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ABSTRACT
Localizing text in low-light environments is challenging due to
visual degradations. Although a straightforward solution involves
a two-stage pipeline with low-light image enhancement (LLE) as
the initial step followed by detection, LLE is primarily designed
for human vision rather than machine vision and can accumulate
errors. In this work, we propose an efficient and effective single-
stage approach for localizing text in the dark that circumvents the
need for LLE. We introduce a constrained learning module as an
auxiliary mechanism during the training stage of the text detector.
This module is designed to guide the text detector in preserving
textual spatial features amidst feature map resizing, thus minimiz-
ing the loss of spatial information in texts under low-light visual
degradations. Specifically, we incorporate spatial reconstruction
and spatial semantic constraints within this module to ensure the
text detector acquires essential positional and contextual range
knowledge. Our approach enhances the original text detector’s
ability to identify text’s local topological features using a dynamic
snake feature pyramid network and adopts a bottom-up contour
shaping strategy with a novel rectangular accumulation technique
for accurate delineation of streamlined text features. In addition, we
present a comprehensive low-light dataset for arbitrary-shaped text,
encompassing diverse scenes and languages. Notably, our method
achieves state-of-the-art results on this low-light dataset and ex-
hibits comparable performance on standard normal light datasets.
The code and dataset will be released.

CCS CONCEPTS
• Computing methodologies → Computational photography.

KEYWORDS
Constrained Learning, Low-Light Text Localization

1 INTRODUCTION
Scene text detection plays a crucial role in multimedia understand-
ing, laying the groundwork for tasks such as text recognition, in-
formation extraction, and scene understanding. Approaches to ar-
bitrary scene text detection can usually be divided into two main
categories. Generally, top-down methods [13, 22, 23, 25, 27, 33, 40]
primarily focus on either directly or incrementally delineating the
entire contour and area of the text. In contrast, typical bottom-
up [10, 16, 21, 30, 31] approaches first identify individual text com-
ponents and then assemble them together. Both top-down and
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bottom-up methods, each with their unique strengths, have under-
gone rapid development and achieved remarkable results in the
field of arbitrary shape text detection. Although significant progress
has been made in text detection, detecting arbitrary shape text in
low light conditions remains a significant challenge. Insufficient
lighting leads to visual degradations such as blurred details, reduced
brightness and contrast, and distorted color representation, making
it difficult for both humans and text detectors to locate text. Figure 1
illustrates some examples of the text in low-light scenes.

A straightforward two-stage approach to solving low-light text
detection involves enhancing low-light text images using existing
LLE methods such as [17, 38, 39], followed by applying text detec-
tors to the enhanced images. However, mainstream LLE methods,
tailored for better visual effect for human vision, often overlook the
need of downstream detection tasks. This can lead to the degrada-
tion of text’s inherent features through brightness or color adjust-
ments, often resulting in detection failures, as shown in Figure 1.
Furthermore, the lack of dedicated datasets for arbitrary shape text
detection in low-light conditions has significantly hampered the
validation of methods in real-world scenarios. This has led to an
over-reliance on synthetic data, exacerbating a notable domain gap
in low-light arbitrary shape text detection research.

Consequently, we step outside the “enhance-first, detect-later”
framework and propose a one-stage solution without any pre-
processing enhancement. To address the issue of spatial information
loss in normal-light text detectors caused by degradation factors
such as low illumination and low contrast, we design a spatial-
constrained learning module during the training process. This mod-
ule, guided by two constraints, i.e., Spatial Reconstruction Con-
straint and Spatial Semantic Constraint, effectively preserves and
pinpoints both the positional and contextual range information of
text, which are often at risk of being lost during the spatial resizing
of feature maps.

We further enhance the text detector by focusing on the intrin-
sic characteristics of text and adapting text shaping methods to
low-light scenarios. Unlike general objects, text possesses a unique
topological distribution and streamline structure. We incorporate
Dynamic Snake Convolution [19] (DSC), renowned for its prowess
in preserving tubular topological features, alongside conventional
convolutions to capture the intrinsic characteristics of text in par-
allel. Additionally, we design a self-attention gate to control the
proportions of convolutions and construct a novel feature pyramid
network [9] (FPN) structure, thereby significantly enriching the rep-
resentation of local topological features of text through improved
fusion steps.

Regarding text’s streamline characteristics, the top-down text
detection approaches are somewhat less suitable under low-light
conditions due to limited receptive field and difficulties in global
information acquisition. Therefore, we adopt amore flexible bottom-
up modeling strategy, employing an innovative rectangular accu-
mulation approach for text contour modeling. This strategy enables

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: (a) The visual statistics and examples of low-light text images of different scenes, languages, and lighting conditions in
the newly curated LATeD dataset. All images are enhanced for clearer vision. (b) Single-stage text detectors originally designed
for normal lighting conditions struggle with low-light images. Even with low-light enhancement and fine-tuned with [35]
following a two-stage step, the results remain unsatisfactory. This is because the enhancer, aimed at overall improvement of
visibility, may inadvertently compromise text features.

the creation of a streamlined and flexible representation of text
contours, alleviating the issue of limited receptive fields.

The major contributions of this paper are fourfold:
1) For the first time, we propose a one-stage pipeline for low-

light arbitrary-shaped text detection that effectively utilizes spatial
constraint to adeptly guide the training process.

2) We devise a novel method concentrating on the extraction of
topological distribution features and the modeling of streamline
characteristics to shape low-light text contours effectively.

3) We curate the first low-light arbitrary-shape text dataset
(LATeD) featuring 13,923 multilingual and arbitrary shape texts
across diverse low-light scenes, as shown in Figure 1, effectively
bridging the existing domain gap.

4) Our method, employing a constrained learning strategy and
capturing intrinsic text features, attains state-of-the-art results on
low-light text detection dataset without image enhancement mod-
ules and also excels over SOTAs on similarly well-lit datasets.

2 RELATEDWORKS
Arbitrary ShapeTextDetection:Generally, arbitrary-shape scene
text detection approaches can be divided into two main categories:
the top-down approaches [13, 22, 23, 25, 27, 33, 40] and bottom-
up approaches [10, 16, 21, 30, 31]. Top-down approaches tend to
estimate the overall contour and area of the text directly or pro-
gressively. Some methods, such as those in [8, 25–27, 33], view text
detection as a segmentation task, using the contours of text masks
to delineate final text boundaries. Concurrently, various top-down
techniques have transitioned from segmentation mask prediction
to contour control point generation, employing curve functions or
boundary transformation [13, 23, 37, 40]. For instance, TextRay [23]
exploits Chebyshev curves, while ABCNet [13] and FCENet [40] uti-
lize Bézier and Fourier curves, respectively. The inherent challenge
for top-down methods lies in the necessity to assimilate extensive

global information and enhance the receptive field to adequately
capture the final contours and areas of text.

Bottom-up methods usually begin by pinpointing potential text
components and subsequently combine them, offering a counter
to the challenges posed by top-down methods, notably regard-
ing receptive field constraints and long-range dependency capture.
Bottom-upmethods such as [15, 21] employ heuristic rules to merge
text blocks. Approaches like [16, 29, 36] make use of convolutional
graph neural networks [6] to integrate text blocks. Bottom-up meth-
ods, to some extent, adopt a divide-and-conquer approach, which
facilitates more flexible shape representation and higher tolerance
for receptive field limitations. However, they often require complex
post-processing and NMS (Non-Maximum Suppression) to generate
suitable text components, leading to a rise in computational costs.

Although arbitrary-shaped text detection is a prominent research
topic, current studies rarely address scenarios with insufficient
illumination. Our arbitrary shape text detector adopts a bottom-up
design, modeling the topological and streamline features of text
under low-light conditions while optimizing the selection of text
components and computational complexity.

Low-Light Image Enhancement: Low-light image enhance-
ment aims to uncover image details hidden in dark areas, thereby
improving image quality. Methods like KinD [38] and ZeroDCE [3]
refine existing models with new training losses and heuristic qua-
dratic curves, while approaches such as [12, 17] leverage Retinex-
inspired frameworks and self-calibrated illumination for robust en-
hancement in low-light conditions. It is worth noting that existing
low-light enhancement methods primarily aim to improve images’
visual quality for human vision and often neglect the need of ma-
chine vision of the downstream tasks. Therefore, enhancing human
visual experience does not necessarily translate to improved perfor-
mance of the downstream machine vision tasks. In this paper, we
move beyond the conventional framework of LLE-then-detection,
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Figure 2: The overall structure of the proposed method, where “1/1,256"...indicate the resize ratio and the channel number. The
SCM is only employed during the training stage for assisting spatial information awareness of low-light text.

and develop a low-light text detector based on constrained learning
and effectively capturing the intrinsic characteristics of text.

Text Detection Datasets in Low-Light Scenes:When it comes
to text detection datasets in low-light scenes, the existing datasets
for arbitrary shape text detection [1, 14, 32] have been primarily
collected under normal lighting conditions. Some methods such
as [5, 11] have artificially introduced noise, reduce brightness, and
adjust contrast to synthetically generate low-light text images based
on these mainstream datasets. However, the synthetically gener-
ated low-light text images cannot fully emulate real low-light text
images in terms of pixel appearances, illumination, color, and noise
intensity. Additionally, synthetic methods often target on the en-
tire image, and cannot effectively replicate the inherent visual and
semantic features of low-light text.

Xue et al. [31] introduced a rudimentary dataset for low-light
text detection. However, this dataset is characterized by limited
diversity, including significant scene and text repetition, an aver-
age of fewer than two texts per image, and low-light text images
produced by synthetically dimming daylight photos. It utilizes rect-
angular labeling instead of the more accurate polygonal approach
and contains no curved text samples. To address these limitations
and facilitate research in low-light text detection, we devise a new
multilingual dataset for arbitrary shape text detection across di-
verse adverse scenes. Detailed description and comparison of the
new dataset can be found in Section 4.

3 THE PROPOSED METHOD
3.1 Base Text Detector
The general training process of a base normal-light text detector
can be formulated as:

min
𝜽

Lt (Ψ(u;𝜽 )), (1)

whereLt represents the training loss used to constrain the detected
output derived from the observation u using the text detector Ψ
with a learnable parameter 𝜽 . In environments degraded by low

light, the inherent process of reducing spatial dimensions in deeper
feature maps of text detectors exacerbates the risk of losing or inac-
curately capturing vital text spatial information, such as positional
and contextual range details, thereby increasing the rate of false
detections.

3.2 Spatial-Constrained Modeling
To address the challenges posed by low-light conditions as previ-
ously described, we design a new learning constraint that integrates
spatial information into the learning process of text detector Ψ. This
formulation can be expressed as:

min
𝜽

Lt
(
Ψ(u;𝜽 (𝝑∗))

)
,

𝑠 .𝑡 ., 𝝑∗ = argmin
𝝑

Ls
(
Φ(u; 𝝑 (𝜽 ))

)
.

(2)

Here, the lossLs represents the newly introduced spatial constraint,
designed to extract crucial position and contextual range details of
text in low-light conditions from a spatial auxiliary learning module
Φ (the Spatial-Constrained LearningModule (SCM) in Figure 2) with
learnable parameters 𝝑 to aid in the training process. The objective
of the spatial constrained modeling is to identify an optimal 𝝑∗
that simultaneously minimizes the loss of SCM and the base text
detector. To find the optimal 𝝑∗ in low-light condition, we design
the spatial constraint from a dual-level perspective.

3.2.1 Spatial Reconstruction Constraint. The first level, termed spa-
tial reconstruction loss Lsr, is designed to enable the network to
acquire a wealth of valuable information concerning the recon-
struction of textual positions, thereby ensuring the preservation
of textual spatial information throughout the process of reducing
the dimensions of feature maps. In the training phase, we begin
by creating a text position mask utilizing label information from
the ground truth. Next, the output features (C0 in Figure 2) are
upsampled and integrated with the positional embedding via an
element-wise operation. The resulting merged features are then
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Figure 3: Our approach, bolstered by SCM, DSF, and TSR, effectively captures both the topological structure and the center
location of text components. This is demonstrated in the text center heatmaps (3rd column) and the streamlined text shaping
(4th column). For clarity, images are enhanced. Here, “w/o” denotes “without".

directed to a specially designed decoder for alignment with the
ground truth.

3.2.2 Spatial Semantic Constraint. The second level, known as
spatial semantic loss Lss, aims to align the main network and the
auxiliary learning module on the contextual semantic features of
text after spatial reconstruction. While the spatial reconstruction
loss aids in reclaiming some lost spatial details, the semantic feature
map produced by the auxiliary learning module offers essential
contextual range information for text detection tasks. The Lss can
help to bridge the contextual semantic gap between the auxiliary
learning branch and original text detection branch, and emphasizes
the text regionwith greater focus in both low-light and normal-light
conditions.

3.3 Bottom-up Text Topological Modeling
Upon introducing spatial constraints, we enhance the base text
detector from the perspective of reinforcing the expression and
modeling of text’s topological structure, aiming to better adapt to
low-light environments.

3.3.1 Dynamic Snake FPN (DSF). Text typically exhibits a slender
distribution along its central line, with the strokes of the characters
branching out in various curved directions. Therefore, we have
redesigned the feature pyramid structure, leveraging the advan-
tages of both DSC and conventional convolution by parallelizing
these two convolution operations. This integration meticulously
aims to capture the intricate local topological features inherent in
textual elements, leveraging both the DSC branch and the regular
convolution branch to enhance the detection of text’s topological,
visual, and semantic features.

The DSF is mainly composed of several perceptual modulation
blocks stacked. As shown in Figure 2, the perceptual modulation
block consists of three branches, including a DSC branch, a regular
convolution branch, and a gated self-attention prediction branch,
and the formulation can be written as:

X𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (C𝑖 , F𝑖−1), (3)

V = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐶𝑜𝑛𝑣 (X𝑖 ), 𝐷𝑆𝐶 (X𝑖 )), (4)

F𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝜎 (W𝑄 · V + 𝑏𝑄 ) (𝜎 (W𝐾 · V + 𝑏𝐾 ))𝑇√︁

𝑑𝑘

) · V . (5)

Here, X𝑖 represents the concatenation of feature map C𝑖 with
F 𝑖 − 1, upon which we further concatenate the outputs from both
DSC and conventional convolution applied toX𝑖 , denoted asV . The
𝑊𝑄 and𝑊𝐾 are weight matrices for queries and keys, respectively,
𝑏𝑄 and 𝑏𝐾 are bias terms, 𝜎 represents the nonlinear activation
function, 𝑑𝑘 are the dimensionality of the keys.

3.3.2 Text Shaping with Rotated Rectangular Accumulation (TSR).
Following the text topology capture with DSF, we further employ a
bottom-up shaping approach to enhance the expression of text’s
streamlined topology. Unlike some top-down methods that rely on
text feature map for text shaping, the bottom-up modeling tolerates
errors and needs less intact text feature maps.

For delineating text contours across various lighting conditions,
our process commences with the generation of two typical text
feature maps for scene text detection from the final layer of DSF:
a text map and a text center region. Concurrently, this layer also
generates the geometric attributes of the rotated rectangle that com-
prises the text component, represented by (𝑥,𝑦, ℎ,𝑤, 𝜃 ). Here, (𝑥,𝑦)
designate the center of the rectangle, while (ℎ,𝑤, 𝜃 ) determine the
rectangle’s height, width, and angular orientation.

Taking inspiration from the integration concept, which converts
the calculation of an area into the summation of many small blocks,
we accumulate the rotated rectangular text components to better
fit the natural shapes of text and thereafter generate text contours.
Here, we fixed the width of these rotated rectangles. While the text
center region mask accurately locates the centers of the rotated
rectangles, it can potentially produce an overwhelming number of
candidate rectangles. Recent bottom-up approaches [16, 30, 31, 36]
commonly use NMS to filter through these candidates. However,
NMS does not consider the streamline distribution characteristics
of text, which can result in a failure to ensure a topological distri-
bution consistent with the central region of the text. Furthermore,
NMS depends on certain degrees of randomness and parameter set-
tings, necessitating multiple calculations of overlaps among rotated
rectangles and thereby increasing the computational burden.
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Dataset Illumination Annotation Type Size Text
Length

Text Types Repeat Scene/TextTrain Test Multi. Curve Total
Dataset in [31] Low Light Rectangle 300 200 Short - - 766 Very High
CTW1500 Normal Light Polygon 1,000 500 Long 7,221 3,530 10,751 Low
LATeD Low Light Polygon 1,000 500 Long 9,369 4,554 13,923 Low

Table 1: Comparison between the existing datasets and the newly constructed LATeD dataset. Multi. denotes Multi-oriented.

To address these challenges, our work abandons the NMS ap-
proach and instead adopts Farthest Point Sampling [2] to filter
potential text components. Farthest Point Sampling often used in
point cloud processing to reduce the size point cloud while attempt-
ing to preserve the geometrical and topological structure of the
data. Here we use Farthest Point Sampling to effectively reduces
the number of potential text segment centers while preserving the
linear streamline characteristics of the text center regions. Here
we consider 𝑃 as the final set of potential text components center.
During each selection of potential center selection, we ensure the
chosen point 𝑝 in 𝑃 satisfies the condition of being the farthest from
any point in the text center region𝑇 . This is achieved by computing
the minimum Euclidean distance 𝑑 to 𝑇 :

𝑝 = argmax
𝑝∈𝑃

min
𝑡 ∈𝑇

∥𝑝 − 𝑡 ∥2 . (6)

The dotted lines (rotated rectangle center) in the 4th column of
Figure 3 and 1st column in Figure 4 display the effective filtering of
representative text center points using the Farthest Point Sampling
technique. The cumulative shape of rotated rectangular text com-
ponents accurately reflect the text’s actual contours (more visual
examples are in Supplementary). To accumulate these text com-
ponents, our SCM approach and the DSF have also preserved the
spatial position and topological structure of the text center regions.
Therefore, based on this foundation, we simply need to carry out
a series of straightforward morphological closing operations on
each text center to fill the minor gaps between text components
and within their interiors. As shown in the 3rd column of Figure 3,
even when some text center regions generated with SCM and DSF
support are not particularly intact due to visual degradation, the
TSR still have a chance to accumulate the text regions.

3.4 Loss Function
The overall loss function under spatial constrains is formulated as:

Lt = Lseg + L𝐻 + L𝜃 + Lss + Lsr . (7)

Here, Lseg is the sum of cross-entropy losses for the text map and
text center region. Here, L𝐻 and L𝜃 represent the smoothed 𝐿1
losses for the height and rotation angle of the text component, re-
spectively. The Lss is 𝐿2 loss and the Lsr is the 𝐿1 loss for the text
spatial constraint. The first three losses in the Lt are used to super-
vise the computation of rotated rectangular text components, while
the last two losses represent the spatial constraints we introduced.

4 LATED: LOW-LIGHT ARBITRARY-SHAPE
TEXT DETECTION DATASET

The existing low-light text detection dataset [31] presents several
issues: on average, it contains fewer than two texts per image, ex-
hibits significant scene and text repetition, uses rectangular labeling

Figure 4: Text shapingwith rotated rectangular accumulation
on normal light text images. As shown in the 2nd row, our
method remains unaffected by obstructions, showing reliable
performance in modeling text streamline features.

instead of the more precise polygon labeling, and is limited in size
with no curved text samples. Additionally, ambiguity regarding the
composition of the test and training sets, along with the absence
of specified evaluation criteria, hinders the effective use and repro-
ducibility of this dataset. These challenges significantly impede the
development of low-light arbitrary scene text detection.

Therefore, we created LATeD, a new dataset manually curated
during nighttime from multilingual communities in Sydney and
Melbourne, and tailored specially for arbitrary-shape scene text
detection in low-light environments.

Drawing inspiration from the flagship dataset CTW1500 [14],
which was created for text detection under normal lighting con-
ditions, LATeD surpasses CTW1500 in both the total text count
and the number of curved texts (see Table 1). The LATeD dataset
consists of 1,500 images (1,000 for training and 500 for testing), fea-
turing 13,923 arbitrarily shaped texts, with 4,554 being curved texts.
Each text is accompanied by precise line-level polygon annotations,
providing a valuable resource for low-light text detection research.

Furthermore, LATeD is a multilingual dataset, primarily com-
posed of English and Chinese texts while also containing languages
such as Japanese, Korean, Vietnamese, and Arabic. The dataset
covers a broad spectrum of low-light scenes, ranging from indoor
to outdoor settings and encompassing various mediums such as
standard printed posters to packages, clothes, billboards, road signs,
graffiti, and more.

Detailed statistics regarding light condition, scene and languages
of the two datasets can be found in Table 1 with the visual statistics
and examples of images in the LATeD dataset shown in Figure 1.
Notably, every image in LATeD was 100% manually curated during
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(a) KinD Enhanced (b) ZeroDCE Enhanced (c) RUAS Enhanced (d) SCI Enhanced (e) DDC Enhanced

(f) URetinex Enhanced (g) Fully-trained BPN++ (h) Manually Enhanced (i) Ground Truth (j) Ours
Figure 5: Visual comparison of the text detection results on images from the LATeD dataset. (a)-(f) Texts detected with BPN++
fine-tuned using images enhanced with six different LLE techniques. (g) Texts detected with fully trained BPN++ using low-light
images. (h) Manually enhanced images. (i) Input low-light images with ground-truth bounding boxes. (j) Text detected with our
method.

nighttime frommultilingual communities in Sydney andMelbourne.
To assess text detection accuracy, we simply follow the evaluation
protocol from CTW1500.

5 EXPERIMENTS
To demonstrate the superior performance of the proposed text
detector, we conducted series of experiments comparing our ap-
proachwith SOTAmethods. For low-light text detection, we utilized
the newly created low-light text dataset LATeD. For normal-light
text detection, we utilized CTW1500, Total-text [1] and MSRA-
TD500 [32].

5.1 Implementation Details
The backbone of our network is ResNet50. We first pre-trained it
on the SynthText dataset [4] for 2 epochs using input images of size
640 × 640 pixels. Subsequently, we fine-tuned it for an additional
100 epochs on the MLT dataset [18]. We employed the Adam opti-
mizer with a learning rate initialized at 0.0001, which was reduced
by a factor of 0.1 every 100 epochs. Our data augmentation strat-
egy included random cropping, resizing, color adjustments, noise
injection, flipping, and rotation. The batch size was set to 10 and
the training epoch was set to 250. The training was conducted on
a single NVIDIA RTX A6000 GPU, supported by a 3.60GHz Intel
Xeon Gold 5122 CPU. During testing, input images were resized to
640 × 640 for LATeD and CTW1500, and 640 × 1200 for Total-Text
and 640 × 960 for MSRA-TD500.

5.2 Comparison on Low-Light Text Detection
We benchmarked eleven state-of-the-art (SOTA) methods for arbi-
trary shape scene text detection and six SOTA low-light enhance-
ment techniques across four settings: text detection on low-light
images (“Detection”), text detection on enhanced images (“LLE”),
text detector fine-tuned with enhanced images (“FINE-TUNE”), and
fully trained text detector (“FULLY-TRAINED”). Table 2 compares
the detailed detection results of our approach with the SOTA ap-
proaches under all four settings. Figure 5 visualize the text detection
results of two exemplar images from the LATeD dataset using dif-
ferent approaches.

Setting 1: Text Detection on Low-light Images (Detection): we first
tested eleven text detectors originally designed for normal light
conditions (pretrained on the CTW1500) on low-light images. As
shown in Table 2, unsurprisingly, all of the examined text detectors
performed poorly under low-light conditions with none exceeding
50% F1 scores and BPN++ performing the best. This shows the
limited generalizability of existing text detectors in dealing with
low-light conditions.

Setting 2: Text Detection on Enhanced Images (LLE): We then ap-
plied six different LLE methods to enhance the images in the LATeD
dataset, and used BPN++ as the baseline text detector due to its
superior F1-score, indicating better robustness and generalizability.
As shown in Figure 5 and Table 2 (the “LLE” section), although most
enhancement techniques managed to improve the image visibility
for human eyes, the improvement is insufficient for the downstream
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Task Method Venue LATeD
P(%) R(%) F1(%)

Scene text detection (Detection)
PSENet [25] CVPR’19 53.7 7.5 13.1
PAN [26] ICCV’19 56.4 8.1 14.2
DB [7] AAAI’20 4.6 9.8 13.2

DRRG [36] CVPR’20 73.2 12.2 20.9
ContourNet [36] CVPR’20 61.2 19.5 24.1

Detection TextFuseNet [33] IJCAI’20 21.8 91.8 37.4
FCEnet [40] CVPR’21 15.5 72.4 32.1
TextBPN [37] ICCV’21 21.9 65.9 42.7
DB++ [8] TPAMI’22 61.2 19.6 29.6

DPText [34] AAAI’23 86.7 30.6 45.3
BPN++ [35] TMM’23 73.6 35.3 47.7

Text detection on enhanced images (LLE)
KinD [38] MM’19 88.4 35.9 51.1

ZeroDCE [3] CVPR’20 90.8 37.7 53.3
LLE RUAS [12] CVPR’21 90.4 36.5 52.0

SCI [17] CVPR’22 91.1 34.0 49.5
DDC [39] CVPR’22 88.6 39.1 54.2

URetinex [28] CVPR’22 89.4 34.3 49.6
Fine-tuned on enhanced images (FINE-TUNE)

KinD [38] MM’19 76.0 43.6 55.4
ZeroDCE [3] CVPR’20 78.1 46.6 59.1

Fine-tune RUAS [12] CVPR’21 79.1 48.1 59.8
SCI [17] CVPR’22 78.0 47.7 59.2
DDC [39] CVPR’22 75.2 47.5 58.2

URetinex [28] CVPR’22 72.5 40.8 52.4
Fully trained text detectors (FULLY-TRAINED)

Fully BPN++ [35] TMM’23 74.5 49.5 59.5
Trained Ours - 82.6 57.0 67.1

Table 2: Quantitative comparison of text detection results
obtained on the low-light text detection dataset LATeD under
the four settings.

detectors to perceive the text clearly. These methods fall short when
compared to ours, as they introduced too many visual distortions
and still exhibit gaps with normal light images.

Setting 3: Fine-tuned Text Detectors with Enhanced Images (FINE-
TUNE): To further validate the effectiveness of the “enhance-first,
detect-later” approaches, we enhanced the training images of the
LATeD dataset using various LLE methods [3, 12, 17, 28, 38, 39] and
then fine-tuned the BPN++ on the enhanced training images.

As shown in Figure 5 (a)-(f), some LLE methods such as DDC,
KinD, and URetinex introduced visual distortions, impairing images’
textual information and leading to direct text detection failures.
Other methods such as RUAS and SCI enhanced image brightness,
but misled the downstream text detector at text boundary areas.
These results, however, still cannot match the performance of our
method, which effectively detects text without requiring any LLE
module. The primary reason is that those enhancement techniques
are not designed with downstream tasks in mind, leading to a
semantic gap between enhanced low-light images and those taken
in normal lighting conditions.

Setting 4: Fully Trained Text Detector (FULLY-TRAINED): Given
that LLE techniques are not tailored for downstream text detec-
tion, we trained BPN++ and our method directly on the low-light
images of the LATeD dataset. As shown in Table 2, the F1-scores
obtained with the LLE methods are close to that of the BPN++,
suggesting LLE is tuned for enhanced human visual perception
rather than maximizing downstream performance. Moreover, gen-
eral text detectors such as BPN++ lack targeted guidance on text
spatial information during training for low-light settings, hence
falling short in effectively expressing the local topology and stream-
line features of text. This results in a performance that was not on
par with our purposefully designed method. The detection results
shown in Figure 5 also demonstrate the robustness of our method
for detecting curved texts in low-light environments.

5.3 Comparison on Well-lit Text Detection
In this section, we present experimental results for text detection un-
der normal lighting using the CTW1500, Total-Text [1], and MSRA-
TD500 [32] datasets, following their official evaluation protocols.
Table 3 presents the details results, where “Extend” indicates the
additional datasets used for pre-training in comparative methods.
In our implementation, we used ResNet50 as the primary backbone
for all networks, except for those mentioned in [7] and [8], which
used ResNet50 with deformable convolution.

According to Table 3, our method achieved an F1-score of 86.2%
on CTW1500, surpassing current state-of-the-art methods such
as [20, 35]. Additionally, for arbitrarily shaped short texts at the
word level, our approach established a new state-of-the-art on the
Total-Text dataset with an F1-score of 88.5% and the highest recall
of 86.6%. For long multi-oriented texts under normal lighting, our
method achieved a performance comparable to the state-of-the-art
on the MSRA-TD500 dataset.

The effectiveness of our method is attributed to the combined
use of SCM, DSF, and TSR, crucial for capturing text’s topological
and streamline features in normal lighting. This demonstrates our
method’s potential to deliver high performance and efficiency in
both normal light and low light conditions. Examples of visual
detection results can be found in Figure 6 and supplementary.

5.4 Ablation Study
We further conducted a series of ablation studies on LATeD and
CTW1500 to validate the effectiveness of the proposed modules,
TSR, DSF and SCM, comparing themwith a baseline with a standard
FPN and 0.5 threshold NMS for rotated rectangle text components
but excluding the SCM.

As shown in Table 4, adding the text shaping module TSR into
the baseline model yielded a 0.8% and 0.3% increase in F1-score on
LATeD and CTW1500, respectively, and greatly enhanced inference
speed. This improvement can be attributed to the farthest points
sampling, which helps maintain the text component’s topological
distribution. Our method retained a set number of text components,
avoiding the extensive overlap calculations for numerous candi-
dates required by NMS, thus significantly reducing computation.

Furthermore, after implementing the SCM and TSR, the model’s
F1-score improved by 4.4% and 1.9%, respectively, without any re-
duction in inference speed. SCM, during training, provides cues
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Method Venue Extend CTW1500 Total-Text MSRA-TD500
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

PSENet [25] CVPR’19 MLT 86.9 80.2 83.4 84.0 78.0 80.9 - - -
DB [7] AAAI’20 SynthText 86.9 80.2 83.4 87.1 82.5 84.7 91.5 79.2 84.9

ContourNet [27] CVPR’20 - 83.7 84.1 83.9 86.9 83.9 85.4 - - -
TextFuseNet[33] IJCAI’20 SynthText 85.0 85.8 85.4 87.5 83.2 85.3 - - -

DRRG [36] CVPR’20 MLT 85.9 83.0 84.4 86.5 84.9 85.7 88.1 82.3 85.1
FCENet [40] CVPR’21 - 85.7 80.7 83.1 87.4 79.8 83.4 - - -
TextBPN [37] ICCV’21 MLT 86.5 83.6 85.5 90.7 85.2 87.9 86.6 84.5 85.6
FSGNet [22] CVPR’22 MLT 88.1 82.4 85.2 90.7 85.7 88.1 - - -
DB++ [8] TPAMI’22 SynthText 87.9 82.8 85.3 88.9 83.2 86.0 91.5 83.3 87.2
SIR [20] MM’23 Syn 87.4 83.7 85.5 90.9 85.6 88.2 93.6 86.0 89.6
MTM [24] MM’23 Syn 85.8 83.4 84.6 89.6 82.1 85.7 90.3 81.4 85.6
BPN++ [35] TMM’23 MLT 87.3 83.8 85.5 91.8 85.3 88.5 89.2 85.4 87.3

Ours - MLT 88.7 83.9 86.2 90.4 86.6 88.5 91.0 83.5 87.1

Table 3: Text detection results on CTW1500, TOTAL-TEXT and MSRA-TD500.

SCM DSF TSR LATeD CTW1500
FPS P(%) R(%) F1(%) FPS P(%) R(%) F1(%)

× × × 2.1 78.8 47.9 59.6 2.2 84.1 80.6 82.3
× × ✓ 10.9 80.8 48.2 60.4 11.1 84.2 81.0 82.6
✓ × ✓ 10.9 81.5 52.7 64.0 11.1 85.1 83.4 84.2
× ✓ ✓ 10.2 79.8 51.1 62.3 10.4 84.9 82.9 83.8
✓ ✓ ✓ 10.2 82.8 55.4 66.4 10.4 86.2 83.5 84.8

Table 4: Ablation study on the effectiveness of the proposed
SCM, DSF and TSR on the LATeD and CTW1500 dataset.

Figure 6: Visualization of text detection results on well-lit
datasets (see Supplementary for more visual examples).

about the text’s spatial information, aiding the network in per-
ceiving text locations under low contrast and degraded low light
conditions. Similarly, under normal lighting, SCM continues to
provide spatial information for the text detection task, facilitating
precise detection of the center location of text components.

After replacing the FPN structure with our designed DSF and in-
corporating our text shapingmethod, the F1-score improved by 2.7%
and 1.5% on the two datasets, respectively. These improvements
are due to the DSF’s adaptive weighting of regular convolution and
DSC operations, focusing on capturing the topological features of
text, thereby generating more reliable text center region and geo-
metric features of text components. As demonstrated in the third
column of Figure 3, the absence of SCM and DSF led to ineffective
detection of the topological structure of text center in low-light
conditions, resulting in low-confidence outcomes and inaccurate
disconnections of text center.

Utilizing SCM, DSF, and TSR, our model achieved F1-scores of
66.4% and 84.8% on the two datasets, respectively. This represents
an increase of 6.8% and 2.5% in F1-score over the baseline. The
efficacy of our method in both low light and normal light condi-
tions stemmed from its precision in providing spatial cues for text
location and its capacity to preserve text’s topological streamline
and features. When allied with a bottom-up design approach, these
attributes were instrumental in sustaining long-range dependen-
cies, crucial for precise text detection. The fourth column’s results
highlighted in Figure 3 and second row’s results in Figure 4 show
the TSR method’s effectiveness in sampling text components and
maintaining text streamline features.

6 CONCLUSION
In this work, we crafted a constrained learning module that capital-
izes on spacial information of text, thereby enhancing the efficacy
of text detectors in low-light environments. Our approach, integrat-
ing Dynamic Snake FPN with a rectangular, bottom-up text contour
shaping method, marks a significant advancement in accurately
representing text’s topological distribution and streamline features.
This innovative methodology has enabled us to achieve state-of-
the-art results in both low-light and normal-light text detection
datasets. In addition, we have created an extensive and diverse
dataset for arbitrary-shaped text specific to low-light conditions,
encompassing a broad spectrum of scenes and languages, thereby
significantly enhancing the resources available in this research area.
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