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Abstract

Forecasting of time-series data requires imposition of inductive biases to obtain
predictive extrapolation, and recent works have imposed Hamiltonian/Lagrangian
form to preserve structure for systems with reversible dynamics. In this work we
present a novel parameterization of dissipative brackets from metriplectic dynami-
cal systems appropriate for learning irreversible dynamics with unknown a priori
model form. The process learns generalized Casimirs for energy and entropy guar-
anteed to be conserved and nondecreasing, respectively. Furthermore, for the case
of added thermal noise, we guarantee exact preservation of a fluctuation-dissipation
theorem, ensuring thermodynamic consistency. We provide benchmarks for dis-
sipative systems demonstrating learned dynamics are more robust and generalize
better than either "black-box" or penalty-based approaches.

1 Background and previous work

Modeling time-series data as a solution to a dynamical system with learnable dynamics has been
shown to be effective in both data-driven modeling for physical systems and traditional machine
learning (ML) tasks. Broadly, it has been observed that imposition of physics-based structure leads to
more robust architectures which generalize well [1]. On one end of the spectrum of inductive biases,
universal differential equations (UDE) [2] assume an a priori known model form, thus imposing the
strongest bias. On the other, neural ordinary differential equations (NODEs) [3] assume a completely
black-box model form with minimal bias.

Many recent approaches have turned to structure preserving models of reversible dynamics to obtain
an inductive bias that lies in between [4, 5, 6, 7, 8]. One may use black-box deep neural networks
(DNNs) to learn an energy of a system with unknown model form, while the algebraic structure
of Hamiltonian/Lagrangian dynamics provides a flow map which conserves energy. Typically, the
learned flow map has symplectic structure so that phase space trajectories are conserved. In classifi-
cation problems, this mitigates the vanishing/exploding gradient problem and improves accuracy [9];
in physics, this guarantees that extrapolated states are physically realizable [10].

Such approaches are only appropriate for reversible systems lacking friction or dissipation. In the
physics literature, the theory of metriplectic dynamical systems provides a generalization of the
Poisson brackets of Hamiltonian/Lagrangian mechanics which model not just a conserved energy, but
generalized Casimirs such as entropy [11, 12]. Physical systems which can be cast in this framework
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obtain a number of mimetic properties related to thermodynamic consistency: satisfaction of the
first and second laws of thermodynamics and, for closed stochastic systems, a fluctuation dissipation
theorem (FDT) that guarantees thermal forcing is balanced exactly by dissipative forces in equilibrium
[13]. This FDT property is particularly critical to analyzing rare events in molecular phenomena
driven by thermal noise [14].

Classically, metriplectic systems are obtained by deriving a model from first principles and then
observing that the system admits a requisite algebraic structure. While effective for a wide range
of physical systems [15], the requisite first principles modeling may be restrictively complex for a
general system, particularly for multiscale problems involving time history. In this work we reverse
the process by assuming our time-series data has been generated by a metriplectic system and then
inferring the requisite algebraic objects using a training strategy similar to that used in NODEs.
This presents several technical challenges. First, dissipative systems typically have non-observable
states (i.e. internal entropy or temperature) which may not be measured. Second, the metriplectic
algebraic structure is particularly restrictive, requiring discovery of matrices with carefully designed
null-spaces to separate reversible and irreversible components of the dynamics.

Anticipated impact: Finally, we note that this work is an important first step toward handling
more complicated dissipative chaotic systems ubiquitous to science and engineering problems. For
example, for chaotic systems the “butterfly effect” causes arbitrarily small perturbations in initial
data to exponentially diverge, and it is only possible to provide long-term forecasting by learning a
corresponding “strange attractor” whose latent dimension is governed by the dissipative structure
[16, 17]. In reduced order-modeling, many have looked toward data-driven means of fitting dynamics
to latent representations of solution space, with Hamiltonian structure particularly useful for finding
long-time accurate surrogates[18, 19]. In this situation as well, structure-preserving treatment of
dissipation is critical to account for entropic/memory effects which emerge from coarse-graining
[20]. Another success of reversible structure-preserving ML is in robotic control [21]. Again these
models fail to account for friction due to wear, which is inevitable in realistic applications. There are
also problems where we have access to time-series and no guaranteed way of modeling from first
principles that can account for all the important mechanisms e.g. system-identification in biology
[22, 23], the study of cascading failures for realistic power grid models [24], social dynamics [25],
and accounting for memory effects in empirical eigenfunction expansions of turbulent flows [26]. All
these cases can benefit by a structure-preserving method for identifying dynamics.

2 Related work

Neural ordinary differential equations As noted, learning time-continuous dynamics in the form
of a system of ODEs is an active topic with seminal works including [27, 9, 28, 3, 29]. There have been
many follow-up studies to enhance neural ODEs in different aspects, e.g., enhancing the expressivity
of neural ODEs by augmenting extra dimensions in state variables [30], checkpoint methods to
mitigate numerical instability and to enhance memory efficiency [31, 32, 33], allowing network
parameters to evolve over time together with hidden states [34, 35], and spectrally approximating
dynamics by using a set of orthogonal polynomials [36]. Applications of NODEs for learning
complex physical processes (e.g., turbulent flow) can be found in [37, 38, 39].

Structure preserving neural networks A thorough accounting of works embedding structure-
preservation into neural networks include pioneering works for Hamiltonian neural networks [4, 40],
followed by development of Lagragian neural networks [41, 5] and neural networks that mimic
the action of symplectic integrators [6, 7, 8]. More recently, there has been efforts to add physical
invariance to learned dynamics models, e.g., time-reversal symmetry [42]. Works pursuing related
but distinct spatial-compatibility related to conservation structure other than geometric integration
include: graph architectures with associated a data-driven graph exterior calculus [43], solving
optimization problems with conservation constraint in latent space [44], and adding conservation
constraints as a penalty in training loss [45]. The closest work to our approach is in [46], which
proposed a time integrator that leverages the GENERIC (general equation for the nonequilibrium
reversible–irreversible coupling) formalism to impose the structure, but enforces the degeneracy
condition as penalty terms in the training loss objective. We will provide results demonstrating that a
penalty approach is insufficient to guarantee preservation of metriplectic structure.
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3 Theory and fundamentals

We consider the GENERIC formalism as a particular metriplectic framework amenable to parame-
terization. Consider time series data D = {(ti,x(ti))}Ni=1, where the state xi = x(ti) ⊂ Rd has a
known initial condition x0. In GENERIC, it is assumed that an observable A(x) evolves under the
gradient flow

dA

dt
= {A,E}+ [A,S] (1)

where E and S denote generalized energy and entropy, {·, ·} denotes a Poisson bracket, and [·, ·]
denotes an irreversible bracket. The Poisson bracket is given in terms of a skew-symmetric Poisson
matrix L and the irreversible bracket is given in terms of a symmetric positive semi-definite friction
matrix M ,

{A,B} =
∂A

∂x
L
∂B

∂x
, and [A,B] =

∂A

∂x
M
∂B

∂x
.

A system governed by Eq. 1 is a GENERIC system if the following degeneracy conditions hold

L
∂S

∂x
= 0, and M

∂E

∂x
= 0. (2)

Taking A = x in Eq. (1) provides the evolution of x

dx

dt
= L

∂E

∂x
+M

∂S

∂x
. (3)

Remark 3.1 (Hamiltonian dynamics) For canonical coordinates x = [q, p]T, and canonical Pois-

son matrix L =

[
0 1
−1 0

]
, and M = 0, Eq. (3) recovers Hamiltonian dynamics.

Remark 3.2 (First and second laws of thermodynamics) Taking A = E and A = S, we obtain
dE
dt = 0 and dS

dt ≥ 0, respectively. This follows easily by application of the degeneracy conditions
and noticing {A,A} = 0, [A,A] ≥ 0.

Remark 3.3 (Fluctuation dissipation theorem) Introducing thermal noise to Eq. (3) provides the
stochastic differential equation (SDE)

dxt =

(
L
∂E

∂x
+M

∂S

∂x
+ kB

∂

∂x
·M
)

dt+
√

2kBMdWt, (4)

where
√
M denotes the Cholesky factor of M , kB is a Boltzmann constant, and dWt is a Wiener

process. The equilibrium statistics of this SDE reach a stationary distribution under appropriate
conditions [13].

4 Parameterization of bracket structure

We now introduce a parameterization of the dissipative and reversible brackets that exactly satisfies
the degeneracy conditions described in Section 3, and review the penalty approach from [46] which
imposes degeneracy conditions via soft constraints. Our approach is motivated by the work in [47]
which we summarize in Sections 4.1–4.3. For the remainder, we adopt the Einstein summation
convention.

First, we parameterize the energy and the entropy as neural networks, i.e., E(x) ≈ Eφ(x) and
S(x) ≈ Sϕ(x), where φ and ϕ are weights and biases for the neural networks E and S respectively.

4.1 Parameterizing skew-symmetric reversible dynamics

The reversible dynamics are characterized by a skew-symmetric Poisson bracket,

{A,B} = ξαβγ
∂A

∂xα

∂B

∂xβ

∂S

∂xγ
,
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where ξαβγ is an skew-symmetric 3d tensor. To enforce the anti-symmetry exactly, we consider a
generic 3 tensor ξ̃αβγ with learnable entries and apply the following skew-symmetrization trick.

ξαβγ =
1

3!

(
ξ̃αβγ − ξ̃αγβ + ξ̃βγα − ξ̃βαγ + ξ̃γαβ − ξ̃γβα

)
.

The reversible part may then be written as {x, E} = ξαβγ
∂x
∂xα

∂E
∂xβ

∂S
∂xγ

and the reversible dynamics
are given by (

dxα
dt

)
r

= ξαβγ
∂E

∂xβ

∂S

∂xγ
.

4.2 Parameterizing symmetric irreversible dynamics

Next, we parameterize the irreversible dynamics via the bracket,

[A,B] = ζαβ,µν
∂A

∂xα

∂E

∂xβ

∂B

∂xµ

∂E

∂xν
,

where
ζαβ,µν = ΛmαβDmnΛnµν .

Here, Λ and D are skew-symmetric and symmetric positive semi-definite matrices, respectively, such
that

Λmαβ = −Λmβα, and Dmn = Dnm.

Again, the skew-symmetry and the symmetric positive semi-definiteness can be achieved by the
parameterization tricks

Λ =
1

2
(Λ̃− Λ̃T), and D = D̃D̃T,

where Λ̃ and D̃ are matrices with learnable entries. Finally, the irreversible part may be written as
[x, S] = ζαβ,µν

∂x
∂xα

∂E
∂xβ

∂S
∂xµ

∂E
∂xν

and the irreversible part of the dynamics is given by(
dxα
dt

)
irr

= ζαβ,µν
∂E

∂xβ

∂S

∂xµ

∂E

∂xν
.

4.3 Degeneracy conditions

With the above parameterizations the degeneracy conditions described in Eq. (2) may be easily verified
by direct calculation following the definition of the brackets and the symmetry/skew-symmetry
conditions.

{x, S} =
∂x

∂x
L
∂S

∂x
= ξαβγ

∂x

∂xα

∂S

∂xβ

∂S

∂xγ
= ξαβγ

∂S

∂xβ

∂S

∂xγ
= 0,

and
[x, E] =

∂x

∂x
M
∂E

∂x
= ζαβ,µν

∂x

∂xα

∂E

∂xβ

∂E

∂xµ

∂E

∂xν
= ζαβ,µν

∂E

∂xβ

∂E

∂xµ

∂E

∂xν
= 0.

4.4 Alternative parameterization – penalty-based method

An alternative strategy to incorporate GENERIC structure is to enforce the degeneracy condition
by soft penalty as advocated in [46]. In this approach, E, S, L, and M , may be approximated
independently of each other. Again, E and S are parameterized as neural networks (Eφ and Sϕ),
and L and M are parameterized as skew-symmetrizations/symmetrizations of matrices π and ρ with
learnable entries as follows

Lπ =
1

2

(
π − πT

)
and Mρ = ρρT.

With this parameterization, the degeneracy conditions are simply enforced by minimizing two
penalty terms,

∥∥∥Lπ ∂Eφ∂x ∥∥∥ and
∥∥∥Mρ

∂Sϕ
∂x

∥∥∥. We stress that this penalty will be enforced only to within
optimization error.

If we write a system of neural ODEs as ∂x
∂t = fΘ, where Θ consists of learnable parameters, then

Table 1 summarizes the components comprising fΘ for black-box NODE, the penalty-base method,
and GENERIC NODE (GNODE).
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Table 1: Model summary

NODE Penalty GNODE

fΘ fΘ = fθ fΘ = Lπ
∂Eφ
∂x +Mρ

∂Sϕ
∂x fΘ = {x, E}+ [x, S]

Components black-box MLP Eφ and Sϕ (MLPs) Eφ and Sϕ (MLPs)
Lπ and Mρ (2-tensor) ξ (3-tensor), Λ and D (2-tensor)

Θ Θ = θ Θ = {φ,ϕ,π,ρ} Θ = {φ,ϕ, ξ,Λ, D}

5 Experiments

In this section, we assess the performance of the three parameterizations of the ODE dynamics which
apply progressively more stringent priors. We implement the algorithms in PYTHON 3.6.5, NUMPY
1.16.2, and PYTORCH 1.7.1 [48]. For the time integrator, we use a PYTORCH implementation of
differentiable ODE solvers, TorchDiffEq [3]. All experiments are performed on MACBOOK PRO
with 2.9 GHz i9 CPU and 32 GB memory.

5.1 Dataset and training

The states x of GENERIC systems may generally be partitioned between “observable” states (e.g.,
position and momentum variables) denoted by xo and “non-observable” states (e.g., entropy, config-
uration variables, etc) denoted by xu, i.e., x = [xoT,xuT]T. We assume that training data is only
available for the observable states, with the non-observable states functioning as hidden variables dur-
ing training. For each benchmark problem, we take as manufactured training data a single trajectory
of observable states obtained by integrating a reference ODE with known GENERIC structure from a
known initial condition. We then split the sequence into three segments, [0, ttrain], (ttrain, tval], and
(tval, ttest] for training, validation, and test such that 0 < ttrain < tval < ttest.

We employ mini-batching to train all three considered architectures. Each mini-batch consists of multi-
ple short sequences of length L whose initial conditions are randomly chosen from [0, ttrain]. To train
“black-box” neural ODEs, we simply use a stochastic gradient descent (SGD) optimizer to update the
network weights and biases using the mini-batches on the observable states, {xo

` ,x
o
`+1, . . . ,x

o
`+L−1}.

As opposed to the black-box neural ODEs, training the penalty-based approach and the GENERIC
approach requires data to impose mini-batch initial conditions on non-observable states, i.e.,
{x`,x`+1, . . . ,x`+L−1} with x` = [xo

` ,x
u
` ]T, where {xu

` } are unavailable. To address this is-
sue, we propose a training strategy that alternately updates the model parameters and infers the
non-observable states. We start with a guess for the non-observable states. We then alternate between
(1) updating the model parameters using SGD while fixing the current non-observable states and (2)
updating the non-observable states by solving an initial value problem using the most recent model.

Algorithm 1: Neural ODE training
1 Initialize Θ
2 for (i = 0; i < nmax; i = i + 1) do
3 Sample initial points {xo

`(k)}
Nb
k=1, where `(k) ∈ [0, ttrain − L− 1] for k = 1, . . . , Nb

4 x̃o
`(k)+1,. . . ,x̃o

`(k)+L = ODESolve(xo
`(k),fΘ,t1,. . . ,tL) for k = 1, . . . , Nb

5 Compute loss: L(xo
`(k)+m, x̃o

`(k)+m)

6 Update Θ via SGD

For ODESolve, we use the Dormand–Prince method (dopri5) [49] with relative tolerance 10−5 and
absolute tolerance 10−6. The loss function L measures the discrepancy between the ground truth
states and approximate states via mean absolute errors, and the network weights and biases are
updated using Adamax [50] with an initial learning rate 0.01.

In the following, we test the proposed algorithms with two benchmark problems: a damped nonlinear
oscillator and two gas containers problems. Data for all considered benchmark problems can be
found in [51].
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Algorithm 2: Penalty or GENERIC training
1 Initialize Θ and {xu

0 , . . . ,x
u
ttrain}

2 Construct a dataset as xi = [xo
i
T,xu

i
T]T, for i = 0, . . . , ttrain

3 for (i = 0; i < nmax; i = i + 1) do
4 Sample initial points {x`(k)}Nb

k=1, where `(k) ∈ [0, ttrain − L− 1] for k = 1, . . . , Nb

5 x̃`(k)+1,. . . ,x̃`(k)+L = ODESolve(x`(k),fΘ,t1,. . . ,tL) for k = 1, . . . , Nb

6 Compute loss: L(xo
`(k)+m, x̃o

`(k)+m)

7 Update Θ via SGD
8 if i mod nupdate == 0 then
9 x̃1,. . . ,x̃ttrain = ODESolve(x0,fΘ,t1,. . . ,ttrain)

10 Update a dataset as xi = [xo
i
T, x̃u

i
T]T, for i = 0, . . . , ttrain

5.2 Damped nonlinear oscillator

As a first benchmark problem, we consider a damped nonlinear oscillator which exhibits a natural
GENERIC structure:

dq

dt
=

p

m
,

dp

dt
= k sin(q)− γp, dS

dt
=
γq2

mT
, (5)

where (q, p) denote the position and momentum of the particle, and S is the entropy of the surrounding
thermal bath. The constant parameters m, γ, and T represent the mass of the particle, the damping
rate, and the constant temperature of the thermal bath. The total energy of the GENERIC system is

E(q, p, S) = H(q, p) + TS =
p2

2m
− k cos(q) + TS,

where H(q, p) is the Hamiltonian of the particle (the sum of the kinetic and the potential energy).

In this benchmark problem, the observable states consist of the position and the momentum variables,
i.e., xo = [q, p]T. We consider a single non-observable variable, i.e., xu = s. Now, our goal is
to learn a system of ODEs that conforms the GENERIC structure described in Section 4 and infer
the non-observable variable via Algorithm 2. That is, for GNODE, we model Eφ and Sϕ to take
x = [q, p, s]T as an input.

For black-box NODEs, we have tested MLPs with combinations of {2, 3, 4} hidden layers with
{5, 10, 15} neurons and observed the best result with an MLP with 4 hidden layers with 5 neurons
in each layer and hyperbolic tangent (Tanh) activation function. For the penalty-based approach,
we have tested MLPs with combinations of {2, 3, 4} hidden layers with {5, 10, 15} and Tanh for
parameterizing Eφ and Sϕ and observed the best results with MLPs with 3 hidden layers with 5
neurons in each layer. The 3× 3 learnable entries for Lπ and Mρ are considered. We add the penalty
terms (see Section 4.4) that are weighted by 10−4 to the main loss objective. We have also tested
10−2 and 10−6 for weighting, which resulted in significant misfit in data or inconsistency in physics
(i.e., failure to enforce the degeneracy conditions). Lastly, for the GENERIC approach, we have
tested MLPs with combinations of {0, 1, 2} layers with {5, 10} neurons for parameterizing Eφ
and Sϕ and we have observed the best results with an MLP with 1 hidden layer with 10 neurons
and Tanh for parameterizing Eφ, and a linear layer for parameterizing Sϕ. Then, we use 3× 3× 3
skew-symmetric tensor to parameterize ξ, 3 × 3 skew-symmetric tensor to parameterize Λ, and
3 × 1 tensor, d, to parameterize D, i.e., D = ddT. For initializing layers in MLPs, we use the
PYTORCH default uniform distribution and, for initializing learnable entries, we initialize them with
unit normal distribution. We initialize the non-observable variable as xu

` = s` = t` (i.e., setting it to
be monotonically increasing) in Line 1 of Algorithm 2.

The dataset consists of a sequence of 180,000 timesteps with tfinal = 180 (in second) and step
size ∆t = 0.001. We then split the dataset into training, validation, and testing sets such that
ttrain = 20, tval = 40, and ttest = 180. Each mini-batch consists of Nb = 20 subsequences of
length L = 120. The maximum training step is set as nmax = 30000 and the update is performed at
every nupdate = 500 training steps (in Algorithm 2).

In the experiment, we consider m = k = T = 1, and γ = 0.01. The initial condition is given as
x0 = [2, 0, 0]T, where the initial condition for the non-observable variable is arbitrarily set. Results
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of the comparison are given in Figure 1. The results are obtained from 5 independent runs (i.e.,
5 different random seeds). The plots of dS

dt reveal that the soft enforcement of constraints in the
penalty formulation leads to negative entropy production of large magnitude, while the GNODE
approach enforces by construction dS

dt ≥ 0. When extrapolating well beyond the training time interval,
both black-box NODE and the penalty approach have a large standard deviation in the predicted
H . GNODE in contrast learns a nearby entropy which consistently dissipates the correct amount of
energy.

5.3 Two gas containers

The second benchmark problem considers two (ideal) gas containers, separated by a moving wall,
exchanging heat and volume. Here, we are interested in the position and the momentum of the
separating wall, i.e., xo = [q, p]T. This problem possesses a highly nonlinear expression for the
entropy [51]:

dq

dt
=

p

m
,

dp

dt
=

2

3

(
E1

p
− E2

2Lg − p

)
,

dS1

dt
=

9N2k2
Bα

4E1

(
1

E1
− 1

E2

)
,

dS2

dt
= −9N2k2

Bα

4E1

(
1

E1
− 1

E2

)
,

where (q, p) denote the position and momentum of the separating wall and S1 and S2 are the entropies
of the two subsystems. The constants m denotes the mass of the wall, 2Lg is the total length of the
two containers. Following [51], we set NkB = 1, which fixes a characteristic macroscopic unit of

(a) Trajectory (b) dS
dt

– penalty (c) dS
dt

– GNODE

(d) H – NODE (e) H – penalty (f) H – GNODE

Figure 1: For the damped nonlinear oscillator, the physical entropy may be evaluated via the formula
E = H + TS. While all three methods fit training data reasonably well, NODE and the penalty
approach rapidly deviate. An inspection of dS

dt for the penalty method shows that the soft penalty
is insufficient to ensure compatibility with the second law. GNODE is able to consistently learn an
entropy S which closely tracks the physical entropy (E −H)/T .
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(a) Trajectory (b) dS
dt

– penalty (c) dS
dt

– GNODE

(d) H – NODE (e) H – penalty (f) H – GNODE

Figure 2: For the two gas cylinder problem the network must learn a significantly more complex
entropy-energy relationship than in the damped oscillator. The results however are similar; GNODE
provides remarkable improvement in forecasting due to its faithful reproduction of the second law of
thermodynamics (top row, center + right).

entropy, and α = 0.5. The internal energies of the two subsystems has the relationship with the
associated entropies and volumes via the Sackur–Tetrode equation for ideal gases such that

Si
NkB

= ln
[
ĉVi(Ei)

3/2
]
, i = 1, 2,

where ĉ is a constant to ensure the argument of the logarithm dimensionless (set as ĉ = 102.25). The
total energy is given by

E(q, p, S1, S2) = H(q, p) + E1 + E2 =
p2

2m
+ E1 + E2.

Again, the observable states consist of the position and the momentum variables, i.e., xo = [q, p]T.
We consider two non-observable variables, i.e., xu = [s1, s2]T. This problem is more challenging as
the dynamics of the observable variables strongly depends on the dynamics of the non-obesrvable
variables. Now we train GNODE to learn a system of ODEs that conforms the GENERIC structure
described in Section 4 and infer the non-observed variables via Algorithm 2. Again, for GNODE, we
model Eφ and Sϕ to take x = [q, p, s1, s2]T as an input.

For black-box NODEs, we consider an MLP with 4 hidden layers with 5 neurons in each layer and
Tanh as nonlinearity. For the penalty-based approach, we consider MLPs with 3 hidden layers with 5
neurons in each layer and Tanh for parameterizing Eφ and Sϕ, and 3× 3 learnable entries for Lπ
and Mρ. We add the penalty terms that are weighted by 1e − 4 to the main loss objective. Lastly,
for the GENERIC approach, we consider an MLP with 2 hidden layer with 5 neurons and Tanh for
parameterizing Eφ, and 1 hidden layer with 5 neurons and Tanh for parameterizing Sϕ. Then, we use
3× 3× 3 skew-symmetric tensor to parameterize ξ, 4× 4 skew-symmetric tensor to parameterize Λ,
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(a) q – analytic (b) q – GNODE (c) p – analytic (d) p – GNODE

Figure 3: Distribution of q and p at tfinal = 80 for the SDE (4). The standard deviations of (q, p)
for baseline and GNODE are (9.9684× 10−6, 3.1971× 10−5) and (1.6436× 10−6, 3.2972× 10−6),
respectively.

and 4× 1 tensor, d, to parameterize D, i.e., D = ddT. For initializing layers in MLPs, we use the
PYTORCH default uniform distribution and, for initializing learnable entries, we initialize them with
unit normal distribution. The non-observable variables are initialized as s1,` = s2,` = t`.

The dataset consists of a sequence of 30,000 timesteps with tfinal = 30 seconds and step size
∆t = 0.001. We then split the dataset into training, validation, and testing subsets such that
ttrain = 5, tval = 10, and ttest = 30. Each mini-batch consists of Nb = 20 subsequences of length
L = 40. The maximum training step is set as nmax = 50000 and the update is performed at every
nupdate = 500 training steps (in Algorithm 2).

We set m = Lg = 1 and the initial condition is given as x0 = [1, 2, 0, 0]. Again, the initial
condition for the non-observable variables are set arbitrarily. The results are depicted in Figure
2 and demonstrate similar results to the damped oscillator. We depict the results from the best
performing instances for each model out of five independent runs. Both NODE and the penalty
method provide inaccurate forecasting beyond the training set, and the penalty method can be seen to
generate negative entropy violating the second law of thermodynamics, while dS

dt ≥ 0 holds strictly
for GNODE.

5.4 Stochastic damped harmonic oscillator

We finally fit a GNODE model to the system considered Section 5.2 and use the learned E, S, M and
L in the right hand side of the SDE in (4), and compare as a baseline to using instead the analytical
E, S, M , and L from (5). This amounts to driving both the true system and data-driven dynamics
with thermal noise which exactly balances the dissipation, and requires the FDT to hold to realize
stationary statistics.

In this experiment, we consider the damped nonlinear oscillator with m = 10, and γ = 0.16 and the
same neural network architecture considered in Section 5.2. We use a sequence of 80,000 timesteps
(tfinal = 80 and ∆t = 0.0001) to train the neural network. We use the same training strategy that is
used in Section 5.2 (Algorithm 2); the only difference is that we use the mini-batch of size Nb = 40.

For Figure 3 we obtain statistics from solving (4) with tfinal = 80 of Euler–Maruyama [52] with step
size ∆t = 0.001. The mean of the resulting SDE solutions show substantial deviation, consistent
with the fact that training is performed only on deterministic training data and not the SDE, which is
compounded by nonlinearities in the data. However, the standard deviation of the distribution shows
good agreement, suggesting that the FDT enforces thermodynamically consistent energy budget
between dissipation and stochastic forcing.

6 Conclusions

We have constructed a generalization of structure preserving networks for reversible dynamics to
handle dissipative processes. Unlike the reversible case, the bracket structure requires a much more
careful treatment of degeneracy conditions to ensure compatibility with the first and second laws
of thermodynamics. Numerical examples show that our novel parameterization is able to provide
non-decreasing entropy that translates to improved robustness for out-of-distribution forecasting. We
additionally show that exact treatment of dissipative processes allows introduction of thermal forcing
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which satisfies a discrete FDT. To achieve thermodynamically consistent equilibrium distributions in
this setting, we have shown the degeneracy condition must be imposed exactly.

While this work establishes the value of imposing bracket structure for dissipative processes in
terms of generalization, robustness, and physical realizability, the training approach applied here is
applicable only to relatively small systems, restricting its application e.g. to learning dynamics of
reduced-order models. Future work will focus on developing more scalable training strategies for
learning ODEs of many variables.

7 Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National Technol-
ogy and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003530. This paper describes objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government. SAND Number: SAND2021-7461 O.

We thank Chris Eldred for his recommendation to consider Ottingers bracket formulation of
GENERIC. The work of N. Trask, and P. Stinis is supported by the U.S. Department of Energy,
Office of Advanced Scientific Computing Research under the Collaboratory on Mathematics and
Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs) project.
N. Trask and K. Lee are supported by the Department of Energy early career program.

References
[1] Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish

Parashar, Abani Patra, James Sethian, Stefan Wild, et al. Workshop report on basic research needs for
scientific machine learning: Core technologies for artificial intelligence. Technical report, USDOE Office
of Science (SC), Washington, DC (United States), 2019.

[2] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scientific
machine learning. arXiv preprint arXiv:2001.04385, 2020.

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 6572–6583, 2018.

[4] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[5] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. La-
grangian neural networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

[6] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural networks.
In International Conference on Learning Representations, 2019.

[7] Pengzhan Jin, Zhen Zhang, Aiqing Zhu, Yifa Tang, and George Em Karniadakis. Sympnets: Intrinsic
structure-preserving symplectic networks for identifying hamiltonian systems. Neural Networks, 132:166–
179, 2020.

[8] Yunjin Tong, Shiying Xiong, Xingzhe He, Guanghan Pan, and Bo Zhu. Symplectic neural networks in
taylor series form for hamiltonian systems. Journal of Computational Physics, page 110325, 2021.

[9] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, 2017.

[10] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph networks
with ode integrators. arXiv preprint arXiv:1909.12790, 2019.

[11] Partha Guha. Metriplectic structure, leibniz dynamics and dissipative systems. Journal of Mathematical
Analysis and Applications, 326(1):121–136, 2007.

10



[12] Miroslav Grmela and Hans Christian Öttinger. Dynamics and thermodynamics of complex fluids. i.
development of a general formalism. Physical Review E, 56(6):6620, 1997.

[13] Hans Christian Öttinger, Mark A Peletier, and Alberto Montefusco. A framework of nonequilibrium
statistical mechanics. i. role and types of fluctuations. Journal of Non-Equilibrium Thermodynamics,
1(ahead-of-print), 2020.

[14] Alberto Montefusco, Mark A Peletier, and Hans Christian Öttinger. Coarse-graining via the fluctuation-
dissipation theorem and large-deviation theory. arXiv preprint arXiv:1809.07253, 2018.

[15] Hans Christian Öttinger. Generic: Review of successful applications and a challenge for the future. arXiv
preprint arXiv:1810.08470, 2018.

[16] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141, 1963.

[17] Peter Grassberger and Itamar Procaccia. Characterization of strange attractors. Physical review letters,
50(5):346, 1983.

[18] Zhen Gao, Qi Liu, Jan S Hesthaven, Bao-Shan Wang, Wai Sun Don, and Xiao Wen. Non-intrusive
reduced order modeling of convection dominated flows using artificial neural networks with application to
rayleigh-taylor instability. 2021.

[19] Jan S Hesthaven and Cecilia Pagliantini. Structure-preserving reduced basis methods for hamiltonian
systems with a nonlinear poisson structure. EPFL Infoscience, 2018.

[20] Alexandre Chorin and Panagiotis Stinis. Problem reduction, renormalization, and memory. Communica-
tions in Applied Mathematics and Computational Science, 1(1):1–27, 2007.

[21] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model prior
for deep learning. arXiv preprint arXiv:1907.04490, 2019.

[22] Jie Xiong and Tong Zhou. A kalman-filter based approach to identification of time-varying gene regulatory
networks. PloS one, 8(10):e74571, 2013.

[23] Daniel Han, Nickolay Korabel, Runze Chen, Mark Johnston, Anna Gavrilova, Victoria J Allan, Sergei
Fedotov, and Thomas A Waigh. Deciphering anomalous heterogeneous intracellular transport with neural
networks. ELife, 9:e52224, 2020.

[24] Jacob Roth, David A Barajas-Solano, Panos Stinis, Jonathan Weare, and Mihai Anitescu. A kinetic monte
carlo approach for simulating cascading transmission line failure. Multiscale Modeling and Simulation,
19:208–241, 2021.

[25] Martin B Short, P Jeffrey Brantingham, Andrea L Bertozzi, and George E Tita. Dissipation and displace-
ment of hotspots in reaction-diffusion models of crime. Proceedings of the National Academy of Sciences,
107(9):3961–3965, 2010.

[26] Lawrence Sirovich. New perspectives in turbulence. Springer Science & Business Media, 2012.

[27] E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics and
Statistics, 5(1):1–11, 2017.

[28] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations. In International Conference on Machine Learning,
pages 3276–3285. PMLR, 2018.

[29] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[30] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[31] Amir Gholami, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-efficient
gradients for neural odes. arXiv preprint arXiv:1902.10298, 2019.

[32] Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and James
Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode. In International
Conference on Machine Learning, pages 11639–11649. PMLR, 2020.

11



[33] Juntang Zhuang, Nicha C Dvornek, Sekhar Tatikonda, and James S Duncan. Mali: A memory efficient and
reverse accurate integrator for neural odes. arXiv preprint arXiv:2102.04668, 2021.

[34] Tianjun Zhang, Zhewei Yao, Amir Gholami, Kurt Keutzer, Joseph Gonzalez, George Biros, and Michael
Mahoney. Anodev2: A coupled neural ode evolution framework. arXiv preprint arXiv:1906.04596, 2019.

[35] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asma. Dissecting
neural odes. In 34th Conference on Neural Information Processing Systems, NeurIPS 2020. The Neural
Information Processing Systems, 2020.

[36] Alessio Quaglino, Marco Gallieri, Jonathan Masci, and Jan Koutník. SNODE: Spectral discretization of
neural odes for system identification. arXiv preprint arXiv:1906.07038, 2019.

[37] Romit Maulik, Arvind Mohan, Bethany Lusch, Sandeep Madireddy, Prasanna Balaprakash, and Daniel
Livescu. Time-series learning of latent-space dynamics for reduced-order model closure. Physica D:
Nonlinear Phenomena, 405:132368, 2020.

[38] Gavin D Portwood, Peetak P Mitra, Mateus Dias Ribeiro, Tan Minh Nguyen, Balasubramanya T Nadiga,
Juan A Saenz, Michael Chertkov, Animesh Garg, Anima Anandkumar, Andreas Dengel, et al. Turbulence
forecasting via neural ode. arXiv preprint arXiv:1911.05180, 2019.

[39] Kookjin Lee and Eric J Parish. Parameterized neural ordinary differential equations: Applications to
computational physics problems. arXiv preprint arXiv:2010.14685, 2020.

[40] Peter Toth, Danilo J Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and Irina Higgins.
Hamiltonian generative networks. In International Conference on Learning Representations, 2019.

[41] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model prior
for deep learning. In International Conference on Learning Representations, 2018.

[42] In Huh, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin. Time-reversal symmetric ode network. Advances
in Neural Information Processing Systems, 33, 2020.

[43] Nathaniel Trask, Andy Huang, and Xiaozhe Hu. Enforcing exact physics in scientific machine learning: a
data-driven exterior calculus on graphs. arXiv preprint arXiv:2012.11799, 2020.

[44] Kookjin Lee and Kevin Carlberg. Deep conservation: A latent-dynamics model for exact satisfaction of
physical conservation laws. arXiv preprint arXiv:1909.09754, 2019.

[45] Tom Beucler, Stephan Rasp, Michael Pritchard, and Pierre Gentine. Achieving conservation of energy in
neural network emulators for climate modeling. arXiv preprint arXiv:1906.06622, 2019.

[46] Quercus Hernández, Alberto Badías, David González, Francisco Chinesta, and Elías Cueto. Structure-
preserving neural networks. Journal of Computational Physics, 426:109950, 2021.

[47] Hans Christian Oettinger. Irreversible dynamics, onsager-casimir symmetry, and an application to turbu-
lence. Physical Review E, 90(4):042121, 2014.

[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[49] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of computational
and applied mathematics, 6(1):19–26, 1980.

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[51] Xiaocheng Shang and Hans Christian Öttinger. Structure-preserving integrators for dissipative systems
based on reversible–irreversible splitting. Proceedings of the Royal Society A, 476(2234):20190446, 2020.

[52] Peter E Kloeden and Eckhard Platen. Stochastic differential equations. In Numerical Solution of Stochastic
Differential Equations, pages 103–160. Springer, 1992.

12



A Additional experiments

A.1 Damped nonlinear oscillator with the canonical Poisson matrix and measurements on S

In this experiment, we consider the same benchmark problem considered in Section 5.2, but with
different assumptions: i) the Poisson matrix is known a priori, i.e.,

L =

[
0 −1 0
1 0 0
0 0 0

]
,

and ii) the measurement on S is available. Thus, for this experiment, we consider that L and S are
given, and the energy function and the friction matrix are parameterized in the same way as in the
main manuscript: an MLP with 1 hidden layer with 10 neurons and Tanh for parameterizing Eφ,
and 3 × 3 skew-symmetric tensor to parameterize Λ, and 3 × 3 tensor, d, to parameterize D, i.e.,
D = ddT. There is also a small modification in the training algorithm: because we assume that the
measurement on S is available, there is no update procedure for “non-observable” states. We employ
the same hyperparameters for training the neural network as in the main manuscript.

Figure 4 reports the results obtained from 5 independent runs (i.e., 5 different random seeds). Again,
the plots of dS

dt shows that the GNODE approach enforces by construction dS
dt ≥ 0 and learns a

nearby entropy which consistently dissipates the correct amount of energy.

(a) dS
dt

– GNODE (b) H – GNODE

Figure 4: dSdt and H(q, p) for damped nonlinear oscillator with known L and S.

A.2 Nonlinear oscillator without damping

In this experiment, we consider a non-damped-version of the benchmark problem 1 considered in
Section 5.2. That is, the system of ODEs can be written as

dq

dt
=

p

m
,

dp

dt
= k sin(q),

dS

dt
= 0, (6)

and the total energy simply recovers back to the Hamiltonian function,

E(q, p, S) = H(q, p) =
p2

2m
− k cos(q),

where m = k = 1.

We consider the GENERIC approach for parameterizing the dynamics function: an MLP with 1
hidden layer with 10 neurons and Tanh for parameterizing Eφ, and a linear layer for parameterizing
Sϕ, 3×3×3 skew-symmetric tensor to parameterize ξ, 3×3 skew-symmetric tensor to parameterize
Λ, and 3× 3 tensor, d, to parameterize D, i.e., D = ddT.

The dataset is generated by solving the initial value problem associated with Eq. (6) and the initial
condition x0 = [1, 2, 0, 0] for 180,000 timesteps with tfinal = 180 (in second) and step size ∆t =

13



0.001. Again, the dataset is split into training, validation, and testing sets such that ttrain = 20, tval =
40, and ttest = 180. Each mini-batch consists of Nb = 20 subsequences of length L = 120. The
maximum training step is set as nmax = 30000 and the update is performed at every nupdate = 500
training steps (in Algorithm 2).

Figure 5 reports the experimental results obtained from 5 independent runs (i.e.,5 different random
seeds). The conservation of the Hamiltonian is enforced while maintaining dS

dt > 0.

(a) dS
dt

– GNODE (b) H – GNODE

Figure 5: dSdt and H(q, p) for non-damped nonlinear oscillator.

The Poisson matrix L(xxx) and the friction matrix M(xxx) can be assembled by contracting the tensors:

[L]αβ = ξαβγ
∂S

∂xγ
, [M ]αµ = ζαβ,µν

∂E

∂xβ

∂E

∂xν
.

When the matrices are evaluated at the number of sampled coordinates xxx, the diagonal entries of L is
essentially zero (around machine epsilon) and the entries on the third column and the third row are
three to four orders of magnitude smaller than [L]12 ((1,2)-entry) and [L]21 ((2,1)-entry), where the
values of [L]12 = - [L]21 = 4.5475. All the entries of the friction matrix have the magnitudes around
10−8 ∼ 10−5.

B Two gas container for varying initial conditions

Lastly, we consider a scenario where we can generate multiple trajectories for varying initial con-
ditions to construct training/validation/test datasets. We randomly chosen initial conditions for
the canonical coordinates q(t0), p(t0) ∈ [0.5, 1.5] and fixed initial conditions for the entropies
S1(t0) = S2(t0) = 1.5 log(2.0) + ĉ, where the ĉ is a constant introduced in [51] and has the value
102.2476, and generate 320 training, 64 validation, and 64 test sets. All other problem parameters
for characterizing the problem is the same as the one considered in Section 5.3. For generating the
datasets, 5,120 timesteps with tfinal = 5.120 seconds with step size ∆t = 0.001 are considered and
the 4th-order Runge–Kutta is used.

We consider GNODE consisting of two MLPs with 4 hidden layers and 15 neurons in each layer for
parameterizing Eφ and Sϕ, and consider 3× 3× 3 skew-symmetric tensor to parameterize ξ, 4× 4
skew-symmetric tensor to parameterize Λ, and 1× 1 tensor, d, to parameterize D, i.e., D = ddT. For
initializing layers in MLPs, we use the PYTORCH default uniform distribution and, for initializing
learnable entries, we initialize them with unit normal distribution. Again, the non-observable variables
are initialized as s1,` = s2,` = t`. As the length of sequences in the datasets is relatively short (5,120
time steps), in the forward pass, the initial value problem is solved for the entire sequence (i.e., 5,120
time steps).

Figure 6 reports the results obtained from 3 independent runs (i.e., 3 different random seeds):
trajectories of q and p obtained by solving an initial value problem with the learned dynamics
function and an unseen initial condition sampled from the test set. The computed trajectories match
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well with the ground truth trajectory both for q and p with the small values of the standard deviation.
Finally, the plot of dS

dt shows again that the GNODE approach enforces by construction dS
dt ≥ 0.

(a) q trajectory (b) p trajectory

(c) dS
dt

Figure 6: Trajectories of (q,p) and dS
dt for one test instance.
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