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1 MORE DETAILS OF THE NETWORK
ARCHITECTURE

To clearly present the encoder and decoder structures of View-
PCGC, we depict the detailed configurations of some modules in
Fig. 1. The module structures of IRN (adopted in [2]) and SSA are
demonstrated in Fig. 2. Similarly, the main module architectures
within the CCEM are shown in Fig. 3. Notably, our context pre-
diction module (CPM) incorporates MaskConv. The cube in Fig. 3
represents the convolution kernel, where the blue parts are the an-
chor part, and the red parts are the non-anchor part. We employ the
corresponding convolution kernels to compute the convolutions
for anchor part and non-anchor part, respectively.
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Figure 1: Detailed structures of certain modules in the en-
coder and decoder. "FDM" and "FUM" signify the feature
downsampling and upsampling modules, respectively. “Prun-
ing” is a selection mechanism aimed at identifying and re-
taining points with high probability of occurrence in the
reconstruction point cloud. "SConv / | 2" and "SConv /T 2"
describe the processes of downsampling and upsampling,
respectively, employing a stride of 2 through sparse convolu-
tion. "RB/ | 2"and "RB/ T 2" denote the utilization of residual
blocks for downsampling and upsampling, respectively, also
with a stride of 2.

2 MORE VISUALIZATION RESULTS

To depict the reconstruction error of each point more accurately, we
employ the Chamfer Distance [1] as an evaluation metric. We cal-
culate the Chamfer Distance between each point of the compressed
point cloud and the corresponding point in the original point cloud,
denoted as the error map. The error map is displayed in Fig. 4. To
ensure fairness, we attempt to equalize the bits per point (bpp)
for all methods. Ultimately, the bpp consumption values are 0.27,
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Figure 3: Detailed structures of certain modules in CCEM.
"Conv /| 2" and "Conv / T 2" refer to the processes of down-
sampling and upsampling, respectively, with a stride of 2
using 2D convolution.

0.26, 0.22, 0.21, and 0.18, listed from left to right. It is evident that
the reconstruction quality of ViewPCGC is significantly superior
compared to other methods.

3 ABLATION STUDY OF LINEAR RESIDUAL
ATTENTION
To assess the impact of using linear residual attention on RD per-

formance and encoding/decoding time, we conduct additional ex-
periments. The comparison involves two control groups: one using
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Figure 4: Error map visualization. Black represents minimal reconstruction errors, and red signifies substantial errors.
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Figure 5: Experiment results for different values of . The
X-axis represents the value of . The left Y-axis measures
the performance gap under various f configurations, while
the right Y-axis indicates the percentage of the view image’s
bitstream overhead in the total transmission bitstream.

non-local attention and another without any attention mechanism.
We utilize the model with linear residual attention as the base-
line, calculating the BD-rate (using D1-PSNR) for the other two
models compared to the baseline. Moreover, we document the en-
coding and decoding time for each method, presenting the results
in Table 1. The findings indicate that using non-local attention
significantly increases encoding and decoding time, whereas linear
residual attention does not noticeably extend the time. In terms
of RD performance, models with non-local attention have a slight
advantage, though the improvement is not substantial. In contrast,
the absence of any attention mechanism leads to a marked decline
in performance. Consequently, balancing both encoding/decoding
time and RD performance, linear residual attention emerges as the
optimal choice.

Table 1: Ablation study of linear residual attention.

Model Enc/Dec (s) BD-rate
baseline 1.33/2.15 -
w/ non-local attention  6.47/15.26 -1.53%
w/o attention 1.18/1.76 4.55%

4 ABLATION STUDY OF HYPER-PARAMETER
B

In the previous section, we mention that as the view image bit
stream increases, the RD performance of point cloud geometry
compression will decline sharply. Conversely, the excessively low-
quality view image may fail to enhance point cloud geometry com-
pression performance. Therefore, we conduct an additional ablation
study to explore the effect of improving image compression quality
(i.e., increasing the value of f) on point cloud geometry compres-
sion. We train the model in four different alpha configurations
(a = 1,2,5,10) to assess the performance gap across various beta
configurations compared to the baseline model (f = 200 as men-
tioned in the training strategy). The results are illustrated in Fig.
5 as the red curve. Additionally, we calculate the ratio of the view
image bit stream to the total transmission bit stream under different
B configurations, shown by the blue curve in Fig. 5. The experimen-
tal results indicate that at extremely low bitrate, the poor image
quality fails to provide adequate modality information for point
cloud geometry compression, leading to a drop in performance.
Conversely, excessive bitrate overhead becomes a major bottleneck
when the image bitrate is too high, restricting further performance
improvement in point cloud geometry compression.
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