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1. The space H is called as the reproducing kernel Hilbert space (RKHS) if 8x 2 X , the
evaluation functional Ex : H ! K defined as Ex(f) := f(x), f 2 H is continuous.

2. A function k : X ⇥X ! K is called reproducing kernel of H if we have:

(a) k(·, x) 2 H 8x 2 X , that is kk(·, x)kH < 1, and

(b) k(·, ·) has the reproducing property; that is

f(x) = hf, k(·, x)iH 8f 2 H and x 2 X.

The norm convergence yields the point-wise convergence inside RKHS. This fact can be readily
learned due to the continuity of evaluation functional. This is demonstrated as follows for an arbi-
trary f 2 H and {fn}n 2 H with kf � fnkH ! 0 as n ! 1, then

lim
n!1

fn(x) = lim
n!1

Ex (fn) =(continuity of Ex) Ex (f) = f(x).

After we recall the definition of RKHS from Definition A.1, for an upcoming theorem we recall
following MOORE-ARONSZAJN Theorem.

Theorem A.1 (Aronszajn (1950)). Let H be an RKHS over an nonempty set X , Then k : X⇥X !
K defined as k(x, x0) := hEx, Ex0iH for x, x0 2 X is the only reproducing kernel of H . Additionally,
for some index set I, if we have {ei}i2I as an orthonormal basis then for all x, x0 2 X , we have

k(x, x0) =
X

i2I
ei(x)ei(x0), (14)

with an absolute convergence.

We need to first construct the RKHS of the Laplacian Kernel which we will do by embedding it as
an L2�measure. After that we have determined the RKHS (H�,1,Cn) of the Laplacian Kernel as
L2�measure (Theorem 3.1), we then learn the interplay of the Koopman operators over the RKHS
H�,1,Cn . This is performed by determining which bounded Koopman operators (Theorem A.12) is
able to act compactly over the RKHS H�,1,Cn . Such quantification is paramount because it guides
us in executing the Lap-KeDMD algorithm to recover ST modes by employing the finite rank rep-
resentation of Koopman operators (Interaction-Matrix I := [I]

i⇥j
in Step 2 in Algorithm 2). We

settle the compactness quantification (Theorem A.19) of the bounded Koopman operators over this
RKHS by limiting the essential norm (Theorem A.18) (which measures the norm distance of the
Koopman operator to the set of compact operators Shapiro (1987)). Once, we establish the com-
pactness quantification of Koopman operators, we immediately shift our focus on demonstrating its
closability over H�,1,Cn .

A.2 ORTHONORMAL BASIS

We will be providing the orthonormal basis (ONB) for the Hilbert space H�,1,Cn generated by the
measure dµ�,1,Cn(z) embedded into the L2�measure. Following lemma directs us in that direction.

Lemma A.2. For � > 0, N and M 2 W, we have

hzN , zM i�,C =

Z

C
zNzMe�

|z|
� dA(z) = 2⇡�2�N+M (N +M + 1)!�NM ,

where h·, ·i�,C is the same inner-product as given in equation 8 but over C.
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Proof.

hzN , zM i�,C =

Z

C
zNzMe�

|z|
� dA(z)

=

Z 2⇡

0

Z 1

0
rNrMei(N�M)✓e�

r
� rdrd✓

=2⇡�NM

Z 1

0
rN+M+1e�

r
� dr

=2⇡�NM

�(N +M + 1 + 1)

(1/�)N+M+2

=2⇡�NM

(N +M + 1)!

(1/�)N+M+2

=2⇡�2�N+M (N +M + 1)!�NM .

Theorem A.3. For � > 0 and N 2 W, define {eN}
N2W : C ! C by

eN (z) :=

s
1

�2N (2N + 1)!
zN . (15)

The tensor-product system2 (eN1 ⌦ · · ·⌦ eNn)N1,...Nn�0 is the ONB of Hilbert space H�,1,Cn .

Proof. We establish our initial stage of result for single-dimension case to ease our understanding.
For this, let us show that {eN}

N2W forms an orthonormal system. So, consider z 2 C and let
M,N 2 W. Then,

heN , eM i�,C =

Z

C
eN (z)eM (z)dµ�,C(z)

=
1

2⇡�2

Z

C

s
1

�2N (2N + 1)!
zN

s
1

�2M (2M + 1)!
zMe�

|z|
� dA(z)

=
1

2⇡�2

s
1

�2N (2N + 1)!

s
1

�2M (2M + 1)!
· 2⇡�2�N+M (N +M + 1)!�NM .

=

(
1 if N = M

0 otherwise
(Lemma A.2).

The above result concludes that {en}n2W is actually an orthonormal system with respect to nor-
malized Laplacian measure in C. Now, we have to establish that this orthonormal system is also
complete. So, for this, pick f 2 H�,1,C with f(z) =

P1
l=0 alz

l and observe that

hf, eN i�,C =
1

2⇡�2

Z

C
f(z)eN (z)dµ�,C

=
1

2⇡�2

s
1

�2N (2N + 1)!

Z

C
f(z)zNe�

|z|
� dA(z)

=
1

2⇡�2

s
1

�2N (2N + 1)!

1X

l=0

al

Z

C
zlzNe�

|z|
� dA(z)

=
1

2⇡�2

s
1

�2N (2N + 1)!

1X

l=0

al · 2⇡�2�l+N (l +N + 1)!�lN

=
q
�2N (2N + 1)!aN .

2We recall the tensor product between two functions, say f1, f2 : X ! K given as f1⌦f2 : X⇥X ! K.
Then, for all x, x0 2 X the tensor product f1 ⌦ f2 is defined as f1 ⌦ f2(x, x

0) := f1(x)f2(x
0).
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For a given � > 0, since the constant
q

1
�2N (2N+1)! 6= 0 for any N 2 W, therefore this directly

imply that hf, eN i�,C = 0 if and only if aN = 0, which results into f ⌘ 0. Hence, {eN}
N2W is

complete. Now, we establish the same result but in n�dimensional case and to this end, we will
employ the tensor product notation by considering multi-index notation for N,M 2 W as follows:

heN1 ⌦ · · ·⌦ eNn , eM1 ⌦ · · ·⌦ eMni�,Cn =
nY

j=1

heNj , eMj i�,C.

Hence the orthonormality of {eN1 ⌦ · · ·⌦ eNn}N1,...Nn2,Wn is established due to the orthonormal-
ity of each individual heNj , eMj i�,C. We still need to ensure that this n�dimensional orthonormal
system is complete. We observe

hf, eN1 ⌦ · · ·⌦ eNni�,1,Cn =

✓
1

2⇡�2

◆n Z

Cn

f(z)eN1 ⌦ · · ·⌦ eNn (z)dµ�,1,Cn (z)

=

✓
1

2⇡�2

◆n 1X

l1,...,ln

al1,...,lnIl,n,

where Il,n =
R
Cn zl (eN1 ⌦ · · ·⌦ eNn (z)) dµ�,1,Cn (z). We further can simplify Il,n as:

Il,n =

Z

Cn

zleN1(z1) ^ · · · ^ eNn(zd)dµ�,C(z1) ^ · · · ^ dµ�,C(zn)

=
nY

j=1

✓Z

C
z
lj

j
eNj (zj)dµ�,C(zj)

◆

=
nY

j=1

✓Z

C
z
lj

j
zj

Njdµ�,C(zj)

◆

=
nY

j=1

�
2⇡�2�lj+Nj (lj +Nj + 1)!

�
�ljNj .

Finally,
✓

1

2⇡�2

◆n 1X

l1,...,ln

al1,...,lnIl,n =

0

@
nY

j=1

q
�2Nj (2Nj + 1)!

1

A aN1,...,Nn .

Further result for completeness in n�dimension follows a routine procedure from single-dimension
case as already discussed before.

A.3 PROOF OF THEOREM 3.1

Proof. We have determined the orthonormal basis given by eN (z) in Theorem A.3 present in Sub-
subsection A.2 for the Hilbert space H�,1,Cn . We will use it to construct the reproducing kernel for
H�,1,Cn which eventually makes it the RKHS by recalling Theorem A.1. So,

K� (z,w) =
X

N2W
eN (z) eN (w) =

1X

N=0

1

(2N + 1)!

 
zw>

�2

!N

=

sinh

✓q
zw>/�2

◆

r⇣
zw>/�2

⌘ .

Hence, the result is now established.

A.4 HELPER PROOFS FOR THEOREM A.12

Lemma A.4. 8 z 2 Cn, the norm of the reproducing kernel K�

z of RKHS H�,1,Cn satisfies:

exp

✓
1

2


kzk2
�

coth
kzk2
�

� 1

�◆
<(1) kK�

z k2 <(2) exp

✓
kzk22
6�2

◆
. (16)
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Proof. We will employ the Weierstrass factorization theorem (cf. (Stein & Shakarchi, 2010, Chapter
5)) for sinh ⇣/⇣ followed by taking the ‘log’ as demonstrated follows:

sinh ⇣

⇣
=

1Y

j=1

✓
1 +

⇣2

j2⇡2

◆
=) log

sinh ⇣

⇣
=

1X

j=1

log

✓
1 +

⇣2

j2⇡2

◆
.

To establish INEQUALITY (2), we define g2 : R+ [ {0} ! R+ [ {0} by g2 (x) = x � log(1 + x)
for x 2 R+ [ {0}. Then g2(x) � 0 whenever x 2 R+ [ {0}. Hence, we conclude now that
g2

⇣
⇣
2

j2⇡2

⌘
> 0 whenever j � 1. Therefore log

⇣
1 + ⇣

2

j2⇡2

⌘
< ⇣

2

j2⇡2 . Hence, taking the summation
of this over j 2 Z+, we have

log
sinh ⇣

⇣
=

1X

j=1

log

✓
1 +

⇣2

j2⇡2

◆
<

1X

j=1

⇣2

j2⇡2
=
⇣2

⇡2

1X

j=1

1

j2
=
⇣2

⇡2
· ⇡

2

6
=
⇣2

6
.

Taking the exponentiation of above yields sinh ⇣

⇣
< exp

⇣
⇣
2

6

⌘
and with ⇣ 7! kzkCn/�, we have finally:

kK�

z k2 =

✓
kzk2
�

◆�1

· sinh
✓
kzk2
�

◆
< exp

✓
kzk22
6�2

◆
. (17)

Now, we provide the lower bound for the same. To establish INEQUALITY (1), we define g1 :
R+ [ {0} ! R+ [ {0} by g1 (x) = log(1 + x) � x

1+x
for x 2 R+ [ {0}. Then g1(x) � 0

whenever x 2 R+ [ {0}. Hence we conclude now that g1
⇣

⇣
2

j2⇡2

⌘
> 0 whenever j � 1. Therefore,

⇣
2

j2⇡2+⇣2 < log
⇣
1 + ⇣

2

j2⇡2

⌘
. Hence, taking the summation of this over j 2 Z+, we have

log
sinh ⇣

⇣
=

1X

j=1

log

✓
1 +

⇣2

j2⇡2

◆

>
1X

j=1

⇣2

j2⇡2 + ⇣2

=
⇣2

⇡2

"
1

2

"
⇡
⇣

⇡

coth

✓
⇣

⇡
⇡

◆
� 1

⇣2

⇡2

##
((Stein & Shakarchi, 2010, Page 128(#6)))

=
1

2
[⇣ coth ⇣ � 1] .

Exponentiation of above yields exp
�
1
2 [⇣ coth ⇣ � 1]

�
< sinh ⇣

⇣
and with ⇣ 7! kzk2/�, we have:

exp

✓
1

2


kzk2
�

coth
kzk2
�

� 1

�◆
<

✓
kzk2
�

◆�1

· sinh kzk2
�

= kK�

z k2. (18)

Lemma A.5. The adjoint of K' denoted by K⇤
'

satisfies K⇤
'
K�

z = K�

'(z) over the RKHS H�,1,Cn .

Proof. Let f 2 H�,1,Cn and pick an arbitrary z 2 Cn, then

hf,K⇤
'
K�

z i = hK'f,K
�

z i = K'f(z) = f (' (z)) = hf,K�

'(z)i.

Hence, the desired result is achieved.

Lemma A.5 makes us realize that the set of reproducing kernel {K�

z : z 2 Cn} is invariant under
the adjoint of K' (Cowen, 1983, Chapter 1). Additionally the relation defined in the above lemma
provides the unique relationship of K⇤

'
K�

z via the inner product of the RKHS H�,1,Cn and hence
we can have the Koopman operator K' as to be densely defined over the RKHS H�,1,Cn (Rudin,
1991, Chapter 13, Page 348) and also the adjoint of the Koopman operator is now close in the RKHS
H�,1,Cn (Rudin, 1991, Theorem 13.9).
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Lemma A.6. Let  : Cn ! C be holomorphic on a complex domain containing the closed unit
ball. If  (z) =

P1
|j|=0 ajz

j , then

(2⇡)�n

Z
⇡

�⇡

· · ·
Z

⇡

�⇡

| (z)|2d# =
X

|j|=0

|aj |2r2j , aj 2 C.

Proof. Recall that (2⇡)�1
R
⇡

�⇡
ei(j�k)# d# = �j,k. As  (z) =

P
|j|=0 ajz

j , then:

| (z)|2 =  (z) (z) =
X

|j|=0

X

|k|=0

ajakz
jzk

=
X

|j|=0

X

|k|=0

ajakr
j+kei(j�k)✓

=
X

|j|=0

X

|k|=0

ajakr
j1+k1
1 · · · rjn+kn

n

 
nY

l=1

ei(jl�kl)✓l

!
.

So,

Z
⇡

�⇡

· · ·
Z

⇡

�⇡

| (z)|2d# =
X

|j|=0

X

|k|=0

ajakr
j1+k1
1 · · · rjn+kn

n

l�timesz }| {Z
⇡

�⇡

· · ·
Z

⇡

�⇡

 
nY

l=1

ei(jl�kl)#ld#l

!

=
X

|j|=0

X

|k|=0

ajakr
j1+k1
1 · · · rjn+kn

n
[(2⇡)n�j1k1 · · · �jnkn ]

=(2⇡)n
X

|j|=0

|aj |2r2j .

Therefore, multiplying by (2⇡)�n in the last equality furnishes the desired proof.

Proposition A.7 (Jensen’s convex inequality). Let (⌦,⌃, µ) be a probability space, and g a real-
valued function that is µ-integrable. If  is a convex function then,

 

✓Z

⌦
g dµ

◆

Z

⌦
 � g dµ.

Proof. See (Garnett, 2007, Lemma 6.1, Page 33).

Lemma A.8. Let ⌅ : Cn ! Cn be a holomorphic mapping with ⌅ ⌘ (⇠1, . . . , ⇠n) 2 Cn, where
each {⇠}

i=1,...,n are coordinate functions of ⌅ from Cn ! C which are holomorphic. As k⌅ (z) k2
be the Euclidean-norm in Cn at z 2 Cn, then following is satisfied for any ↵ � 1,

✓Z

rBn

k⌅ (z) k22dP(z)
◆↵


Z

rBn

k⌅ (z) k2↵2 dP(z),

where rBn := {z 2 Cn : kzk2  r} for some r > 0 against probability measure dµ(z) := dP(z).

Proof. We will use the Jensen’s convex inequality Proposition A.7 against the probability measure
dP(z) over rBn. We take  ↵ : R+ ! R+ defined by  ↵(x) = x↵ for some ↵ � 1, then  ↵ is a
convex function (Boyd & Vandenberghe (2004)). Now, k⌅ (z) k22 =

P
n

i=1 |⇠i(z)|2 is a real-valued
function integrable with respect to dP(z) over rBn. Thus, we have

 ↵

✓Z

rBn

k⌅ (z) k22dP(z)
◆

=

✓Z

rBn

k⌅ (z) k22dP(z)
◆↵

(19)

by the definition of  ↵. On the other hand,
Z

rBn

 ↵ � k⌅(z)k22dP(z) =
Z

rBn

�
k⌅(z)k22

�↵
dP(z) =

Z

rBn

k⌅(z)k2↵2 dP(z). (20)

Combining the result of equation 19, equation 20 together with the result of Proposition A.7, we
achieve the desired result.
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Proposition A.9. If F is an entire function that satisfy sup|z|=R
|F (z)|  ARk + B 8 R > 0 and

for some integer k � 0 and some constants A,B > 0, then F is a polynomial of degree  k.

Proof. Follow (Stein & Shakarchi, 2010, Chapter-3, Exercise-15(a), Page 105-106).

We give a key proposition before we give the main theorem related to the boundedness of the Koop-
man operators over the RKHS H�,1,Cn .
Proposition A.10. Let there be a positive finite M such that for a holomorphic function ' : Cn !
Cn. Let z 2 Cn, and suppose following holds:


sinh (k'(z)k2/�)

k'(z)k2/�

� 1
2

·

sinh (kzk2/�)

kzk2/�

�� 1
2

< M.

If 0 < k'k2  ⇡�, then '(z) = Az+b, A 2 Cn⇥n with 0 < kAk2  1 and b is a complex vector.

Proof. The validity of given inequality still holds even if we square it followed by taking log, so

log


sinh (k'(z)k2/�)

k'(z)k2/�

�
< log(M2) + log


sinh (kzk2/�)

kzk2/�

�
.

We can now use the results of Lemma A.4 in the above inequality to result into following:
1

2


k'(z)k2

�
coth

✓
k'(z)k2

�

◆
� 1

�
< log(M2) +

kzk22
6�2

=) k'(z)k2
�

coth

✓
k'(z)k2

�

◆
<2 log(M2) + 1 +

kzk22
3�2

. (21)

Now, to further simplify the above inequality, we will simply employ the infinite series expansion of
an entire coth(•) which involves the presence of Bernoulli’s number {Bj}j2W; defined as cothx =
P1

j=0
22nB2n
(2n)! x2n�1. The above equation can be explicitly written as x cothx = 1 + 22B2

2! x2 +
P1

j=2
22jB2j

(2j)! x2j under the additional assumption of 0 < |x| < ⇡. Here, for j = 1, we have
B2 = 1/6, so x 7! k'(z)k2/� in above yields:

k'(z)k2
�

coth

✓
k'(z)k2

�

◆
= 1 +

1

3

✓
k'(z)k2

�

◆2

+
1X

j=2

22nB2n

(2n)!

✓
k'(z)k2

�

◆2j

. (22)

Using the result of equation 22 in equation 21 to have following:

1 +
1

3

✓
k'(z)k2

�

◆2

+
1X

j=2

22jB2j

(2j)!

✓
k'(z)k2

�

◆2j

<2 log(M2) + 1 +
kzk22
3�2

k'(z)k22 + (3�2)
1X

j=2

22jB2j

(2j)!�2j
k'(z)k2j2 <2 log(M2) + kzk22. (23)

Considering ' ⌘ ('1(z), . . . ,'n(z))
> 2 Cn, where each {'i}i=1,...,n is a coordinate function of

' and is a holomorphic mapping from Cn ! C, then k'(z)k22 =
P

n

i=1 |'i(z)|2. Therefore, with
z = (z1, . . . , zn)

> 2 Cn and kzk22 =
P

n

i=1 |zi|2, we see that
(

nX

i=1

⇥
|'i(z)|2 � |zi|2

⇤
)

+

8
<

:(3�2)
1X

j=2

22jB2j

(2j)!�2j
k'(z)k2j2

9
=

; < 2 log(M2).

Integrating above with respect to # on rBn to have
(Z

rBn

nX

i=1

⇥
|'i(z)|2 � |zi|2

⇤ d#

(2⇡)n

)

+

8
<

:(3�2)
1X

j=2

22jB2j

(2j)!�2j

Z

rBn

k'(z)k2j2
d#

(2⇡)n

9
=

; < 2 log(M2). (24)
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As here, the infinite summation starts with j � 2 > 1, therefore by the application of Lemma A.8,
we can have following conclusion

(Z

rBn

nX

i=1

⇥
|'i(z)|2 � |zi|2

⇤ d#

(2⇡)n

)

(�)

+

8
<

:(3�2)
1X

j=2

22jB2j

(2j)!�2j(2⇡)nj

✓Z

rBn

k'(z)k22d#
◆j

9
=

;
(|)

 LHS of equation 24

<2 log(M2).

Here we are using {•}
(�)

and {•}
(|)

to provide smooth understanding of respective manipulations
that are happening on respective quantities present inside the curly brackets. Therefore,

(Z

rBn

nX

i=1

⇥
|'i(z)|2 � |zi|2

⇤ d#

(2⇡)n

)

(�)

+

8
<

:(3�2)
1X

j=2

22jB2j

(2j)!�2j(2⇡)nj

✓Z

rBn

k'(z)k22d#
◆j

9
=

;
(|)

< 2 log(M2).

The above inequality can be simplified into following (term by term) in terms of r along with the
help of multi-index notation:

8
<

:
X

|j|=0

|ak
j
|2r2j11 · . . . · r2jn

n
�

nX

`=1

r2
`

9
=

;
(�)

+

8
><

>:
(3�2)

1X

j=2

22jB2j

(2j)!�2j(2⇡)nj

0

@
X

|j|=0

|ak
j
|2r2j11 · . . . · r2jn

n

1

A
j
9
>=

>;
(|)

< 2 log(M2).

Note that, here we used a super-script of k to indicate this a decomposition of the k-th component of
the function '. Further, if we let ei be the multi-index with a 1 in the i-th spot and zeros else where,
then the above rearranges to:

8
>><

>>:

†(r)z }| {X

|j|=2

|ak
j
|2r2j11 · . . . · r2jn

n
+|ak0 |2 +

nX

`=0

(|ak
e`
|2 � 1)r2

`

9
>>=

>>;
(�)

+

8
>>>>><

>>>>>:

(3�2)
1X

j=2

22jB2j

(2j)!�2j(2⇡)nj

0

BBBBB@

X

|j|=0

|ak
j
|2r2j11 · . . . · r2jn

n

| {z }
‡(r)

1

CCCCCA

j
9
>>>>>=

>>>>>;
(|)

< 2 log(M2).

This inequality is true for all r = (r1, . . . , rn)> 2 Rn

+. Both quantities †(r) and ‡(r) grow in
the Big-O complexity rate, that is †(r) / O(r) & ‡ (r) / O(rj) as r ! 1. Therefore, by the
application of Proposition A.9) in this inequality, we conclude that |ak

j
| = 0 for j � 2 in †(r).

Similarly, Proposition A.9) forces to ‡(r) be 0 as well. Hence, with the relabeling of the coordinate
function of ' as 'k(z) = ak,1z1+ · · ·+ak,nzn+bk. Thus, '(z) = Az+b where, A = [ak,j ]

n,n

k,j=1

and b = (b1, . . . , bn)>. This particular structure is called as an affine structure. Now, that we have
both †(r) and ‡(r) are 0 and '(z) = Az + b, we revisit equation 23 to have

kAz + bk22 < 2 log(M2) + kzk22 =) lim
kzk!1

kAz + bk22
kzk22

< 1.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

If kAz̃k2 > kz̃k2 = 1 for some z̃ 2 Cn whose norm is 1. Setting z = tz̃ and t > 0 in above
yields:

lim
t!1

����Az̃ +
1

t
b

����
2

kz̃k2
< 1,

which is a contradiction. Therefore, kAk2  1.

We give an important inequality for the action of the Koopman operators on the normalized repro-
ducing kernel k�

z := K
�
z/kK�

z k satisfying kk�

zk = 1.This result is captured in the following lemma.

Lemma A.11. If for some z 2 Cn, k�

z 2 D (K'), then
p
⇧z (';�)  kK'k�

zk.

Proof. The proof of the above result involves the application of point-evaluation inequality for the
RKHS H�,1,Cn . Further details are given as follows:

kK'k
�

zk2kK�

z k2 � |K'k
�

'(z) (z) |2 = |k�

'(z) ('(z)) |2.

As |k�

'(z)| = |K�
'(z)/kK�

'(z)k|, hence |k�

'(z) ('(z)) | = |K�
'(z)('(z))/kK�

'(z)k| = |kK�
'(z)k

2/kK�
'(z)k| =

kK�

'(z)k. From this result and above, we have

kK'k
�

zk2kK�

z k2 � kK�

'(z)k2 = kK⇤
'
K�

z k2.

Therefore, further dividing above by kK�

z k2 6= 0 to have kK'k�

zk2 � kK⇤
'K

�
z k2

kK�
z k2 = ⇧z (';�) .

Desired result follows by taking the square-root of above. Hence proved!

A.5 BOUNDEDNESS OF KOOPMAN OPERATORS OVER THE RKHS H�,1,Cn

Theorem A.12. K' acts boundedly over H�,1,Cn () '(z) = Az + b, where kAk2  1 and
⇧ (';�) < 1.

Proof. =) Suppose that the '-induced Koopman operator is bounded over RKHS H�,1,Cn ,
which means that there exists a finite positive M such that kK'k2 < M . As kK⇤

'
k2 =

kK'k2 (cf. Hall (2013)) and hence kK⇤
'
k2 < M < 1. Now, observe that

1 > M > kK⇤
'
k2 = sup

z2Cn

kK⇤
'
K�

z k2

kK�
z k2

�
kK⇤

'
K�

z k2

kK�
z k2

.

The above inequality allow us to have kK⇤
'K

�
z k2

kK�
z k2 < M . Thus, employing the result of (our

key proposition) Proposition A.10, we have '(z) = Az + b along with kAk2  1.

(= Suppose '(z) = Az + b, where A 2 Cn⇥n with kAk2  1. Additionally, suppose that
for this ', ⇧ (';�) < 1 also holds. Recall normalized reproducing kernel k�

z at z 2 Cn

given as k�

z = K
�
z/kK�

z k. Then,

kK⇤
'
k2 = sup

z2Cn

(
sup

kk�
zk=1

kK⇤
'
k�

zk2

kkzk2

)
= sup

z2Cn

8
>>><

>>>:
sup

kk�
zk=1

����K
⇤
'

K�

z

kK�
z k

����
2

����
K�

z

kK�
z k

����
2

9
>>>=

>>>;

= sup
z2Cn

(
sup

kk�
zk=1

"
kK�

z k�2

kK�
z k�2

·
kK⇤

'
K�

z k2

kK�
z k2

#)

= sup
z2Cn

kK⇤
'
K�

z k2

kK�
z k2

= ⇧ (';�) < 1.

The above chain of inequalities implies that kK⇤
'
k is bounded.
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A.6 COMPACTIFICATION OF KOOPMAN OPERATORS OVER THE RKHS H�,1,Cn

Definition A.2. Define:

⇧z(';�) := kK⇤
'
K�

z k2 · kK�

z k�2, (25)
⇧ (';�) := sup

z2Cn
⇧z(';�). (26)

A.6.1 ESSENTIAL NORM AND COMPACTIFICATION

We recall the basic definition for the essential norm of a bounded linear operator.
Definition A.3. For two Banach spaces X1 and X2 we denote by K(X1,X2) the set of all compact
operators from X1 into X2. The essential norm of a bounded linear operator A : X1 ! X2, denoted
as kAke is defined as

kAke := inf {kA� Tk : T 2 K(X1,X2)} . (27)

Recall that a holomorphic function f : Cn ! C exhibiting f(z) =
P

m
amzm for z 2 Cn

where the summation is over all multi-indexes m = (m1, · · · ,mn) where each {mi} are positive
integer and z = zm1

1 · · · zmn
n

. Follow Zhu (2005) for more details on this. By letting Pk(z) =P
|m|=k

amzm 8 k � 0 where |m| =
P

n

i=1 mi, then the Taylor series of f can be re-written as

f(z) =
1X

k=0

Pk(z). (28)

The result in equation 28 is called as the homogeneous polynomial expansion of holomorphic func-
tion f having the degree of k which is uniquely determined by f . Now, for each m 2 Z+, we define
the operator Pm on holomorphic function f as follows:

Pmf (z) =
1X

k=m

Pk (z) .

Consider the action of the operator Pm defined above on the reproducing kernel K�

w of the RKHS
H�,1,Cn from equation 10 in Theorem 3.1, then:

PmK�

w (z) = Pm

0

BB@

sinh

✓q
hz,wiCn

�2

◆

q
hz,wiCn

�2

1

CCA = Pm

 1X

N=0

hz,wiCn

(2N + 1)!

!
=

1X

N=m

hz,wiCn

(2N + 1)!
.

Proposition A.13. For all f 2 H�,1,Cn

|Pmf(z)|  kfk

vuut
1X

N=m

kzk2N2
(2N + 1)!

. (29)

Proof. Consider f 2 H�,1,Cn , then employ the reproducing property of the reproducing kernel K�

z
at z 2 Cn as Pmf (z) = hPmf,K�

z i. Then,

|Pmf (z) |2 = |hPmf,K�

z i|2 = |hf,P⇤
m
K�

z i|2 = |hf,PmK�

z i|2, (30)

where last two step uses the property of Pm being self-adjoint and idempotent. Now,

|hf,PmK�

z i|2  kfk2kPmK�

z k2 = kfk2hPmK�

z ,PmK�

z i =hP⇤
m
PmK�

z ,K
�

z i
=hPmK�

z ,K
�

z i
=PmK�

z (z)

=
1X

N=m

kzk2N2
(2N + 1)!

. (31)

Combining equation 30 and equation 31 followed by taking the square-root proves our result.
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Following details in regards of Hilbert spaces in the light of RKHS H�,1,Cn , are respectfully bor-
rowed from Reed (2012) or (Reed & Simon, April 1980, Chapter VI) or Halmos (2012).
Proposition A.14. A linear and bounded operator B is compact over the RKHS H�,1,Cn if and only
if limM!1 kBhM �Bhk = 0 provided that hM ! h weakly in RKHS H�,1,Cn .

We use following criteria for weakly convergence sequence in the RKHS H�,1,Cn and as a general
approach can be learn from standard references Hai & Rosenfeld (2021), Le (2014) and Le (2017).
Proposition A.15. A sequence {hM}

M
2 H�,1,Cn converge weakly to 0 in H�,1,Cn if and only if

following conditions are true:

1. bounded in the norm topology of the RKHS H�,1,Cn

2. uniformly convergent to 0 over the compact subsets of the RKHS H�,1,Cn .

Proposition A.15 can be used to express the following corollary.
Corollary A.16. Let � > 0 and '(z) = Az + b where A 6⌘ 0 2 Cn⇥n and kAk2  1. Consider
a sequence of points {zM}

M
2 Cn such that kzMk2 ! 1 as M ! 1. Then, the sequence of

normalized reproducing kernels
n
k�

'(zM )

o

M

of H�,1,Cn converges weakly to 0 over H�,1,Cn .

Lemma A.17. If K' is bounded over the RKHS H�,1,Cn then the essential norm of K' denoted by
kK'kess satisfies kK'kess  lim infM!1 kK'PMk, where '(z) = Az + b with kAk2  1.

Proof. As K' : D (K') ! H�,1,Cn induced by ' is bounded, thus the result of Proposition A.10
holds. Therefore '(z) = Az + b with kAk2  1. Let C be a compact operator over the RKHS
H�,1,Cn . Then, observe following chain of inequalities for some M 2 Z+:

kK' � Ck = kK' (PM + PM )� Ck  kK'PMk+ kK'PM � Ck. (32)

Since PM is finite rank and hence compact. Therefore kK'PM � Ck = 0 since C is also compact
over the RKHS H�,1Cn . Now take the lim inf as M ! 1, to have

kK'kess
EQUATION 27

:= lim inf
M!1

kK' � Ck
EQUATION 32

 lim inf
M!1

kK'PMk.

Hence proved!

Note that, if ' : Cn ! Cn admits an affine structure with an additional condition that 0 6⌘ A 2
Cn⇥n and also is invertible (det (A) 6= 0), then one can define $ (u) = A�1u � A�1b as the
inverse map of '. In this case, if we define

\($(u)) := ⇧$(u) (';�) =) \(') = ⇧z (';�) . (33)

=) \ (u)  ⇧ (';�) . (34)

Following theorem provides the essential norm estimates for bounded K' over H�,1,Cn .
Theorem A.18. For a bounded K' : D (K') ! H�,1,Cn , the essential norm of K' satisfies:

lim
kzk2!1

p
⇧z (';�) (1) kK'kess (2)

���det
�
A�1

����n/2
lim

kzk2!1

p
⇧z (';�)

where ' (z) = Az + b with invertible A, 0 6⌘ A 2 Cn⇥n and kAk2 < 1.

Proof. Given that K' acts boundedly over the RKHS H�,1,Cn , thus ' is of the affine structure, that
is '(z) = Az+b, where kAk2  1. Now, with this ', we begin now the proof for the INEQUALITY
(1). Let C be a compact operator over the RKHS H�,1,Cn , then:

kK' � Ck � lim sup
M!1

k (K' � C)k�

'(zM )k � lim sup
M!1

h
kK'k

�

'(zM )k � kCk�

'(zM )k
i
. (35)
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As
n
k�

'(zM )

o

M

converges weakly to 0 over H�,1,Cn , therefore kCk�

'(zM )k ! 0 as M ! 1. Thus,

LEMMA A.11z }| {
lim sup
M!1

p
⇧zM (';�)  lim sup

M!1
kK'k

�

'(zM )k 
| {z }

EQUATION 35

kK' � Ck.

Therefore, we have established the lower bound for the essential norm of K' over H�,1,Cn . Now, we
will work on the upper bound of the same. We fix positive r and M 2 Z+. Then, pick an arbitrary
f 2 H�,1,Cn and proceed as follows:

kK'PMfk2 =

Z

Cn

|K'PMf(z)|2dµ�,1,Cn(z).

Note that '(z) = Az + b where 0 6⌘ A 2 Cn⇥n. Recall equation 33 and equation 34 to have:

kK'PMfk2 =
1

(2⇡�2)n

Z

Cn

\ ($ (u)) |PMf (u) |2 exp
✓
�kuk2

�

◆n��det
�
A�1

���n
o
dV (u)

=

���det
�
A�1

���n 

(2⇡�2)n

Z

Cn

\ ($ (u)) |PMf (u) |2 exp
✓
�kuk2

�

◆
dV (u)

=

"��det
�
A�1

���
2⇡�2

#n

Z

Cn

\ ($ (u)) |PMf (u) |2
�
�rBn � �Cn\rBn

�
exp

✓
�kuk2

�

◆
dV (u) ,

where �� is the indicator function for the sub-space � ⇢ Cn. Thus,

kK'PMfk2 =

"��det
�
A�1

���
2⇡�2

#n

·
Z

Cn

\ ($ (u)) |PMf (u) |2�rBn exp

✓
�kuk2

�

◆
dV (u)

+

Z

Cn

\ ($ (u)) |PMf (u) |2�Cn\rBn
exp

✓
�kuk2

�

◆
dV (u) . (36)

Then,

I{M}
rBn

=

"��det
�
A�1

���
2⇡�2

#n Z

Cn

\ ($ (u)) |PMf (u) |2�rBn exp

✓
�kuk2

�

◆
dV (u)

=

"��det
�
A�1

���
2⇡�2

#n Z

rBn

\ ($ (u)) |PMf (u) |2 exp
✓
�kuk2

�

◆
dV (u)


"��det

�
A�1

���
2⇡�2

#n

⇧ (';�) kfk2
 1X

N=M

r2N

(2N + 1)!

!Z

rBn

exp

✓
�kuk2

�

◆
dV (u) ,

where in the last step above we used inequality from equation 34 and equation 29. Now, as we
allow M ! 1, the quantity

P1
N=M

r
2N

(2N+1)! ! 0. Hence limM!1 I{M}
rBn

= 0. After that we have
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optimized the limit over rBn, we now revisit equation 36 to optimize the limit for the second part:

I(rBn){ =

"��det
�
A�1

���
2⇡�2

#n Z

Cn

\ ($ (u)) |PMf (u) |2�Cn\rBn
exp

✓
�kuk2

�

◆
dV (u)


"��det

�
A�1

���
2⇡�2

#n Z

(rBn){

(
sup

kuk2�r

\ ($ (u))

)
|PMf (u) |2 exp

✓
�kuk2

�

◆
dV (u)

=

"��det
�
A�1

���
2⇡�2

#n(
sup

kuk2�r

\ ($ (u))

)Z

(rB){
|PMf (u) |2 exp

✓
�kuk2

�

◆
dV (u)

=
���det

�
A�1

����n
(

sup
kuk2�r

\ ($ (u))

)
kPMfk2


���det

�
A�1

����n
(

sup
kuk2�r

\ ($ (u))

)
kfk2. (37)

Letting r ! 1 and combining the result of equation 37 and result from Lemma A.17, we have

kK'kess 
q
(|det (A�1)|)nkfk lim

r!1

vuut
(

sup
kuk2�r

\ ($ (u))

)

=
���det

�
A�1

����n/2 kfk lim
r!1

sup
kuk2�r

np
\ ($ (u))

o
.

Thus, the result prevails.

Theorem A.19. A bounded K' achieves its compactification over RKHS H�,1,Cn if and only if
limkzk2!0⇧z(';�) = 0 where '(z) = Az + b with 0 6⌘ A 2 Cn⇥n and A is invertible.

B REVIEW OF CLOSABLE OPERATORS IN HILBERT SPACE

We recall when we mean an operator T in a Hilbert space H to be closable or preclosed as given
in standard references (Rudin, 1991, Chapter 13), (Conway, 2019, Chapter X, Page 304) (Pedersen,
2012, Chapter 5, Page 193), or (Reed, 2012, Chapter VIII, Page 250).
Definition B.1 (Graph of an operator). For an (unbounded) operator T in Hilbert space H with its
domain D(T ), we define the graph of T in H as follows:

�(T ) := {(x, Tx) : x 2 D(T )} . (38)
Definition B.2. Let T� and T be operators over the Hilbert space H. Let �(T�) and �(T ) be the
respective graphs of T� and T as defined in equation 38. If �(T ) ⇢ �(T�), then T� is said to be
an extension of T and we write T ⇢ T� and equivalently if T ⇢ T� if and only if D(T ) ⇢ D(T�)
and T�⇤ = T⇤ for all ⇤ 2 D(T ).
Definition B.3. An operator is closable if it has a closed extension.
Lemma B.1. The operator T in Hilbert space H is closable if and only if for each sequence {xn}n 2
D(T ) converging to 0, the only accumulation point of {Txn}n is 0.

The above lemma (cf. (Pedersen, 2012, Chapter 5, Page 193)) can be interpreted as follows: a
linear operator T : D(T ) ! H is closable if and only if for any sequence xn such that xn ! 0
when n ! 1 and Txn ! yn, then yn = 0.

B.1 CLOSABILITY RESULT

Proof. Reproducing kernel K�(·, ·) from equation 10 over �Z+ as defined in equation 6 yields:

K� (�Z+) =

sinh

✓q
hz,�ziCn

�2

◆

q
hz,�ziCn

�2

=

sinh

✓q
� hz,ziCn

�2

◆

q
� hz,ziCn

�2

=
sinh

⇣
ikzk2

�

⌘

ikzk2

�

=
sin

⇣
kzk2

�

⌘

kzk2

�

.
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We will show that kzk2K� (�Z+) = � sin
⇣

kzk2

�

⌘
2 H�,1,Cn and its norm is finite. We have

Z

Cn

����� sin
✓
kzk2
�

◆����
2

dµ�,1,Cn(z)  �2

Z

Cn

dµ�,1,Cn = �2 < 1.

Since, � < 1, therefore, kzk2K�(�Z+) 2 H�,1,Cn and their norm is bounded by �. Recall the
sequence by KN from the statement of theorem, then

lim
N!1

KN = lim
N!1

kzNk2K�(�Z+,N ) = lim
N!1

⇢
� sin

✓
kzNk2
�

◆�
= 0. (39)

Then the corresponding Koopman operator K'A acting on sequence of function KN yields:

K'AKN = � sin

✓
kAzNk2

�

◆
=) lim

N!1
K'AKN = lim

N!1
� sin

✓
kAzNk2

�

◆
= 0. (40)

Note that if b 6⌘ 0 in our preceding assumption then we fail to achieve this convergence. Therefore,
by the application of Lemma B.1, K' is closable over the RKHS H�,1,Cn when ' = 'A.

B.2 FAILURE OF CLOSABILITY OF KOOPMAN OPERATORS OVER THE RKHS OF GRBF
KERNEL

Proof. Recall the domain defined in equation 6 and K2,�
EXP(x, z) as the GRBF Kernel and then:

K2,�
EXP(�Z+) = exp

✓
�kz + zk22

�

◆
= exp

✓
�4kzk22

�

◆
.

With the subspace given in equation 11, we see that

=) lim
N!0

kzNk2K2,�
EXP(�Z+,N ) = lim

N!0

⇢
kzNk2 exp

✓
�4kzNk22

�

◆�
= 0 · 1 = 0.

Above sequence converges to 0 but kzNk2K2,�
EXP(�Z+,N ) = kzNk2 exp

⇣
� 4kzk2

2
�

⌘
/2 H� and can

be learned from following:
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C EXPERIMENTAL INFORMATION

Table 5: Data matrix of experiments. Entries of third row corresponds to the third column of Table 6
to generate results from Lap-KeDMD algorithm.

DATA EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4

GROUND TRUTH

IRREGULAR & SPARSE

PARTIAL RANK

Details and governing equation of experiments are given as follows:

Table 6: Details of experiments for recovering ST-modes along with their references.

EXPERIMENT TRUE DATA PROVIDED DATA REFERENCES

1. Nonlinear Burger’s Equation 256⇥ 101 256⇥ 40 Brunton & Kutz (2022)
2. Fluid flow across cylinder 89351⇥ 151 89351⇥ 100 Brunton & Kutz (2022)
3. Chaotic Duffing’s Oscillator 2⇥ 50000 2⇥ 35000 Colbrook (2023)
4. Seattle freeway traffic speed 72⇥ 75 72⇥ 75 Chen et al. (2021b)

Table 7: Koopman eigenvalue distribution over unit circle of all four experiments. For this experi-
ment, real and imaginary parts of eigenvalues delivered by K2,1

EXP are in the order of O(10�q) where
q o 1 due to ill-condition of the Gram Matrix for this data.

KERNELS EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4

K1,1
EXP

-1 -0.5 0 0.5 1
Re(6)

-1

-0.5

0

0.5

1

Im
(6

)

EDMD Eigenvalues

K2,1
EXP

-1 -0.5 0 0.5 1
Re(6)

-1

-0.5

0

0.5

1

Im
(6

)

EDMD Eigenvalues
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Table 8: EXPERIMENT 1: Nonlinear Burger’s Equation. ST reconstruction through dominant Koop-
man modes via K1,1

EXP and K2,1
EXP with irregular and sparse 40 snapshots out of actual 100 snapshots.

# KOOPMAN MODE GROUND TRUTH
IRREGULAR &

SPARSE
RECON. VIA LAP

RECON. VIA
GRBF

KOOPMAN EIGENVALUES
(LAP, GRBF)

# 37th
0.97 � 0.24i, 0.57 + 0.26i

Table 9: EXPERIMENT 2: Fluid flow across cylinder. ST reconstruction through dominant Koopman
modes via K1,1

EXP and K2,1
EXP with irregular and sparse 100 snapshots out of total 151 snapshots.

# KOOPMAN MODE GROUND TRUTH
IRREGULAR &

SPARSE
RECON. VIA LAP

(REAL/IMAG)

RECON. VIA
GRBF

(REAL/IMAG)

KOOPMAN EIGENVALUES
(LAP, GRBF)

# 35th �0.35 � 0.77i, �0.3 +

0.82i

# 73th
0.58 � 76i, 0.46 � 0.74i

Table 10: EXPERIMENT 4: Seattle Freeway Traffic Speed data. ST reconstruction through dominant
Koopman modes via K1,1

EXP and K2,1
EXP.

# KOOPMAN MODE GROUND TRUTH RECON. VIA LAP
RECON. VIA

GRBF
KOOPMAN EIGENVALUES

(LAP, GRBF)

# 53th
0.38 � 0.39i, 0 + 0i

# 59th
0.47 � 0.28i, 0 + 0i

We used the coding platforms of Julia and MATLAB to investigate our experimental results.
To introduce the irregularity and sparsity, we use command shuffle,dims=1 in Julia and
randperm in MATLAB. Experiment 3 was conducted on MATLAB and every other experiments
were conducted in Julia. To build the dataset of 50, 000 trajectory points for experiment 3, we
take the advantage of ode45 inbuilt function in MATLAB. If needed, we take the reconstructed
results and perform necessary scaling which actually is supported by the boundedness results of
Koopman operators over the RKHS H�,1,Cn . In experiment 2, since we had a total spatial values
of 449 ⇥ 199 = 89, 351, which is quite at a large scale, we consider only first corresponding 100
spatial 2�D values for discussion. Doing so not only provide smooth understanding but also helps
in clear visualizations and hence saving computational power resources. Same treatment was also
given in experiment 3, where we plotted only 50 trajectory values out of 35, 000 trajectory values in
both dimensions.
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