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1. The space H is called as the reproducing kernel Hilbert space (RKHS) if Vx € X, the
evaluation functional &, : H — K defined as £, (f) = f(x), f € H is continuous.

2. A function k : X x X — K is called reproducing kernel of H if we have:

(a) k(-,z) € HVz € X, thatis ||k(-, z)|| g < oo, and
(b) k(-,-) has the reproducing property; that is

flx)={(f,k(z))gVf e Handx € X.

The norm convergence yields the point-wise convergence inside RKHS. This fact can be readily
learned due to the continuity of evaluation functional. This is demonstrated as follows for an arbi-
trary f € H and {f,},, € H with ||f — fn||[g — 0 as n — oo, then

lim fn(x) = nh~>H;o gx (fn) = (continuity of £;) Er (f) = f(ﬂj’)

n—oo

After we recall the definition of RKHS from Definition [A.1] for an upcoming theorem we recall
following MOORE-ARONSZAIJN Theorem.

Theorem A.1 (Aronszajn|(1950)). Let H be an RKHS over an nonempty set X, Then k : X x X —
K defined as k(x,x') :== (€, Exr) i for x, &’ € X is the only reproducing kernel of H. Additionally,
for some index set T, if we have {e;},_; as an orthonormal basis then for all x,x" € X, we have

k(z,2") = Z e;(x)e;(x), (14)

i€L
with an absolute convergence.

We need to first construct the RKHS of the Laplacian Kernel which we will do by embedding it as
an L?—measure. After that we have determined the RKHS (H, 1 cn) of the Laplacian Kernel as
L?—measure (Theorem 3.1), we then learn the interplay of the Koopman operators over the RKHS

Hg 1 cn. This is performed by determining which bounded Koopman operators (Theorem A.12) is
able to act compactly over the RKHS H, 1 c». Such quantification is paramount because it guides

us in executing the Lap-KeDMD algorithm to recover ST modes by employing the finite rank rep-
resentation of Koopman operators (Interaction-Matrix Z = [I]ixj in Step 2 in Algorithm . We

settle the compactness quantification (Theorem A.19) of the bounded Koopman operators over this
RKHS by limiting the essential norm (Theorem A.18) (which measures the norm distance of the
Koopman operator to the set of compact operators [Shapiro| (1987)). Once, we establish the com-
pactness quantification of Koopman operators, we immediately shift our focus on demonstrating its
closability over H,; 1 cn.

A.2 ORTHONORMAL BASIS

We will be providing the orthonormal basis (ONB) for the Hilbert space H, 1 c~ generated by the
measure dyi, 1 cn (z) embedded into the L2 —measure. Following lemma directs us in that direction.

Lemma A.2. Foro > 0, N and M € W, we have
— _lz|
(N, My, 0= / NaMe™ 5 dA(2) = 200 e N TM(N + M + 1)10n,
C
where (-, ) c is the same inner-product as given in equationES’]but over C.

15



Under review as a conference paper at ICLR 2025

Proof.

(N, 2MY, e :/ zNziMe_%dA(z)

27
/ / PN M iN=M)0 o= 3 1 drd

=2TON M N+M+167?d7’

0
I(N+M+1+1)
(1/{7)N+ZM+2

(N + M +1)!

=210?NTM(N + M +1)10n-

:2’/T5NM

=2moN M

Theorem A.3. Foro > 0and N € W, define {en} ycw : C — C by

1

The tensor-product syste (en, ® - ®en, )y,  n,>ols the ONB of Hilbert space Hy 1 cr.

Proof. We establish our initial stage of result for single-dimension case to ease our understanding.
For this, let us show that {ex} ~New forms an orthonormal system. So, consider z € C and let
M,N € W. Then,

(en,en)o,c Z/CGN(Z)GM(«Z)dMa,C(Z)

1 1 N 1 -2l
= - dA
om0 /C\/U2N(2N+ n”° \/a2M(2M+ ne e ()
_ ! ! 202N M (N 1 M+ D)l6yar.
2ra? \| 2N (2N + 1)1\ o2M(2M + 1)!

:{1 ifN =M (Lemma A.2).

0 otherwise

The above result concludes that {e,, }, oy is actually an orthonormal system with respect to nor-
malized Laplacian measure in C. Now, we have to establish that this orthonormal system is also
complete. So, for this, pick f € H,1,c with f(z) = Y_;°, a;z' and observe that

(f.en)oc = 27TUQ/f 2)en (2)dpto,c

27TU2 V a2 ( 2N+1 /f N dA(Z)
27m2 \/ a2 ( 2N +1)! Zal/ dA(2)
27rg2 \/ gzN(2N+ 1)! Zal 2n0% TN (1 + N +1)lox

=/o2N (2N + 1)lay.

>We recall the tensor product between two functions, say f1, f2 : X — Kgivenas fi® fo : X x X = K.
Then, for all z, 2’ € X the tensor product fi ® f2 is defined as f1 ® fa(x,x’) == fi(z)f2(z).

16



Under review as a conference paper at ICLR 2025

For a given ¢ > 0, since the constant /m # 0 for any N € W, therefore this directly

imply that (f,en),.c = 0if and only if ayy = 0, which results into f = 0. Hence, {en} oy is
complete. Now, we establish the same result but in n—dimensional case and to this end, we will
employ the tensor product notation by considering multi-index notation for N, M € W as follows:

n

ey, ®---®en,,en, ® - Qe )ocr = H(eNj,ejvfj>a,<c~
j=1

Hence the orthonormality of {ex, ® --- ® en, } 5, . . ¢ yn is established due to the orthonormal-

ity of each individual (en;,ens,)o,c. We still need to ensure that this n—dimensional orthonormal
system is complete. We observe

1

2mo?

( 1 n o0

= g agy .1, i,

27’(’0’2) 1reedn L,
l1yeeln

where I ,, = [¢.. 2l (en, ® - ®ep, (Z)) diy1.cn (). We further can simplify I, ,, as:

<f7eN1 ®"'®eNn>U,1,C" = ( ) f(z)eN1 PR ®eNn (z)dua,l,C" (Z)
C’!L

~TL( [ em @dunctsn)

Jj=1

-T1 ([E zjfszjdua,c(Zj))

j=1
= H (27T0'2Jlj+Nj (L + N; + 1)) &, n,-
j=1

Finally,

0'2N.7 (2]\]"7 + ].)' aN1 ..... Ny -

1 nox
(271'02) Z ary, i =
li,..

Further result for completeness in n—dimension follows a routine procedure from single-dimension
case as already discussed before. O

.
I 3
—

A.3  PROOF OF[THEOREM 3.1]

Proof. We have determined the orthonormal basis given by ey (z) in[Theorem A.3|present in
subsection A.2 for the Hilbert space H, 1 c». We will use it to construct the reproducing kernel for

H 1 c~» which eventually makes it the RKHS by recalling[Theorem A.1| So,

K7 (zyw)= Y ey (z)ex (w)= Y. Z“’T>N - - (W>

1
New =0 (2N +1)! ( o? (zﬁ/ﬁ)

Hence, the result is now established. O]

A.4 HELPER PROOFS FOR[THEOREM A.12

Lemma A 4. V z € C", the norm of the reproducing kernel KJ of RKHS H 1 cr satisfies:

1 z z > 2
exp (2 [” UHQ coth 12112 — 1]) <(1) K2 <(2) €xp (||60”22) (16)

g
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Proof. We will employ the Weierstrass factorization theorem (cf. (Stein & Shakarchi, 2010, Chapter
5)) for sinh (/¢ followed by taking the ‘log” as demonstrated follows:

sinh¢ 1 ¢2 sinh¢
Mol <1+j27r2> — 1o T =Y 1og (14
j=1 j=1
To establish INEQUALITY (2), we define g2 : Ry U {0} — R U {0} by g2 () = = — log(1 + z)
for x € Ry U {0}. Then ga(x) > 0 whenever x € Ry U {0}. Hence, we conclude now that
g2 ( ]5%) > 0 whenever j > 1. Therefore log (1 + ¢ ) <L Hence, taking the summation

<—2
j27T2

j2ﬂ'2 j27T2 .
of this over j € Z, we have

sinhC 0 CQ > CQ 2. > 1 4-2 w2 CQ
j=1 j=1

j=1

Taking the exponentiation of above yields % < exp (%) and with ¢ — lIzllen /o, we have finally:

-1 2
IKZ|1” = (lz”2> -sinh <”z|2) < exp (||z||22>. (17)
o o 6o

Now, we provide the lower bound for the same. To establish INEQUALITY (1), we define g; :
Ry U {0} — Ry U{0} by g1 (z) = log(1 + =) — 77 forz € Ry U {0}. Then g;(x) > 0

whenever x € R, U {0}. Hence we conclude now that g; (ﬁ%) > 0 whenever j > 1. Therefore,

j%%iirc? < log (1 + ]2%) Hence, taking the summation of this over j € Z, we have

sinh( ¢2
1 = log(1+—=
o =Y (14 5

j=1
>t
2.2 1 (2
Pl Al
211 1
S M on (Sx) = || ((Stein & Shakarchi, 20T0, Page 128(#6)))
w2 |2 % 0 %
1
=3 [Ccoth¢ —1].
Exponentiation of above yields exp (% [¢ coth ¢ —1]) < % and with ¢ — l1zl2/5, we have:
-1
1
b ( {sz coth I=llz 1]) - (||z|2> - sinh [zll2 K| (18)
2 o o o o
O
Lemma A.5. The adjoint of KC,, denoted by K7, satisfies Ko, K7 = K;(z) over the RKHS H, 1 cn.
Proof. Let f € H, 1 c» and pick an arbitrary z € C™, then
([LKLKZ) = (Ko f KZ) = Ko f(2) = [ (0 (2) = ([, K] (2))-
Hence, the desired result is achieved. O

Lemma A.5 makes us realize that the set of reproducing kernel {K¢ : z € C"} is invariant under
the adjoint of /C, (Cowenl| [1983] Chapter 1). Additionally the relation defined in the above lemma
provides the unique relationship of K K7 via the inner product of the RKHS H, ; c¢» and hence
we can have the Koopman operator /é; as to be densely defined over the RKHS H, ; c~» (Rudin,
1991} Chapter 13, Page 348) and also the adjoint of the Koopman operator is now close in the RKHS
H; 1 cn» (Rudin, 1991} Theorem 13.9).
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Lemma A.6. Let ¥V : C" — C be holomorphic on a complex domain containing the closed unit
ball. If U(z) = 3777 _ a;2’, then

(%)*n/ / W(z)2d0 = 3 | Pr¥, ;€ C.

7]=0
Proof. Recall that (2m) " [T 'U=RVdy = §; . As W(z) = 3 ;1 a;27, then:

WP =P = Y Y aaraiz

|71=0 [k|=0
=3 % agaritheit-ne
|71=0[k|=0
=y > azagr TR et <H el’(iz—h)&) .
|71=0 [k|=0 =1
So,
l—times
™ T ™ ™ n
/ / U (2))2d0 =Y > a;apr! ...rglﬁkn/ / (H ei(jlkl)ﬁtd§l>
- - |5]=0 |k|=0 T T \i=1
— Ji1+k in+kn n
= Z Z ajakr{ i o 'T% +k [(27‘-) jlkl o '5jnkn]
|5]=0[*|=0
=(2m)" D la[*r¥.
[4]=0
Therefore, multiplying by (27)~™ in the last equality furnishes the desired proof. O

Proposition A.7 (Jensen’s convex inequality). Let (Q, 3, p) be a probability space, and g a real-
valued function that is u-integrable. If V) is a convex function then,

1/}(/99@) S/Qwogdu-

Proof. See (Garnett,[2007, Lemma 6.1, Page 33). O

Lemma A.8. Let = : C* — C™ be a holomorphic mapping with = = (&1,...,&,) € C", where
each {&},_, , are coordinate functions of = from C™ — C which are holomorphic. As ||Z(2) |2
be the Euclidean-norm in C" at z € C", then following is satisfied for any o > 1,

</an 1= (=) ||§dP(z)>a§/TB 12 (2) |2dP(z),

n

where rB,, .= {z € C" : ||z||l2 < r} for some r > 0 against probability measure dy(z) = dP(z).

Proof. We will use the Jensen’s convex inequality against the probability measure
dP(z) over rB,,. We take 1), : Ry — R defined by 1, (z) = x“ for some « > 1, then 1), is a
convex function (Boyd & Vandenberghe (2004)). Now, ||= (2) [|3 = >, |&(2)|? is a real-valued
function integrable with respect to dP(z) over rB,,. Thus, we have

o IE@) Bar) = ([ IEE) ||§dP<z>)a (19)

by the definition of v,,. On the other hand,

0522 z)= Ezza 2) = Ez2a 2).
[ veclE@RE = [ (2@ #e = [ IEERRe. o

n

Combining the result of equation [I9] equation [20] together with the result of [Proposition A.7] we
[

achieve the desired result.
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Proposition A.9. If F' is an entire function that satisfy sup,,_g |F(2)| < AR* + BY R > 0 and
for some integer k > 0 and some constants A, B > 0, then F is a polynomial of degree < k.

Proof. Follow (Stein & Shakarchi, 2010, Chapter-3, Exercise-15(a), Page 105-106). O

We give a key proposition before we give the main theorem related to the boundedness of the Koop-
man operators over the RKHS H,, 1 cn.

Proposition A.10. Let there be a positive finite M such that for a holomorphic function ¢ : C* —
C™. Let z € C™, and suppose following holdS'

1
. -3
sinh (lle(= ”2/0) . sinh (12l12/5) <M
e/ 1=l2/o
If0 < ||plle < 7o, then (z) = Az+b, A € C"*" with 0 < ||A||2 < 1 and b is a complex vector.

Proof. The validity of given inequality still holds even if we square it followed by taking log, so

sinh (I#(2)l12/o) , sinh (I=ll2/o)
10[ Te@ /o ]<1°g(M)+1°g[ =112/ }

We can now use the results of in the above inequality to result into following:

1 [”9"(5"'2 coth (llsO(j)IIz) _ 1} <1og(nr?) + 212

2 602
2
g g g

Now, to further simplify the above inequality, we will simply employ the infinite series expansion of

an entire coth(e) which involves the presence of Bernoulli’s number { B; }j ey’ defined as cothz =

Yico 22(25)2}” 227=1, The above equation can be explicitly written as z cothz = 1 + 2 2h2q2

Py 2(2]3)2, 2% under the additional assumption of 0 < |z| < m. Here, for j = 1, we have
By = 16,30 x — l¢(2)l2/5 in above yields:

ez (II@( )||2> 14s <||<,0||2> +222"an (II@ )||2>2j. o)

Using the result of equation[22]in equation [21]to have followmg.

141 (||<P(0)||2> e (II@(Z)II2> " g + 14 2B

= @) o 302
2 2 - 22jB2j 2j 2 2
le(2)[l2 + (30 )ZWHsﬁ(Z)Hz <2log(M7) + ||zl2. (23)
j=2
Considering ¢ = (p1(2),...,¢n(2))" € C", where each {®i}iz1...n is a coordinate function of
¢ and is a holomorphic mapping from C" — C, then [|p(2)[|3 = Y"1, |¢i(2)|. Therefore, with
z=(21,..-,21) €Cmand||z]|2 = Y7, |22 we see that
n o0 B
2j 2j
{z o — Ja? } A Y DBy ol | < os0r?)
i=1 j:2

Integrating above with respect to 1 on 7B, to have

{/ Z l0i(2)|* — 2] (;;s;n}

"zl

o 227 By, - dY
Ny L 5 2log(M?). 24
107X s [ eI o b < 2loshr?) o)
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As here, the infinite summation starts with j > 2 > 1, therefore by the application of [Lemma A.8§|
we can have following conclusion

9 dO
{/ Z ‘901 - |Zz‘ ] (QW)”}(M

Bn ;=1
= gup, L\ .
(30%) Z 2)o% (2m)mi \ )5 le(2)ll2dd < LHS of equation [24]
/ *)
<210g(M2).

Here we are using {e} () and {o} (& t0 provide smooth understanding of respective manipulations
that are happening on respective quantities present inside the curly brackets. Therefore,

o 9
{/ Z “Pz - |Zz| ] (QW)”}(*)

“21
S 2%By; A i
(30%) ZZZ (2))lo% (27" (/Q&lﬂw(Z)H2dﬂ < 2log(M?).

7= ()

The above inequality can be simplified into following (term by term) in terms of r along with the
help of multi-index notation:

Z |ak‘2 271, . 2]71 ZTZ

l71=0 )

o0

221 By 2
(B3cH) Y — L ak2 P2 < 2log(M?).
Jz:; (25)1o23 (2m)I |JZO| | (M)

(%)
Note that, here we used a super-script of k to indicate this a decomposition of the k-th component of
the function . Further, if we let e; be the multi-index with a 1 in the ¢-th spot and zeros else where,
then the above rearranges to:

T(r)
n
ST a2 a4 S (lak ) - 1
lil=2 £=0
(®)
J
oo 22 B, .
2 2j k|2 2j1 . C20n 2
+< (30 )Z—(2j)!azj(27r)"j Z laj|ry"t oy < 2log(M~).
j=2 |51=0
i) ()
This inequality is true for all » = (r1,...,7,)" € R7. Both quantities {(r) and }(r) grow in

the Big-O complexity rate, that is T(r) o O(r) & 1 (r) o O(r?) as r — oo. Therefore, by the
application of |Proposition A.9) in this inequality, we conclude that |a§?| = 0forj > 2in {(r).
Similarly, [Proposition A.9) forces to $(r) be 0 as well. Hence, with the relabeling of the coordinate
function of  as i (z) = ag121+- -+ ag nzn +bg. Thus, ¢(2) = Az+b where, A = [ak,j}z,’;;l

and b = (by,...,b,) . This particular structure is called as an affine structure. Now, that we have
both 1(r) and }(r) are 0 and ¢(z) = Az + b, we revisit equation [23]to have
Az + b3

|Az + b3 < 2log(M?) + ||z]|3 = lim

< 1.
Izi—oo  [I2]13
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If ||AZ|l2 > ||Z]]2 = 1 for some Z € C™ whose norm is 1. Setting z = ¢Z and ¢ > 0 in above
yields:

1
izt

lim - 2
t=oo |1Z]2

Al < 1. O

<1,

which is a contradiction. Therefore,

We give an important inequality for the action of the Koopman operators on the normalized repro-
ducing kernel kZ := KZ/| k2| satisfying ||kZ|| = 1.This result is captured in the following lemma.

Lemma A.11. If for some z € C", kZ € D (IC,), then \/11, (p;0) < ||K EkZ]|.

Proof. The proof of the above result involves the application of point-evaluation inequality for the
RKHS H, 1 c~. Further details are given as follows:

ICRZIPIRZI = Kok s (2) 1 = [k 2y (0(2)) 2.

As [k7 )| = [KZ@/ I, hence [k ) (¢(2)) | = Ko @@ kg )| = (K@ 1P/ 1K5 00 11| =
[ K7 |I. From this result and above, we have

IR PRI = (1K )1 = I KZ 1%
* o2
Therefore, further dividing above by ||KZ||> # 0 to have ||[K,kZ[|* > % = II, (p;0) .
Desired result follows by taking the square-root of above. Hence proved! O

A.5 BOUNDEDNESS OF KOOPMAN OPERATORS OVER THE RKHS H, ;1 c»

Theorem A.12. K, acts boundedly over H, 1 cn <= ¢(z) = Az + b, where ||A|2 < 1 and
I (p;0) < .

Proof. = Suppose that the ¢-induced Koopman operator is bounded over RKHS H, ; cn,
which means that there exists a finite positive M such that [ [|> < M. As ||[K%]]? =
o |I? (cf. Hall (2013)) and hence ||} ||* < M < oo. Now, observe that

IKeKZ? _ K KZ|1?
00> M > ||K5||? = sup —2 >
¢ zecn  ||KZ|2 K2

* o2
The above inequality allow us to have % < M. Thus, employing the result of (our

key proposition) [Proposition A.10, we have p(z) = Az + b along with ||A]|2 < 1.

<= Suppose p(z) = Az + b, where A € C"*" with ||A||> < 1. Additionally, suppose that
for this ¢, II (¢; o) < oo also holds. Recall normalized reproducing kernel k2 at z € C™
given as kZ = KZ/|k¢2|. Then,

2

, H . K2
K* k2 ® Ko
||IC:,||2= sup sup M = sup sup H7z||2
zeCn | |kg|=1 (A zeCn | |kg|=1 H K¢
[P2ed|
o | o [1EEI I
zecn | kg=1 | IEZI72 [KZ]?
I KZ|1?
=sup ————— =1I(p;0) < oco.
SR g )
The above chain of inequalities implies that ||| is bounded. O
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A.6 COMPACTIFICATION OF KOOPMAN OPERATORS OVER THE RKHS H, ; c»

Definition A.2. Define:

I (p;0) = [IKLKZ|]” - [[KZ] 72, (25)
II(p;0) = sup IL.(p;0). (26)
zeCn

A.6.1 ESSENTIAL NORM AND COMPACTIFICATION

We recall the basic definition for the essential norm of a bounded linear operator.

Definition A.3. For two Banach spaces X; and Xo we denote by K (X1, Xg) the set of all compact
operators from Xy into Xo. The essential norm of a bounded linear operator A : X1 — X, denoted
as ||Ac is defined as

[Alle =inf {JJA =T : T € K(X1,X2)}. 27)

Recall that a holomorphic function f : C* — C exhibiting f(z) = >  apz™ for z € C"
where the summation is over all multi-indexes m = (mq,--- ,m,) where each {m;} are positive
integer and z = 2{"' --- z". Follow Zhu (2005) for more details on this. By letting Py(z) =
2k AmZ™ V k > 0 where |m| =, , m;, then the Taylor series of f can be re-written as

k=0

The result in equation [28]is called as the homogeneous polynomial expansion of holomorphic func-
tion f having the degree of k£ which is uniquely determined by f. Now, for each m € Z_, we define
the operator P,,, on holomorphic function f as follows:

= j{:,F%(Z)

k=m

Consider the action of the operator P, defined above on the reproducing kernel K3 of the RKHS

H, 1 c» from equation in Theorem 3.1} then:

sinh( <Z7crw2>ul> > (z,w) > (z,w)
o _ B wjer ) A= e
Py (2) = P (z.w)cn =P (Z_ (2N + 1)!) Ngm N +1)1

Proposition A.13. Forall f € H,1,cn

P f(2)] < Il (29)

Proof. Consider f € H, 1 c», then employ the reproducing property of the reproducing kernel K7
atz € C" as Py, f (2) = (P f, KZ). Then,

[P (2) [ = (P f, K)I* = (£, PLED)? = [{f, PmKZ)I%, (30)
where last two step uses the property of P,,, being self-adjoint and idempotent. Now,
[ P KD < I IPIPmKE NP = I (Pr S, P KZ) =(Pp, P K2, K2)
=(Pm K7, KZ)
~Puk ()
=Y
= . 31
Z CRESYRD

Combining equation [30|and equation [31|followed by taking the square-root proves our result. [
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Following details in regards of Hilbert spaces in the light of RKHS H, ; ¢, are respectfully bor-
rowed from [Reed (2012) or (Reed & Simon, April 1980, Chapter VI) or[Halmos| (2012)).

Proposition A.14. A linear and bounded operator B is compact over the RKHS H, 1 c» if and only
iflimpsso0 ||Bhar — Bh|| = 0 provided that hyy — h weakly in RKHS Hy 1 cn.

We use following criteria for weakly convergence sequence in the RKHS H, 1 c~» and as a general
approach can be learn from standard references |Hai & Rosenfeld|(2021), Le (2014)) and |Le|(2017).
Proposition A.15. A sequence {hyr},; € Hy1,cn converge weakly to 0 in Hy 1 c» if and only if
following conditions are true:

1. bounded in the norm topology of the RKHS H; 1 cn

2. uniformly convergent to 0 over the compact subsets of the RKHS H, 1 cn.

Proposition A.T5 can be used to express the following corollary.

Corollary A.16. Let 0 > 0 and p(z) = Az + bwhere A £ 0 € C"*" and | Al|2 < 1. Consider
a sequence of points {zn},; € C™ such that ||zar|l2 — 0o as M — oo. Then, the sequence of

normalized reproducing kernels {k of Hy 1 cn converges weakly to 0 over Hy 1 cn.

o
e(zm) [ 3y

Lemma A.17. If K, is bounded over the RKHS H, 1 cn then the essential norm of K, denoted by
1Ko lless satisfies || Ko lless < Hminfas oo [[ICpPasl], where p(z) = Az + bwith [|Afls < 1.

Proof. As K, : D(K,) — Hy,1,cn induced by ¢ is bounded, thus the result of [Proposition A.10

holds. Therefore p(z) = Az + b with ||Al|s < 1. Let € be a compact operator over the RKHS
H, 1 c». Then, observe following chain of inequalities for some M € Z:

1Ky = €|l = [[Ke (Pr + Par) = €| < [|[KoPar| + [|[ Ko Par — €. (32)

Since Py is finite rank and hence compact. Therefore ||/C, Py — €|| = 0 since € is also compact
over the RKHS H, ic». Now take the lim inf as M — oo, to have

57 EQUATION[32]
1o less " 2 i int 11, — ¢ S Lim i ||y Pl
M— o0 M — o0

Hence proved! O

Note that, if ¢ : C* — C™ admits an affine structure with an additional condition that 0 # A €
C™ ™ and also is invertible (det (A) # 0), then one can define @ (u) = A~ lu — A71b as the
inverse map of . In this case, if we define

1(w(u)) =My (p;0) = b(p) =1L (¢;0). (33)

= f(u) <II(p;0). (34)

Following theorem provides the essential norm estimates for bounded K., over H, 1 cn.
Theorem A.18. For a bounded IC,, : D (K,) — Hoy. 1 cn, the essential norm of IC,, satisfies:

lim /I (p;0) <) HICsoHess <) (|det (A_lﬂ)n/Z lim II; (g5 0)

1zll2—00 llz[l2—o00

where ¢ (z) = Az + bwith invertible A, 0 # A € C"*" and | Al|2 < 1.

Proof. Given that KC, acts boundedly over the RKHS H, 1 c», thus ¢ is of the affine structure, that
is p(z) = Az+b, where || Al|2 < 1. Now, with this ¢, we begin now the proof for the INEQUALITY
(1). Let € be a compact operator over the RKHS H,; ; c~, then:

16, — €l > imsup | (K, €k, | > limsup [HICV,kZ(ZM)H - ||¢kg(zM)||} . (35)
—00 M — 00
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As {k;(zM)} converges weakly to 0 over Ho,1 cn, therefore [|€k7 || — 0as M — oo. Thus,

[CEMMA ATT]
lim sup \/ zZMm 307 <hmsup H]C kgp(ZJM ” < H]C%? - Q:”

M —o0

EQUATION[33]

Therefore, we have established the lower bound for the essential norm of K, over H,; 1 c». Now, we
will work on the upper bound of the same. We fix positive » and M € Z, . Then, pick an arbitrary
f € Hy 1 cn and proceed as follows:

1K, Par I = /@ Pt £(2) Pt o (2).

Note that p(z) = Az + b where 0 Z A € C™"*". Recall equationand equationto have:

1

W/ (e ) [P () e (L2 fer (4" v a
_{ldet (4 )" }/ o (o () [Par  (u0) [P p(”'f"'z>dx/(u>

I Par £

(2wo2)n

[’de;(ma )!]

1 () [Parf () 2 (o3, & Xerym, ) exp ( ”';”2) av ().

(C'n

where x is the indicator function for the sub-space [ C C". Thus,

2mo?

e -n" u
I P I = ["“(A)'] [ 5@ ) Pt () P, o (1202 ) av ()

[[ell2

1 (@ (w)) [Par f (u) [Pxem,m, exp (— ) V). 36

Cn

Then,

7 = (B sy Pt ) P, oo (142 ) av

BN [ s e (122 v )
T e WA
<| S| T X i [ e (1) av .

where in the last step above we used inequality from equation [34] and equation 29] Now, as we

allow M — oo, the quantity Y x'_,, @1 — 0. Hence lima/ o0 Ifﬂjy} = 0. After that we have
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optimized the limit over 7B,,, we now revisit equation [36| to optimize the limit for the second part:

[det (A-1)|]" w
Tpyo = | )] [ 5@ () [Parf () Pxenm, exp (—'a') av (u)
g | e, 1 Pus e (5 av
= _M_n su w (u u) |? ex —M u
R i () /(TB)G Puf(w)] p( o )dv()
= (|det (471)])" {” up b(w <u>>} [ParfI1?
< (Jdet (471))" {” up 4( (u»} L1 (37)

Letting  — oo and combining the result of equation[37]and result from [Lemma A.T7] we have

1Ko lless <4/ (Idet (A1) f]] lim { sup h(W(U))}

T—00 HuHZZ”
:(\det(A—l)\)"/z|\f||g§o”s${ 1w )}

Thus, the result prevails. O

Theorem A.19. A bounded K, achieves its compactification over RKHS H, 1 c~ if and only if
lim) 4, -0 T2 (¢; 0) = 0 where p(z) = Az +bwith0 # A € C"*" and A is invertible.

B REVIEW OF CLOSABLE OPERATORS IN HILBERT SPACE

We recall when we mean an operator 1" in a Hilbert space ) to be closable or preclosed as given
in standard references (Rudin, 1991, Chapter 13), (Conway, 2019} Chapter X, Page 304) (Pedersen,
2012, Chapter 5, Page 193), or (Reed, 2012, Chapter VIII, Page 250).

Definition B.1 (Graph of an operator). For an (unbounded) operator T in Hilbert space $) with its
domain D(T'), we define the graph of T in $) as follows:

I'T)={(z,Tx) : 2 € D(T)}. (38)

Definition B.2. Let Ty and T be operators over the Hilbert space ). Let T' (1) and T'(T') be the
respective graphs of Tm and T as defined in equation IfT(T) C T(T), then T is said to be
an extension of T and we write T C T and equivalently if T C T if and only if D(T) C D(1)
and ToA = TA for all A € D(T).

Definition B.3. An operator is closable if it has a closed extension.

Lemma B.1. The operator T in Hilbert space $) is closable if and only if for each sequence {x}, €
D(T) converging to 0, the only accumulation point of {Txy},, is 0.

The above lemma (cf. (Pedersen, 2012, Chapter 5, Page 193)) can be interpreted as follows: a
linear operator T : D(T') — $) is closable if and only if for any sequence x., such that x,, — 0
when n — oo and T'x,, — Yy, then y, = 0.

B.1 CLOSABILITY RESULT

Proof. Reproducing kernel K (-, -) from equation|l0{over _3, as defined in equation@ yields:

s (B ) s () () g (121
Ko (34) = - - - .

(z,—z)cn (z,2)cn inHZ [=ll2
= a— — 5z o o
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We will show that ||z||2 K7 (~34) = osin ( ‘ZHZ’) € H, 1~ and its norm is finite. We have

[ea
2
/ : <||Z2)
o sin
n U

Since, 0 < oo, therefore, ||z||2K?(-34+) € Hy 1,cn and their norm is bounded by o. Recall the
sequence by £ from the statement of theorem, then

2 2
dpgicn(z) <o / dps1,cn = 0 < oo.
(Cn

lim Ry = hm |zn]2K7(~3+,5) = lim {USin(lzN||2)} = 0. (39)
N—o0 N—o00 o

Then the corresponding Koopman operator K, , acting on sequence of function £ yields:

o N —oc0

Koafin =Usin<|| ZN||2> = Nlim Ky v = lim O'Sin( ZN||2> =0. (40)
—00

Note that if b # 0 in our preceding assumption then we fail to achieve this convergence. Therefore,
by the application of[Lemma B.1, IC,, is closable over the RKHS H, 1 c» when ¢ = pa4.

O
B.2 FAILURE OF CLOSABILITY OF KOOPMAN OPERATORS OVER THE RKHS oF GRBF
KERNEL
Proof. Recall the domain defined in equationlEI and K| ]?XGP (x, z) as the GRBF Kernel and then:
. z+ z|? 4||z|3
KE2)’(P(*3+) = exp <_ H 2) = exp (_ || ”2) )
o o
With the subspace given in equation|[IT] we see that
) 4||zn 12
— i vl K230 = i {awlles (<2202 )] 0.1 -0
N—0 g
Above sequence converges to 0 but || zy || K53 (—31.n) = ||zn]l2 exp ( j 5) ¢ H, and can
be learned from following:
4|z|2\ | 2no™ AZ2N e oz
e e | I N A =) P LA
o o m Cn o
2" > 02 S, (2i—7)?
S " ||ZNH2 " € =LA ¢ dv(z) % 0.
O
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C EXPERIMENTAL INFORMATION

Table 5: Data matrix of experiments. Entries of third row corresponds to the third column of
to generate results from Lap-KeDMD algorithm.

DATA EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4

crome T -
e - -
L - -

Details and governing equation of experiments are given as follows:

&

Table 6: Details of experiments for recovering ST-modes along with their references.

EXPERIMENT TRUE DATA  PROVIDED DATA REFERENCES
1. Nonlinear Burger’s Equation 256 x 101 256 x 40 Brunton & Kutz| (2022
2. Fluid flow across cylinder 89351 x 151 89351 x 100 Brunton & Kutz| (2022
3. Chaotic Duffing’s Oscillator 2 x 50000 2 x 35000 Colbrook| (2023)
4. Seattle freeway traffic speed 72 x 75 72 %75 Chen et al. (]2021b[)

Table 7: Koopman eigenvalue distribution over unit circle of all four experiments. For this experi-
ment, real and imaginary parts of eigenvalues delivered by K| EX}, are in the order of O(10~7) where
q >> 1 due to ill-condition of the Gram Matrix for this data.

KERNELS EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 EXPERIMENT 4
(= it ' //\ e
KLl @
EXP " ) AN /
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Table 8: EXPERIMENT 1: Nonlinear Burger’s Equation. ST reconstruction through dominant Koop-
man modes via K| F%X}J and K Exp 1 with irregular and sparse 40 snapshots out of actual 100 snapshots.

# KOOPMAN MODE GROUND TRUTH RECON. VIA LAP (LAP, GRBF)

IRREGULAR & RECON. vIA KOOPMAN EIGENVALUES
SPARSE GRBF

0.97 0.244,0.57 + 0.261

Table 9: EXPERIMENT 2: Fluid flow across cylinder. ST reconstruction through dominant Koopman
modes via Kéx%, and K,?X}, with irregular and sparse 100 snapshots out of total 151 snapshots.

. RECON. VIA . .
# KOOPMAN MODE GROUND TRUTH IRR:;\‘;LS';R & R(Elg;):f/;;:AE?P GREF KOOP(I\;IA\]: Eé(;::gg;gwm
B o (REAL/IMAG) o
# 35th —0.35 — 0.774, —0.3 +
0.821
# 73th ﬁ 0.58 — 761,0.46 — 0.741

Table 10: EXPERIMENT 4: Seattle Freeway Traffic Speed data. ST reconstruction through dominant
Koopman modes via K EIX%) and K, EQX},

RECON. VIA KOOPMAN EIGENVALUES
GRBF (LAP, GRBF)

#53th I III ““ 0.38 — 0.394,0 + 03
# 59th I “ mlﬂ ] 0.47 — 0.284,0 + 0@

We used the coding platforms of Julia and MATLAB to investigate our experimental results.
To introduce the irregularity and sparsity, we use command shuffle, dims=1 in Julia and
randperm in MATLAB. Experiment 3 was conducted on MATLAR and every other experiments
were conducted in Julia. To build the dataset of 50,000 trajectory points for experiment 3, we
take the advantage of ode45 inbuilt function in MATLAB. If needed, we take the reconstructed
results and perform necessary scaling which actually is supported by the boundedness results of
Koopman operators over the RKHS H, 1 c~. In experiment 2, since we had a total spatial values
of 449 x 199 = 89, 351, which is quite at a large scale, we consider only first corresponding 100
spatial 2—D values for discussion. Doing so not only provide smooth understanding but also helps
in clear visualizations and hence saving computational power resources. Same treatment was also
given in experiment 3, where we plotted only 50 trajectory values out of 35, 000 trajectory values in
both dimensions.

# KOOPMAN MODE GROUND TRUTH RECON. VIA LAP
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