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A APPENDIX

A.1 DATASETS

Table 4: Number of experimental (exp. in the header) and computational (comp. in the header)
samples in small and large datasets.

Dataset Exp. Comp. Total
small 0.9k 3.5k 4.4k
large 3.5k 21k 24k

A.2 METRICS

To evaluate the model’s performance separately on experimental and computational data, we imple-
ment a stratified sampling strategy that takes into account the source labels of both data types, which
are stratified and split into 80% training and 20% testing datasets. To evaluate the performance of the
regression models, we adopt two primary metrics: mean absolute error (MAE) and its standard
deviation (STD) across three fixed random seeds to evaluate the performance of these regression
models. These metrics were selected to assess both the accuracy and stability of the model predic-
tions, ensuring robust evaluation of the results. The MAE quantifies the average magnitude of the
errors between the predicted bandgap values ŷi and the true bandgap values yi, defined as:

MAE =
1

n

n∑

i=1

|yi → ŷi|

where n denotes the total number of samples in the dataset. A lower MAE indicates better predictive
accuracy.

The STD captures the variability of the prediction errors, reflecting the spread of the differences
between the predicted values and the true values. It is computed as:

STD =

√√√√ 1

n

n∑

i=1

(
(ŷi → yi)→ ω

)2

where ω = ŷi → yi is the error for the i-th prediction, ω is the mean error across all predictions, and
n is the total number of samples. A lower STD suggests that the errors are more tightly clustered
around their mean, indicating more consistent predictions. The data shuffling is performed using
three fixed random seeds to ensure reproducibility and robustness. The final evaluation results are
reported as the average MAE across the three seeds, along with its corresponding STD.
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A.3 EMBEDDINGS

Figure 2: Process of obtaining a) text embeddings from fine-tuned MatBERT and b) structural em-
bedding from CrystalFormer. BERT model use the same framework SBERT (Reimers & Gurevych,
2019) as the fine-tuned MatBERT to obtain text embeddings. LLaMA-based models like DARWIN,
LLaMA2, use llm2vec (BehnamGhader et al., 2024) while T5 directly uses Sentence-T5 (Ni et al.,
2021)

A.4 ABLATION STUDIES

Our dimensionality reduction experiments evaluate the impact of text embedding dimensions on ma-
terial bandgap prediction performance. On small, reducing contextual and formula embeddings
from 768 to 128 dimensions decreases predictive performance, with MAE increasing from 0.8733
to 0.8872(I)/0.8981(D) for contextual embeddings and from 0.8250 to 0.8977(I)/0.9228(D) for for-
mula embeddings. However, when concatenated with graph embeddings, performance remains com-
parable to original 768-dimensional representations. On large, dimensionality reduction affects
performance more significantly, particularly for formula embeddings, where MAE increases from
0.5658 to 0.6319(I)/0.6819(D). While reducing dimensions may diminish individual feature repre-
sentation, combining with complementary information maintains performance, especially for small
datasets, providing guidance for dimension selection under computational constraints.
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Table 5: Performance comparison between original and reduced dimensions on small and large
datasets.

Data Size Method Dimention MAEexp MAEcomp

Small

Tctx 768 0.8733 0.7657
Tctx(I) 128 0.8872 0.7844
Tctx(D) 128 0.8981 0.8200
Tctx ↑G 768 + 128 0.6098 0.3219
Tctx ↑G(I) 128 + 128 0.6007 0.3220
Tctx ↑G(D) 128 + 128 0.5981 0.3243
Tfml 768 0.8250 0.7943
Tfml(I) 128 0.8977 0.8063
Tfml(D) 128 0.9228 0.8453
Tfml ↑G 768 + 128 0.6039 0.3230
Tfml ↑G(I) 128 + 128 0.5799 0.3356
Tfml ↑G(D) 128 + 128 0.6074 0.3257

Large

Tfml 768 0.5658 0.6742
Tfml(I) 128 0.6319 0.7182
Tfml(D) 128 0.6819 0.7547
Tfml ↑G 768 + 128 0.3671 0.2808
Tfml ↑G(I) 128 + 128 0.3786 0.2763
Tfml ↑G(D) 128 + 128 0.3804 0.2769

Tctx: Contextual embedding; Tfml: Formula embedding; G: Graph embedding; (I): Indirect method (768-
dimensional embedding reduced to 128 dimensions); (D): Direct method (128-dimensional embedding ex-
tracted directly from text model); →: Feature concatenation; MAEexp: Mean Absolute Error of experimental
materials; MAEcomp: Mean Absolute Error of computational materials
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