𝑝 . Subsequently, the latent mask𝑚𝑝

is derived by mapping 𝑓 𝑟𝑝 to the weight domain, which serves to
selectively emphasize certain region within the point cloud latent
representation. Finally, we remove the redundant information from
the input point cloud feature 𝑓𝑝 . The above processing procedure
of MRRM can be formulated as:

𝑓 𝑜𝑢𝑡𝑝 = 𝑓𝑝 − 𝑓 𝑟𝑝 ∗𝑚𝑝

with 𝑚𝑝 = 𝜎

(
𝐹𝑝

(
𝑓 𝑟𝑝

))
,

(3)

where 𝐹𝑝 (·) is composed of two consecutive sparse convolution
layers. After a thorough examination of the various components of
MRRM and their interactions, it is evident that MRRM enhances
the expressive capability of point cloud features through effective
feature fusion and the elimination of redundant modality informa-
tion, which is particularly crucial in complex point cloud geometry
compression tasks.

3.3 Conditional Checkboard Entropy Model
Previous point cloud geometry compression methods typically
model the latent representation directly [43, 44] or employ ba-
sic side information in the hyperprior network to aid probability
prediction [36]. Such methods, however, encounter limitations in
acquiring sufficient prior information, which in turn impacts the
capacity to to predict symbol probabilities accurately. VoxelDNN
[29] aims to address these limitations by employing an autoregres-
sive context prediction method similar to those utilized in image
compression [27], effectively harnessing spatial information from
the adjacent neighborhood. Despite this advancement, the method
suffers from exceedingly prolonged decoding time, rendering it
impractical for direct model deployment. In response to these chal-
lenges, we introduce the Conditional Checkboard Entropy Model
(CCEM), which is inspired by [16]. The architecture of CCEM is
depicted in Fig. 3.

After the encoding phase, 𝑦𝑝𝑓 and 𝑦𝑣 are directed towards the
hyper encoder, to derive hyperprior latent representations, culmi-
nating in 𝑧𝑝𝑓 and 𝑧𝑣 . The hyperprior latent representations are
fed into the hyper decoder, leading to the extraction of spatial dis-
tribution information 𝜑𝑝 and 𝜑𝑣 , which are divided into anchor
parts 𝜑𝑎𝑝 , 𝜑𝑎𝑣 and non-anchor parts 𝜑𝑛𝑝 , 𝜑𝑛𝑣 , respectively. It should be
emphasized that CCEM aims to refine the accuracy of probability
density estimations for point cloud symbols. For images, due to
their limited transmission overhead, after obtaining 𝜑𝑣 , we directly
feed 𝜑𝑣 into the Entropy Prediction Module (EPM) to acquire en-
tropy parameters of Gaussian distribution 𝜇𝑣 and 𝜎2𝑣 . The quantized
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Figure 3: The architecture of CCEM and Latent Transform Module (LTM). "HENC" and "HDEC" denote hyper encoder and
decoder, respectively. "HAE" and "HAD" refer to hyper arithmetic encoder and decoder. "LRM", "CPM", and "EPM" stand for
Latent Recovery Module, Context Prediction Module, and Entropy Prediction Module, respectively.

view image latent representation 𝑦𝑣 is characterized as follows:

𝑝�̂�𝑣 |𝜑𝑣
(𝑦𝑣 | 𝜑𝑣) ∼ N

(
𝜇𝑣, 𝜎

2
𝑣

)
with 𝜇𝑣, 𝜎

2
𝑣 = 𝑔𝑣𝑒𝑝 (𝜑𝑣),

(4)

where N(·) denotes Gaussian distribution function, and 𝑔𝑣𝑒𝑝 (·)
stands for EPMv. To facilitate a more effective interaction with the
side information of point cloud, 𝜑𝑎𝑣 , 𝜑𝑛𝑣 are meticulously aligned
with 𝜑𝑎𝑝 , 𝜑𝑛𝑝 , respectively, resulting in 𝜑𝑎∗𝑣 and 𝜑𝑛∗𝑣 . All anchor and
non-anchor latent representations are fed into Latent Transform
Module (LTM) to achieve modality fusion. The fused anchor latent
representation 𝜙𝑎𝑝 is subsequently forwarded to EPMa to facilitate
the estimation of the likelihood of the anchor point cloud latent rep-
resentation. The quantized anchor point cloud latent representation
𝑦𝑎
𝑝𝑓

are derived as follows:

𝑝�̂�𝑎
𝑝𝑓

|𝜑𝑎
𝑝 ,𝜙

𝑎
𝑝

(
𝑦𝑎
𝑝𝑓

| 𝜑𝑎𝑝 , 𝜙𝑎𝑝
)
∼ N

(
𝜇𝑎, 𝜎

2
𝑎

)
with 𝜇𝑎, 𝜎

2
𝑎 = 𝑔𝑎𝑒𝑝 (𝜑𝑎𝑝 , 𝜙𝑎𝑝 ),

(5)

where𝑔𝑎𝑒𝑝 (·) represents EPMa. Alternatively,𝑦𝑎𝑝𝑓 is recovered from
𝜇𝑎 and 𝜎2𝑎 in Latent Recovery Module (LRM). Context Prediction
Module (CPM), employing sparse mask convolution (evolved from
[16]), predicts the local context𝜓𝑝 leveraging the neighbor informa-
tion of 𝑦𝑎

𝑝𝑓
. Consequently, the quantized non-anchor point cloud

latent representation 𝑦𝑛
𝑝𝑓

is articulated as follows:

𝑝�̂�𝑛
𝑝𝑓

|𝜑𝑛
𝑝 ,𝜙

𝑛
𝑝 ,𝜓𝑝

(
𝑦𝑛
𝑝𝑓

| 𝜑𝑛𝑝 , 𝜙𝑛𝑝 ,𝜓𝑝
)
∼ N

(
𝜇𝑛, 𝜎

2
𝑛

)
with 𝜇𝑛, 𝜎

2
𝑛 = 𝑔𝑛𝑒𝑝 (𝜑𝑛𝑝 , 𝜙𝑛𝑝 ,𝜓𝑝 ),

(6)

where 𝑔𝑛𝑒𝑝 (·) refers to EPMn.
In contrast to VoxelDNN, which operates on voxel-level depen-

dencies, our method embraces slice-level dependency, significantly
enhancing the decoding speed.Moreover, for the first time, we incor-
porate side information from different modalities into the entropy
model, enhancing its capability to predict symbolic probabilities
more accurately. The detailed structures of additional sub-modules
within CCEM will be presented in the Supplementary Materials.

Figure 4: The architecture of VG-QEM. It is important to
highlight that the dashed line represents that the enhanced
output image 𝑥𝑒𝑣 is only employed in the calculation of the
view image distortion loss term.

3.4 View-Guided Quality Enhancement Module
At the end of the decoder, we feed the output point cloud 𝑥𝑝 and
view image 𝑥𝑣 into VG-QEM to recover the local texture and geo-
metric structure of the point cloud, aiming for achieving superior
reconstruction quality. VG-QEM is coupled with the decoder, en-
abling an end-to-end training strategy that synergistically optimizes
both the encoder-decoder network and VG-QEM. In VG-QEM, 𝑥𝑝
and 𝑥𝑣 are first extracted for features separately. Subsequently, 𝑥𝑣
undergoes a sequence of dimensional transformation modules, in-
clusive of residual blocks and reshape operators, to enrich local
details, resulting in 𝑥𝑖𝑣 . Here, 𝑖 represents the iteration count of
dimensional transformations applied to 𝑥𝑣 , with 𝑖 ∈ {1, 2}. In each
level of operation, 𝑥𝑖𝑣 is concatenated on the channel dimension
with the aggregated point cloud features 𝑥𝑖𝑝 through the refine
module comprising sparse convolution and ReLU. This operation
facilitates the coordinate reconstruction of the point cloud at edge
details. Finally, through residual connections, we obtain the en-
hanced output point cloud 𝑥𝑒𝑝 .
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Figure 5: Rate-distortion curves for performance comparision. From left to right are D1 PSNR of Soilder, D1 PSNR of Dancer,
D2 PSNR of Soilder, and D2 PSNR of Dancer.

3.5 Loss Function
In the training stage, we define the loss function 𝐿 in the following
manner:

𝐿 = 𝑅𝑝 + 𝑅𝑣 + 𝛼𝐷𝑝 + 𝛽𝐷𝑣, (7)
where 𝑅𝑝 and 𝐷𝑝 denote the rate loss and Binary CrossEntropy
(BCE) loss of the point cloud, respectively. Similarly, 𝑅𝑣 and 𝐷𝑣

stand for the rate loss and Mean Squared Error (MSE) loss of the
view image. 𝛼, 𝛽 are the hyper-parameters of the optimization par-
adigm. Furthermore, 𝑅𝑝 , 𝑅𝑣 , 𝐷𝑝 , 𝐷𝑣 can be expressed as:

𝑅𝑝 = E
[
− log2 𝑝�̂�𝑝𝑓 |𝜑𝑎

𝑝 ,𝜑
𝑛
𝑝 ,𝜙

𝑎
𝑝 ,𝜙

𝑎
𝑝 ,𝜓𝑝

(
𝑦𝑝𝑓 | 𝜑𝑎𝑝 , 𝜑𝑛𝑝 , 𝜙𝑎𝑝 , 𝜙𝑎𝑝 ,𝜓𝑝

)]
+ E

[
− log2 𝑝𝑧𝑝

(
𝑧𝑝

) ]
,

𝑅𝑣 = E
[
− log2 𝑝�̂�𝑣 |𝜑𝑣

(𝑦𝑣 | 𝜑𝑣)
]
+ E

[
− log2 𝑝𝑧𝑣 (𝑧𝑣)

]
,

𝐷𝑝 = − 1
𝑁𝑝𝑀

𝑁𝑝∑︁
𝑖

𝑀∑︁
𝑗

(
𝑥
𝑗
𝑖
log

(
𝑝
𝑗
𝑖

)
+
(
1 − 𝑥

𝑗
𝑖

)
log

(
1 − 𝑝

𝑗
𝑖

))
,

𝐷𝑣 =
1
𝑁𝑣

∥𝑥𝑣 − 𝑥𝑒𝑣 ∥22,

(8)

where 𝑁𝑝 and 𝑁𝑣 represent the symbol length of 𝑦𝑝 and 𝑦𝑣 , respec-
tively.𝑀 signifies the number of scales utilized within the decoder.
𝑥
𝑗
𝑖
stands for the status of a voxel, indicating its occupation or

vacancy, and 𝑝 𝑗
𝑖
reflects the likelihood of the voxel being occupied.

It is crucial to recognize that although our primary concern in
this research is the visual quality of the point cloud, the signifi-
cance of the view image in reconstructing the point cloud has been
previously highlighted in modules like MRRM, CCEM, VG-QEM.
Consequently, we have included MSE loss for the view image in the
loss function, to some extent preserving the reconstruction quality
of the image. Moreover, in order to reduce the bit overhead asso-
ciated with transmitting images, we aim to minimize the bit rate
allocated to images during training. The dependency relationship
between image reconstruction and point cloud reconstruction will
be elaborated upon in more detail during our ablation study.

4 EXPERIMENTS
4.1 Datasets
4.1.1 Training Dataset. ShapeNet [5] is a large-scale dataset of 3D
objects and stands as one of the most comprehensive datasets with
rich annotations of 3D objects to date. The dataset covers several
categories such as furniture, vehicles, and buildings. In our study,
we randomly select 25,000 3D models from ShapeNet and divide
the data into training and validation sets in a 9:1 ratio. These 3D

models are processed through sampling and quantization to obtain
object point clouds. To generate the view image corresponding to
each point cloud, we employ the virtual camera to capture the point
clouds from the fixed perspective, thus obtaining training pairs.

4.1.2 Test Dataset. The 8iVFB dataset [11] specializes in highly re-
alistic human three-dimensional scanning data. The MVUB dataset
[6], provided by Microsoft, concentrates on the three-dimensional
voxel representation of the upper body. Owlii, a company renowned
for its advanced 3D scanning and reconstruction technology, offers
a dataset [49] that primarily encompasses high-accuracy 3D human
models and movements. These datasets are well-suited to meet the
point cloud geometry compression requirements of MPEG stan-
dard [37] and JPEG standard [32]. Consequently, for our evaluation,
we meticulously select a total of twelve point clouds from 8iVFB,
MVUB, and Owlii datasets.

4.2 Experimental Details
4.2.1 Training Strategy. We train the entire network jointly. View-
PCGC is implemented using PyTorch with CUDA support. Dur-
ing the training process, we utilize the Adam optimizer [22]. The
learning rate is initialized at 1𝑒−4 and gradually decreases as the
model updates, eventually reaching 1𝑒−5. The batch size is set to 4.
Training is conducted on an NVIDIA RTX 3090, with each model
undergoing approximately 40 training epochs. The point clouds in
the input training pairs are quantized to 7 bits, and view images
are cropped to 256 × 256 to facilitate model inference. The hyper-
parameter 𝛽 is set to 200. Meanwhile, 𝛼 is adjusted over a range
from 0.5 to 10. The selection details of the hyper-parameter 𝛽 will
be discussed in the Supplementary Materials.

4.2.2 Evaluation Metric. We adopt point-to-point PSNR (D1 PSNR)
and point-to-plane PSNR (D2 PSNR) [20] as evaluation metrics,
which reflect the fidelity of the spatial position of points in the
point cloud and the fidelity of the geometric structure of the point
cloud, respectively. Furthermore, Bjontegaard delta rate (BD-Rate)
[4] is utilized to obtain a quantitative rate-distortion performance.

4.2.3 Baseline. We compare ourmethodwith several superior deep
learning-based point cloud geometry compression methods, includ-
ing GeoCNNv2 [36], PCGCv1 [45], PCGCv2 [44], and SparsePCGC
[43]. Additionally, the classical point cloud encoding tool, G-PCC
[28], is also incorporated into the comparison. The reference imple-
mentation for G-PCC is TMC13v23.
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Table 1: BD-Rate gains measured utilizing D1-PSNR and D2-PSNR metrics for ViewPCGC against G-PCC, GeoCNNv2, PCGCv1,
PCGCv2, SparsePCGC in three test dataset.

G-PCC GeoCNNv2 PCGCv1 PCGCv2 SparsePCGC
Dataset Point Cloud

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

longdress -95.13% -89.58% -82.67% -79.49% -74.12% -71.88% -44.98% -43.10% -10.06% -7.85%
loot -93.56% -90.47% -79.31% -76.29% -71.06% -66.32% -42.20% -39.74% -9.81% -7.34%

redandblack -93.88% -89.37% 80.28% -77.15% -70.44% -66.26% -44.17% -40.93% -10.45% -8.79%
soldier -92.24% -88.31% -81.24% -77.73% -72.68% -69.32% -40.49% -38.40% -10.73% -8.24%

8iVFB

Average -93.70% -89.43% -80.87% -77.66% -72.07% -68.44% -42.96% -40.54% -10.26% -8.05%

andrew -90.28% -85.41% -72.63% -66.84% -66.79% -62.46% -38.44% -36.29% -8.37% -6.08%
david -89.94% -86.17% -74.29% -69.98% -68.47% -63.56% -39.18% -36.17% -8.78% -7.14%
phil -91.18% -88.65% -76.71% -72.18% -69.03% -65.58% -40.74% -38.01% -9.54% -7.62%
sarah -90.68% -87.39% -73.38% -68.17% -66.47% -62.91% -40.08% -37.78% -9.01% -6.89%

MVUB

Average -90.52% -86.90% -74.25% -69.29% -67.69% -63.62% -39.61% -37.06% -8.92% -6.93%

basketball_player -95.37% -89.16% -85.74% -80.92% -77.61% -72.42% -48.32% -44.64% -12.01% -10.42%
dancer -93.74% -89.25% -83.86% -82.03% -73.85% -71.24% -45.80% -43.72% -11.71% -9.22%
exercise -96.43% -90.27% -85.29% -83.31% -76.38% -74.24% -47.92% -45.78% -11.87% -9.86%
model -95.89% -89.73% -82.16% -78.94% -74.42% -69.87% -44.66% -40.93% -13.25% -10.78%

Owlii

Average -95.35% -89.60% -84.26% -81.30% -75.56% -71.94% -46.67% -43.76% -12.21% -10.07%

Total average -93.19% -88.64% -79.79% -76.08% -71.77% -68.00% -43.08% -40.45% -10.46% -8.35%

4.3 Experiment Results
4.3.1 Quantitative Results. Table 1 presents the RD performance
comparison of ViewPCGC on 8iVFB, MVUB, and Owlii datasets
against other competitive methods. Overall, our proposed method
achieves an average improvement over the existing state-of-the-
art model by more than 10% and 8% on D1-PSNR and D2-PSNR
metrics, respectively. Specifically, our method performs best on
the Owlii dataset, attributed to its vast number of points, which
further reduces the image bitstream expense. The aspect will be
further discussed in the ablation study. Moreover, we plot the RD
curves for Soldier and Dancer to further visualize the performance
gap between various methods, as shown in Fig. 5. It illustrates that
ViewPCGC is capable of better restoring the point cloud structure
and improving the signal fidelity of the point cloud as the bitrate
increases.

Table 2: Average encoding time and decoding time compari-
sion of different competitive methods.

Model 8iVFB MVUB Owlii Average

Enc/Dec(s) Enc/Dec(s) Enc/Dec(s) Enc/Dec(s)

G-PCC 8.37/4.69 5.45/3.23 17.28/11.36 10.36/6.42
PCGCv2 0.50/0.88 0.33/0.43 0.94/2.02 0.59/1.11

SparsePCGC 1.37/3.64 0.98/2.79 2.54/5.61 1.63/4.01
ViewPCGC 1.20/1.51 0.80/1.76 1.99/3.19 1.33/2.15

4.3.2 Qualitative Results. To clearly demonstrate the subjective
visual effect of each model, we visualize the point cloud compressed
by ViewPCGC and several competitive methods, as shown in Fig. 6.

For fairness, we attempt to compress all models at the same bitrate,
with their actual bitrates arranged from left to right in the order
of 0.27, 0.26, 0.22, 0.21, 0.18, as presented in the figure. We zoom
in on the local details of Soldier (such as textures on clothing) to
more intuitively showcase our reconstruction results. It is evident
that G-PCC exhibits noticeable block effects during reconstruction,
while methods like SparsePCGC suffer from varying degrees of
white speckles, indicating geometric distortions in those areas. Our
method, under the premise of using a lower bitrate, achieves the
closest resemblance to the original point cloud texture, highlighting
the superior subjective visual quality of ViewPCGC.

4.3.3 Running Time. We compare the encoding and decoding time
of ViewPCGCwith several competitive methods, and the test results
are shown in Table 2. The hardware conditions for the test include
a workstation equipped with an Intel(R) Xeon(R) Silver 4210R CPU
and an NVIDIA GeForce RTX 3090 GPU. During the tests, we calcu-
late the average encoding and decoding time across multiple bitrate
points, from high to low. As seen in Table 2, compared to G-PCC,
our method is much faster, especially on large point cloud datasets
like Owlii. Compared to SparsePCGC, our method significantly
reduces encoding and decoding time due to the more streamlined
process of our model in handling point clouds across various scales.
Although there is a certain gap in encoding and decoding time com-
pared to PCGCv2, our method shows a noticeable improvement
in RD performance. A pivotal aspect of ViewPCGC, enhancing its
swift encoding and decoding performance, is the implementation
of linear residual attention, significantly streamlining computa-
tional efficiency. We will describe more details about linear residual
attention in the Supplementary Materials.
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Figure 6: Visual quality comparison in Soldier for different competitive methods.

4.4 Ablation Study and Analysis
4.4.1 Case 1: Effectiveness of proposed modules. To evaluate the
effectiveness of the proposed modules, we conduct the ablation
study to verify the contribution of each module, with the specific
configurations detailed in Table 3. "✓" signifies that the proposed
module is utilized within the baseline model. BD-Rate reflects the
performance gap between the ablation model and the model pro-
posed in this paper. Notably, when the CCEM is omitted, we employ
a factorized entropy model [2] solely on the point cloud as an alter-
native. Table 3 illustrates the performance gap among models with
various configurations, using ViewPCGC as the baseline model.
The experimental results underscore the necessity of our proposed
modules, among which CCEM contributes most significantly to
performance enhancement, which can be attributed to the efficient
utilization of modality contexts and accurate symbol probability
estimation.

Table 3: Ablation study of Case 1.

MRRM CCEM VG-QEM BD-Rate(%)
✓ 18.74

✓ 15.18
✓ 20.77

✓ ✓ 6.37
✓ ✓ 12.65

✓ ✓ 8.41

4.4.2 Case 2: Effectiveness of suitable image resolution. To deter-
mine the appropriate resolution for the view image, we perform the
ablation study with the view image at several resolutions. Using
the "256×256" resolution from our scheme as the baseline, Table 4
shows the bit overhead for utilizing the image at other resolutions
as auxiliary information (left) and the average performance gap
compared to the baseline (right) under D1-PSNRmetric across three
datasets. The bit overhead 𝑅𝑜 for the point cloud can be defined as:

𝑅𝑜 =
𝑅𝑣 × 𝐻 ×𝑊

𝑁
, (9)

where 𝑅𝑣 denotes bpp for compressing the view image. 𝐻 and𝑊
stand for height and weight of the view image, respectively. 𝑁 is
the point number of the point cloud. It is clearly observed that

with the increase in image resolution, the rapid growth in image
bitrate overhead leads to a sharp decline in overall performance.
Conversely, when the image resolution is too low, the inability to
extract sufficient modality information becomes the bottleneck,
limiting performance improvement.

Table 4: Ablation study of Case 2.

Resolution 8iVFB MVUB Owlii
192×192 0.0055/4.17% 0.0155/1.28% 0.0018/5.93%
256×256 0.0088 0.0248 0.0028
512×512 0.0301/10.98% 0.0849/21.72% 0.0098/3.46%
768×768 0.0651/14.62% 0.1837/42.65% 0.0213/10.05%
1024×1024 0.1101/30.78% 0.3102/57.39% 0.0360/13.70%

4.4.3 Case 3: Effectiveness of joint optimization paradigm. To vali-
date the effectiveness of the joint optimization paradigm, we estab-
lish control groups for comparative analysis: A1 focuses solely on
optimizing the bitrate and distortion of the point cloud; A2 extends
this optimization to include the image’s bitrate alongside the point
cloud’s bitrate and distortion; and A3, our adopted method, opti-
mizes both the bitrate and distortion for the point cloud and the
image. Results across three datasets using D1-PSNR metric reveal
that A3 surpassed A1 by 5.72% and A2 by 8.14%. The results imply
that while our goal is to reduce the image’s bitrate overhead as
much as possible, the quality of the image can not be completely
overlooked, as it would affect the utilization of modality informa-
tion from the image by the point cloud.

5 CONCLUSION
In this paper, we propose a novel view-guided learned point cloud
geometry compression framework, namely ViewPCGC. To the best
of our knowledge, it is also the first work to harness modality
information from the projected view in learned object point cloud
geometry compression. We employ MRRM to eliminate modality
redundancy, CCEM to capture inter-modality context dependencies
to assist in symbol probability estimation, and VG-QEM to restore
local details of point cloud geometry and maintain spatial structure.
The outstanding experiment results unveil that a new perspective
of object point cloud geometry compression has been established
by emphasizing the critical role of view image information.
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