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Seeing Beyond Classes: Zero-Shot Grounded Situation
Recognition via Language Explainer

Anonymous Authors

ABSTRACT
Benefiting from strong generalization ability, pre-trained vision-
language models (VLMs), e.g., CLIP, have been widely utilized in
zero-shot scene understanding. Unlike simple recognition tasks,
grounded situation recognition (GSR) requires the model not only
to classify salient activity (verb) in the image, but also to detect
all semantic roles that participate in the action. This complex task
usually involves three steps: verb recognition, semantic role ground-
ing, and noun recognition. Directly employing class-based prompts
with VLMs and grounding models for this task suffers from several
limitations, e.g., it struggles to distinguish ambiguous verb concepts,
accurately localize roles with fixed verb-centric template1 input,
and achieve context-aware noun predictions. In this paper, we argue
that these limitations stem from the model’s poor understanding
of verb/noun classes. To this end, we introduce a new approach for
zero-shot GSR via Language EXplainer (LEX), which significantly
boosts the model’s comprehensive capabilities through three ex-
plainers: 1) verb explainer, which generates general verb-centric
descriptions to enhance the discriminability of different verb classes;
2) grounding explainer, which rephrases verb-centric templates for
clearer understanding, thereby enhancing precise semantic role
localization; and 3) noun explainer, which creates scene-specific
noun descriptions to ensure context-aware noun recognition. By
equipping each step of the GSR process with an auxiliary explainer,
LEX facilitates complex scene understanding in real-world scenar-
ios. Our extensive validations on the SWiG dataset demonstrate
LEX’s effectiveness and interoperability in zero-shot GSR.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Zero-Shot GSR, Vision-Language Model, Large Language Model

1 INTRODUCTION
Traditional recognition methods heavily rely on the quality of vast
dataset annotations, often limited in generalizing across diverse
or unseen scenarios [35]. Zero-shot learning emerges to enable
models to identify classes they have never been directly trained
1The class-contained/verb-centric template contains both verb class and its associated
semantic roles, which is provided in the dataset.
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VLMs

“A photo of buying”

“the AGENT buys
GOODS with 
PAYMENT from the 
SELLER in a PLACE”

Grounding
Models

VLMs

“A photo of woman” “A photo of book”

“A photo of store”“A photo of cash”

AGENT woman

GOODS book

PAYMENT cash

SELLER man

PLACE store …

Verb Recognition Semantic Role Grounding

Noun Recognition

AGENT GOODS PAYMENT SELLER PLACE

Figure 1: Illustration of the straightforward pipeline for Zero-
Shot GSR. 1) Verb Recognition: utilizing VLMs to identify
verbs via verb class-based prompts. 2) Semantic Role Ground-
ing: employing grounding models to localize semantic roles
based on the verb-centric template1 . 3) Noun Recognition:
applying VLMs for identifying entities within localized se-
mantic roles through noun class-based comparison.

on, thus greatly enhancing their universality in real-world set-
tings [38, 43, 44]. Recently, advancements in pre-trained vision-
language models (VLMs) [19, 20, 27], e.g., CLIP [37], have shown ex-
cellent generalization capabilities across various recognition tasks,
setting new benchmarks in zero-shot learning. Particularly, CLIP
incorporates dual encoders: an image encoder and a text encoder.
The former processes visual input into visual features, and the latter
translates texts into semantic features. This architecture facilitates
the alignment of visual and text data within a unified semantic
space. Leveraging class-based prompts like “A photo of [NOUN
CLASS]” or “A photo of [VERB CLASS]”, CLIP effectively compares
images against prompts in the learned semantic space, enabling the
zero-shot recognition of both unseen objects [37] and actions [29].

Nevertheless, training-free zero-shot grounded situation recogni-
tion (ZS-GSR) presents a more intricate challenge than basic object
or action recognition [36]. It requires not only identifying actions
(verbs) depicted in images but also discerning and localizing the
semantic roles involved [36, 42]. Such a comprehensive task con-
tributes to effectively understandingwhat is happening (e.g., buying
in Figure 1), who is involved (e.g., AGENT and SELLER), where it
is taking place (e.g., PLACE), etc. Consequently, ZS-GSR extends
beyond simple class recognition to a structured understanding of
scenes, requiring accurate modeling of the relationships among
objects within an event. As illustrated in Figure 1, a typical GSR
approach typically consists of three steps:
• Verb Recognition. This step aims to identify the verb category
of the entire image. The most common zero-shot method for this
sub-task uses a set of class-based prompts “a photo of [VERB

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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𝑣𝑣coloring

studying

𝑣𝑣

𝑣𝑛
hand

women

𝑣𝑛

w/o Explainer: coloring

with Explainer: studying

w/o Explainer: hand

with Explainer: woman

AGENT 

books or notes 
displayed

visible stationery 
items like pens

multiple 
colors or tools 
displayed

hand visibly 
holding the 
tool 

w/o Explainer

with Explainer

the AGENT climbs an 
OBSTACLE with a TOOL 
at a PLACE.

At a PLACE, the AGENT
overcomes a challenge 
OBSTACLE using a 
TOOL

lotion applied 
in dots or 
spread thinly 
across the 
face

a hand in 
isolation 
interacting 
with an 
object

(a) Ambiguous Action Concepts (b) Constrained Role Grounding (c) Context-agnostic Noun Prediction

Figure 2: The limitations of class-based prompts for zero-shot GSR. (a) Ambiguous Action Concepts: the verb “studying” is
mistakenly identified as “coloring” due to an unclear verb meaning. (b) Constrained Role Grounding: Rigid templates misguide
the grounding of “TOOL” in a complex scene. (c) Context-agnostic Noun Prediction: the noun “woman” is incorrectly classified
as “hand” without considering semantic role context.

CLASS]” for each verb category [37]. These prompts are then fed
into the text encoder to obtain semantic embedding, while the
whole image is passed through an image encoder to get visual
embedding. By comparing these two embeddings in the same
semantic space, CLIP can achieve zero-shot verb recognition.

• Semantic Role Grounding. Given the predicted verb class and
its predefined template1, this step aims to precisely localize each
semantic role within the image. Existing methods for this sub-
task often adopt an open-world grounding model, e.g., Ground-
ing DINO [30], with an object-contained grounding language
as input [17, 49, 54]. As for GSR, the input can be the provided
templates in the dataset, e.g., the template of buys: “the AGENT
buys GOODS with PAYMENT from the SELLER in a PLACE”.

• NounRecognition. This step aims to identify the noun category
for each semantic role. Similar to the verb, a most direct zero-
shot method can use noun class-based prompts like “A photo of
{NOUN CLASS}” to compare with visual features of grounded
semantic role for classification [37]. For example in Figure 1, the
grounded semantic role AGENT is classified as woman.

However, these simple methods that rely entirely on class-based
prompts at every step are limited by: 1) Ambiguous Action Con-
cepts: Foundational VLMs primarily concentrate on understanding
images or bag of entities, often overlooking the semantics and struc-
tures inherent in actions [10, 26, 28]. Directly classifying verbs with
class-based prompts may not fully capture the nuanced meanings
of actions, leading to CLIP misunderstanding the verb’s embedding
and generating inaccurate predictions. For instance in Figure 2 (a),
the model projects the two embeddings into adjacent locations in
semantic space and recognizes an activity as “coloring” due to the
colorful background. It overlooks the actual activity of “studying”
that entails a complex interaction with stationery and books. 2)
Constrained Role Grounding: The effectiveness of semantic role
grounding within visual grounding models critically depends on
the quality of the text prompt [39, 46]. The employment of fixed and

simplex templates1 for semantic role grounding is inherently con-
strained by the simplified sentence structure and ambiguous verb.
Once the model encounters unfamiliar or complex verb classes, it
easily leads to misalignment and localization errors for the involved
roles. As depicted in Figure 2 (b), with templates centered on the
unfamiliar “climb” class, grounding models have difficulty in lo-
cating the “TOOL”. 3) Context-agnostic Noun Prediction: Noun
prediction is often conditioned on the specific verb and semantic
role present within a scene [36, 42]. However, when employing
class-based prompts for noun classification, CLIP tends to concen-
trate on the category with the highest prediction confidence. This
method overlooks the crucial consideration of whether the noun ac-
curately fits the specific role defined in the scene’s template, leading
to contextually inappropriate predictions. For example, in Figure 2
(c), VLMs directly recognize the “hand” that occupies the main area
of the image, ignoring the characteristics of the AGENT.

In this paper, we argue that these limitations stem from the
model’s insufficient understanding of individual classes. When
humans encounter an unfamiliar word, such as “soliloquy”, we
often turn to a dictionary to serve as an explainer, providing a
clear and accessible definition that illuminates the term’s meaning
from a common understanding perspective. For instance, the term
“soliloquy” in a theatrical script refers to “a character speaking
their thoughts aloud when alone or regardless of any hearers”.
Fortunately, recent advancements in large language models (LLMs),
e.g., GPT [4], have benefited from extensive training across diverse
datasets, endowing them with broad world knowledge.

Inspired by human reliance on external sources for deeper under-
standing, we propose the method for zero-shot grounded situation
recognition via Language EXplainer (LEX). It employs LLMs to
serve as explainers at crucial steps of the GSR process. Specially, for
verb recognition, we devise a verb explainer to prompt LLMs
to generate general verb-centric descriptions. This approach pro-
vides CLIP with multiple enriched “explanations” of each verb, e.g.,
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“books or notes displayed” in Figure 2 (a), leading to more accurate
verb classification. Additionally, we implement an offline descrip-
tion weighting strategy that takes into account the discriminability
of the verb-centric descriptions without any training data. As for
semantic role localization, we design a grounding explainer
to prompt the LLMs to rephrase the original verb-centric template
from multiple perspectives. These reformulated sentences, as seen
in Figure 2 (b), serving as text inputs for the grounding model, are
capable of enhancing the model’s understanding of the intricate
relationships between semantic roles. Lastly, for noun recognition,
we propose a noun explainer to prompt LLMs to generate noun
descriptions conditioned on both verb and semantic roles. As is
illustrated in Figure 2 (c), noun explainer prevents the misclassi-
fication of a noun such as “hand” when the contextual role and
action pertain to “woman” applying lotion, thus mitigating the risk
of contextually inappropriate classifications.

To verify the effectiveness of our LEX, we conduct extensive
experiments and ablation studies on SWiG dataset. Each of our
explainers can be utilized as a plug-and-play module to improve
the overall performance of zero-shot GSR.

In summary, we make the following contributions in this paper:

(1) We propose a novel training-free zero-shot GSR framework
LEX that incorporates LLMs as explainers within each pro-
cess, enhancing understanding of complex visual scenes.

(2) We introduce three explainers: verb explainer, grounding
explainer, and noun explainer. Each serves as a plug-and-
play module to enhance the performance of zero-shot GSR.

(3) We devise a strategy to weight descriptions by discriminabil-
ity, independent of training data.

(4) Extensive experiments on the SWiG dataset demonstrate the
effectiveness and interpretability of LEX.

2 RELATEDWORK
Grounded Situation Recognition (GSR). Despite deep learning’s
notable achievements in image classification [7, 31, 34], object de-
tection [55], and image segmentation [6, 22], its comprehension of
complex scenes remains limited. Techniques, e.g., scene graph gen-
eration [25, 45, 52] and human-object interaction detection [1, 5, 16],
aim to parse scene contents via relation graphs. Admittedly, these
tasks can provide structured visual scene representations to assist
downstream tasks [23]. However, they only focus on modeling with
dyadic relationships between a subject and an object, ignoring the
diversity of roles in visual events [8]. GSR emerges as a solution
for holistic scene understanding by predicting actions (verbs) and
detecting noun entities of each semantic role [36]. Pratt et.al. [36]
first proposed an RNN-based two-stage framework, which detects
verbs in the first stage and predicts the nouns with bounding boxes
in the second stage. Subsequent methods[8, 10, 42] improved this
two-stage pipeline by employing a transformer-based model and
considering semantic relations among verbs and semantic roles.
However, previous efforts that depend on annotated training sam-
ples may face challenges like sample noises [23, 24] and long-tailed
distribution [9, 40, 48], potentially limiting real-world applicability.
Our approach predicts verbs, nouns, and their associated bounding
boxes without training data, showcasing robust generalization and
interpretability in real-world scenarios.

Foundation Models. Foundation models are typically pre-trained
on extensive training data. Owing to their strong generalization
capabilities, foundation models are often applied to a variety of
downstream tasks [3]. Particularly in the natural language process-
ing (NLP) area, large language models (LLMs) [11, 12, 18], such
as GPT-3 [14], PaLM [2], OPT [53], and LLaMA [41], trained on
extensive web-scale text datasets, exhibit formidable capabilities
ranging from text prediction to contextually relevant text genera-
tion. In the field of cross-modal research, vision-language models
(VLMs), e.g., CLIP [37] and ALBEF [21], have been trained on ex-
tensive image-text pairs via contrastive learning, facilitating the
cohesive integration of information between these modalities. Sub-
sequent models, such as BLIP [20] and BLIP-2 [19], leverage diverse
datasets and Q-Former’s trainable query vectors to further refine
this alignment. Despite the remarkable transferability of VLMs, pre-
vailing approaches often rely on class-based hard prompts as input
to the text encoder, leading to a narrow focus on specific visual
features and disregarding contextual information in the surround-
ings. In this paper, we employ various prompts to guide LLMs as
different explainers to generating “class explanations”, significantly
enhancing VLM’s understanding of intricate scenes.

3 ZS-GSR VIA LANGUAGE EXPLAINER
Formulation. Given an image 𝐼 , zero-shot GSR aims to identify
a structured frame F𝑣 = {𝑦𝑣, FR𝑣}, where 𝑦𝑣 ∈ V denotes the
salient verb category, FR𝑣 = {(𝑟,𝑦𝑛, b) | 𝑟 ∈ R𝑣} represents the
set of filled semantic roles. The R𝑣 represents the set of predefined
semantic roles associated with verb-centric template𝑇𝑃𝑣 . Each role
𝑟 ∈ R𝑣 is filled with a noun 𝑦𝑛 ∈ N grounded by a bounding box
b ∈ B. For instance in Figure 1, the frame can be detected as F𝑣=
{buying, {(AGENT, woman, □), (GOODS, book, □), (PAYMENT, cash,
□), (SELLER, man, □), (PLACE, store, □)}}.
Baseline for Zero-Shot GSR. As mentioned above, the baseline
involves three steps: 1) Verb Recognition, the class-based prompts is
fed into text encoder 𝑇 (·) of CLIP to obtain verb text features {t𝑣}.
Similarly, the entire image is fed into image encoder𝑉 (·) to extract
visual feature v𝑣 . Subsequently, the cosine similarity between t𝑣 and
v𝑣 is computed across different verb categories for final prediction.
2) Semantic Role Grounding, Grounding DINO integrates a verb-
centric template 𝑇𝑃𝑣 as text input and image 𝐼 as visual input to
generate a series of candidate bounding boxes with semantic role
labels and scores. The bounding boxes with the highest score for
each semantic role are selected. 3) Noun Recognition, CLIP compares
cropped region feature {v𝑟𝑛} of each role 𝑟 with the text features
{t𝑛} of class-based prompts for noun classification.

To address the constraints of the baseline, we propose a new
framework LEX for ZS-GSR. As illustrated in Figure 3, it comprises
three components: verb recognition via verb explainer, role local-
ization via grounding explainer, and noun recognition via noun
explainer. LEX enhances the model’s understanding of different
classes by adding an auxiliary explainer at each step.

3.1 Verb Recognition via Verb Explainer
This component aims to recognize the salient verb category within
an image. It comprises three steps: verb-centric description genera-
tion, description weighting, and verb classification.
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Figure 3: The framework of LEX. 1) Verb Recognition via Verb Explainer: generate general verb-centric descriptions to recognize
verbs. 2) Role Localization via Grounding Explainer: generate a rephrased verb-centric template to localize semantic roles. 3)
Noun Recognition via Noun Explainer: generate scene-specific noun descriptions to predict nouns.

3.1.1 Verb-Centric Description Generation. To enhance the discrim-
inative capacity of the CLIP model in distinguishing verb categories,
we introduce a verb explainer to “explain” basic class-based prompts
for each category. Inspired by zero-shot image classification [32],
we introduce a verb-centric description generation prompt to make
LLMs as verb explainer to generate general verb-centric descrip-
tions D𝑣 = {𝑑𝑣} for verb class 𝑦𝑣 ∈ V from multiple perspectives:

D𝑣 = 𝐿𝐿𝑀 (in-context examples, 𝑦𝑣, instruction)︸                                            ︷︷                                            ︸
prompt input

, (1)

where 𝐿𝐿𝑀 (·) is the decoder of the LLM. The verb-centric descrip-
tion generation prompt input consists of three parts2: 1) In-context
examples, the description instruction for the verb, along with some
examples of the generated results. This part adopts in-context learn-
ing [13, 33] to make LLM generate analogous results. 2) Verb class
𝑦𝑣 , the target category that needs to generate the description. 3)
Instruction, the sentence used to command the LLM to generate the
description, e.g., “what are the useful visual features for the event
of ‘rehabilitating’: AGENT rehabilitates ITEM at a PLACE”.

These generated descriptions highlight various unique visual
features associated with specific action categories, for example,
“looking around for searching goods”, “pushing a shopping cart or
carrying a basket”, contribute to enhancing the distinguishability
between “shopping” and other similar actions like “buying”.

3.1.2 Description Weighting. Considering the variances in descrip-
tion quality and its different impact on verb classification, we de-
vise a description weighting strategy. Recent methods try to select
descriptions from the perspective of the discrimination of image
2The detailed description generation prompts are in the Appendix.

Image 
Encoder

Text 
Encoder

discriminability score

Agent's teeth making 
contact with the item, 
indicating a biting action
Agent's hands holding or 
stabilizing the item for 
biting
…

Text 
Encoder

Text 
Encoder

discriminability score

Agent's teeth making 
contact with the item, 
indicating a biting action
Agent's hands holding or 
stabilizing the item for 
biting
…

A small, fuzzy-coated 
puppy is engaging in a 
common canine activity, 
eagerly biting down on a 
sizable bone it's secured 
between its front paws

D𝑠 |𝑣 D𝑣

Figure 4: An example of using “biting”’s scene text as “image”
to calculate the discriminability score.

features [47] and the coverage among concepts [50]. However, these
methods require a large number of annotated training images and
are prone to overfitting to seen scenarios, which are not suitable
for training-free zero-shot GSR. Thanks to the property of VLMs
to align visual and text modes in a shared space, we can replace
an annotated image with a complex scene description that
contains the verb category [15].

Specifically, we first utilize the LLMs to generate a set of com-
plex scene descriptions D𝑠 |𝑣 = {𝑑𝑠 } for each verb 𝑦𝑣 ∈ V . These
scene descriptions are fed into the text encoder 𝑇 (·) to generate
scene text embeddings {t𝑠 }, used as “image” for subsequent descrip-
tion weighting2. For instance in Figure 4, the verb biting’s scene
description is used instead of an annotated image.

Intuitively, the greater the distinctiveness of a verb description in
differentiating between its own class of scenes and other classes, the
more important it is. Following [47], we apply the discriminability
score 𝐷𝑖𝑠 (·) to measure the distinctiveness of a verb description.
The correlation 𝜌 (·, ·) between a verb description embedding and a
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set of scene text embeddings with class 𝑦𝑣 is denoted as:

𝜌 (𝑦𝑣, 𝑑𝑣) =
1

|D𝑠 |𝑣 |
∑︁

𝑑𝑠 ∈D𝑠 |𝑣

𝜙 (t𝑠 , t𝑑𝑣 ), (2)

where 𝜙 (·, ·) denotes the cosine similarity, t𝑑𝑣 is the text embedding
of a verb description 𝑑𝑣 . The conditional likelihood of aligning
scenes of a class given 𝑑𝑣 can be written as:

𝜌 (𝑦𝑣, 𝑑𝑣) =
𝜌 (𝑦𝑣, 𝑑𝑣)∑

𝑦
′
𝑣 ∈V

𝜌 (𝑦′
𝑣, 𝑑𝑣)

. (3)

The discriminability score 𝐷𝑖𝑠 (𝑑𝑣) can be measured by the entropy
over all verb classes, written as:

𝐷𝑖𝑠 (𝑑𝑣) = −
∑︁

𝑦
′
𝑣 ∈V

𝜌 (𝑦
′
𝑣 |𝑑𝑣) log(𝜌 (𝑦

′
𝑣 |𝑑𝑣)). (4)

The smaller the discriminability score, the greater the distinction
𝑑𝑣 offers for its category. Hence, the weight of a general verb de-
scription can be denoted as:

𝑤𝑣 (𝑑𝑣) =
exp (1/𝐷𝑖𝑠 (𝑑𝑣))∑

𝑑
′
𝑣 ∈D𝑣

exp
(
1/𝐷𝑖𝑠 (𝑑 ′

𝑣)
) , (5)

where𝑤𝑣 (𝑑𝑣) represents the weight of verb description 𝑑𝑣 .

3.1.3 Verb Classification. In this step, we compute the similarity
score between visual and textual features to obtain the probability
distribution of verbs. We calculate the final distribution as follows:

𝑆𝑐𝑜𝑟𝑒 (𝑦𝑣) = (1 − 𝜆)𝜙 (v𝑣, t𝑣)︸              ︷︷              ︸
class-based

+ 𝜆
∑︁

𝑑𝑣 ∈D𝑣

𝑤𝑣 (𝑑𝑣)𝜙 (v𝑣, t𝑑𝑣 )︸                           ︷︷                           ︸
description-based

, (6)

where 𝜆 is utilized as a balance factor between classed-based prompts
and description-based prompts.

3.2 Role Localization via Grounding Explainer
This module aims to locate each semantic role more accurately via
an auxiliary grounding explainer. Specifically, we first employ a
grounding explainer to rephrase the verb-centric templates in a
more comprehensible manner. Subsequently, we use the Grounding
DINO to generate candidate bounding boxes for the semantic roles.

3.2.1 Rephrased Template Generation. Due to the ambiguity of the
original fixed verb-centric template, using it as grounding text input
for the Grounding DINO model may result in limited or inaccurate
semantic role localizations. To enhance the comprehensibility of
grounding language, we introduce a grounding explainer to “ex-
plain” these fixed templates. To be specific, we employ a rephrased
template generation prompt, utilizing LLM as grounding explainers
to produce rephrased grounding templatesD𝑔 = {𝑑𝑔} for each verb
class 𝑦𝑣 ∈ V , expressed as:

D𝑔 = 𝐿𝐿𝑀 (in-context examples, 𝑇𝑃𝑣, instruction)︸                                               ︷︷                                               ︸
prompt input

. (7)

Similarly, the rephrased template generation prompt input also com-
prises three components: in-context examples, template𝑇𝑃𝑣 , and in-
struction2. The first two components are analogous to verb-centric
description generation. As for the last component, the instruction

sentences are designed to enable LLM to generate role-contained
templates that are easy to understand, i.e., “Please generate new
sentences that detailedly rephrase this sentence to make it easier
to understand {TEMPLATE}. Note that you must keep the original
words: {SEMANTIC ROLES}”.

3.2.2 Candidate Box Generation. Given an unlabeled input image
𝐼 and the grounding text input 𝑑𝑔 , the Grounding DINO model is
adept at associating visual features with corresponding object labels
(i.e., semantic roles). More concretely, the Grounding DINO model
outputs a sequence of bounding boxes B𝑔 = {b}, associated object
labels R𝑔 = {𝑦𝑟 }, and confidence scores C𝑔 = {𝑐} as follows:

B𝑔,R𝑔, C𝑔 = 𝐷𝐼𝑁𝑂 (𝐼 , 𝑑𝑔), (8)

where 𝐷𝐼𝑁𝑂 (·) is the decoder of Grounding DINO. It is possi-
ble to generate multiple boxes for each object. We select the box
with the highest confidence score 𝑐 for each object 𝑦𝑟 that ap-
peared in the predefined role set 𝑅𝑣 as candidates. The chosen B̂𝑔

of each grounding description 𝑑𝑔 constitutes the candidate boxes
B̂ = {B̂𝑔 |𝑑𝑔 ∈ D𝑔}. These candidate bounding boxes of semantic
roles are utilized for the next noun recognition.

3.3 Noun Recognition via Noun Explainer
In this module, we utilize the noun explainer to achieve context-
aware noun classification. To be specific, it consists of four steps:
noun filtering, scene-specific noun description generation, noun
pre-prediction, and noun refinement, as displayed in Figure 5.

3.3.1 Noun Filtering. This step filters out noun categories that are
unlikely to appear in the specific semantic roles from class-level.
Leveraging the common sense contained in LLM, we can inquire
about reasonable noun categories through a simple prompt that
includes a specified semantic role2. For instance, we can query
“Given entity list {Noun CLASS}, which entities are most likely to be
the result of a predicted semantic role PLACE” to filter unreasonable
noun categories, e.g., man. This filtering step not only enhances
the computational efficiency of subsequent noun classification by
reducing the number of traversed categories but also improves the
accuracy of classification results.

3.3.2 Scene-Specific NounDescription Generation. In particular, the
cropped candidate box inevitably contains more than one object,
and the object normally has more than one possible category. Re-
liance on class-based prompts often results in CLIP focusing on the
most salient noun category directly, thereby ignoring the specific
scene context. To address this, we incorporate a noun explainer to
“explain” class-based prompts associated with each noun category
within diverse scenes2. This noun explainer adopts a scene-specific
noun description generation prompt, guiding LLM to produce de-
scriptionsD𝑟

𝑛 = {𝑑𝑛} that reflect the intricate context of each scene
for each noun class 𝑦𝑛 ∈ N :

D𝑟
𝑛 =𝐿𝐿𝑀 (in-context examples, scene, 𝑦𝑛, instruction)︸                                                      ︷︷                                                      ︸

prompt input

. (9)

Different from verb-centric description generation, the input prompt
for scene-specific noun description generation is conditioned on ex-
tra scene information (verb-centric template and semantic role)
to provide contextual information. The instruction is like this:
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Figure 5: The architecture of noun recognition.

“Please describe the visual features that can distinguish the noun
entity {NOUN CLASS} corresponding to {SEMANTIC ROLE} in
the scene: AGENT writes on TARGET using a TOOL at a PLACE”.
The generated descriptions (e.g., “holding a pen and other tools in
hand”) reflect the characteristic of corresponding semantic roles
(e.g., AGENT ), thereby ensuring more accurate and contextually
relevant noun categorization.

3.3.3 Noun Pre-prediction. In this step, we first compute the sim-
ilarity between visual embeddings of all cropped boxes and text
embedding to obtain the probability distribution of nouns. Similar
to the verb classification process, this entails the incorporation
of both class-based and description-based approaches to yield the
pre-predict results for nouns:

𝑆𝑐𝑜𝑟𝑒 (𝑦𝑛)= (1 − 𝜆)𝜙 (v𝑟𝑛, t𝑛)︸              ︷︷              ︸
class-based

+𝜆
∑︁

𝑑𝑛∈D𝑟
𝑛

𝑤𝑛 (𝑑𝑛)𝜙 (v𝑟𝑛, t𝑑𝑛 )︸                            ︷︷                            ︸
description-based

, (10)

where t𝑑𝑛 is the text features of the noun description 𝑑𝑛 . Due to the
requirement of invoking a large number3 of LLMs for generating
scene descriptions akin to descriptionweighting in verb recognition,
the weights𝑤𝑛 (𝑑𝑛) are uniformly assigned as 1/|D𝑟

𝑛 |.

3.3.4 Noun Refinement. After localization by Grounding DINO,
a semantic role may correspond to multiple candidate boxes due
to the integration of different 𝑑𝑔 ∈ D𝑔 . Directly selecting the box
with the highest confidence often relies solely on the localization
model’s understanding of the semantic role, overlooking the con-
textual relevance within the scene. To mitigate this, we propose to
refine noun classification and bounding box selection via a global
comparison. This process contrasts the visual features of the entire
image v𝑣 against the text features {t𝑡𝑝 } of templates {𝑇𝑃𝑣 } whose
semantic roles are filled iteratively with predicted nouns {𝑦𝑛 } in the
previous step, e.g., “woman is studying in library” in Figure 5. The
noun filled in the template with the highest similarity along with
its corresponding bounding box is the final prediction, written as:

𝑇𝑃
∗
𝑣 = argmax 𝜙 (v𝑣, {t𝑡𝑝 })

FR𝑣 = {(𝑟,𝑦𝑛, 𝑏) | 𝑦𝑛 ∈ 𝑇𝑃
∗
𝑣}.

(11)

3Since noun description is conditioned on both verb and semantic role, the call number
of LLMs at least is |V | × |R𝑣 | × |N |

As seen in Figure 5, the noun “woman” for the semantic role “AGENT ”
and its bounding box is selected as the final prediction result.

4 EXPERIMENT
4.1 Experimental Setup
4.1.1 Dataset. We evaluated our method on the SWiG dataset [36],
which extends the imSitu dataset [51] by incorporating additional
bounding box annotations for all visible semantic roles (69.3% of
semantic roles have bounding boxes). In the SWiG dataset, each
image is annotated with a verb, followed by a set of semantic roles
ranging from 1 to 6 (3.55 on average), each verb is annotated with
three verb frames by three separate annotators. SWiG contains
25200 testing images with 504 verb categories, 190 semantic role
categories, and 9929 noun entity categories.

4.1.2 Evaluation Metrics. We employed the same five evaluation
metrics as [36], which include: 1) verb: the accuracy of verb predic-
tion. 2) value: the noun prediction accuracy for each semantic role.
3) value-all (val-all): the noun prediction accuracy across the en-
tire set of semantic roles. 4) grounded-value (grnd): the accuracy
of the bounding box for each semantic role, where the predicted
bounding box must achieve an IoU value of at least 0.5 with the
ground-truth bounding box. 5) grounded-value-all (grnd-all):
the accuracy of bounding box across the entire set of semantic roles.
Besides, these metrics were presented under three evaluation set-
tings: 1) Top-1-verb, 2) Top-5-Verb and 3) Ground-Truth-Verb,
verbs are selected based on the top-1 prediction, top-5 predictions,
and corresponding ground-truth, respectively. If the predicted verbs
are incorrect in the Top-1/5-verb settings, the other four metrics
(value, val-all, grnd, and grnd-all) are considered incorrect.

4.1.3 Implementation Details. We used the vision transformer with
a base configuration (ViT-B/32) as the default backbone for CLIP.
We adopted GPT-3.5-turbo for LLM, recognized as a widely utilized
LLM in existing works. More details are left in the Appendix.

4.1.4 Baselines. We compared our proposed method LEX with
four strong baselines: 1) CLS, which uses class-based prompts to
calculate the text embedding for both verb and noun classifica-
tion. Leverage verb-centric template as the text input of Grounding
DINO for role grounding. 2) TEM, which uses the verb-centric
template to enhance the original class-based prompts for verb clas-
sification, compared with CLS. 3) CLSDE, which generates general
descriptions of each noun category without considering scene and
role by LLMs to enhance the original class-based prompts for noun
classification, different from CLS. 4) RECODE, which generates
semantic role descriptions as visual cues to enhance the original
class-based prompts for verb classification, compared to CLS.

4.2 Quantitative Comparison Result
We evaluated the performance of our proposed LEX and four strong
baselines on the test set of SWiG dataset. From Table 1, we have
the following observations: 1) The CLS baseline relying solely on
class-based prompts, demonstrates inferior performance, partic-
ularly in the prediction of bounding boxes and nouns. 2) In the
Top-1 and Top-5 verb settings, TEM exhibits a slight performance
advantage over CLS, attributed to the enhanced scene information
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Table 1: Evaluation results on the test set of SWiG dataset. Values in gray indicate metrics obtained by the same method as CLS.

Top-1-Verb Top-5-Verb Ground-Truth-Verb
Method verb value val-all grnd grnd-all verb value val-all grnd grnd-all value val-all grnd grnd-all
CLS [37] 30.18 4.70 0.16 3.09 0.07 55.49 9.31 0.23 3.09 0.07 13.51 0.42 9.05 0.14
TEM 30.59 4.78 0.19 3.17 0.08 56.42 9.36 0.21 5.14 0.08 13.51 0.42 9.05 0.14
CLSDE [32] 30.18 4.86 0.18 3.15 0.07 55.49 9.32 0.23 5.00 0.08 13.80 0.44 9.12 0.15
RECODE [26] 30.17 4.70 0.16 3.10 0.07 55.50 9.31 0.23 5.00 0.08 13.51 0.42 9.05 0.14
LEX 32.41 9.37 1.61 7.26 0.98 58.34 17.68 3.19 13.77 2.15 29.92 4.68 23.57 3.08

Table 2: Effects of each component in verb recognition.

Verb Top-1-Verb Top-5-Verb
Explainer Weighting verb↑ verb↑

30.18 55.49
✓ 32.13 57.84
✓ ✓ 32.41 58.34

Table 3: Effects of grounding explainer.

Grounding Ground-Truth-Verb
Explainer value↑ val-all↑ grnd↑ grnd-all↑

13.51 0.42 9.05 0.14
✓ 13.85 0.48 9.86 0.16

Table 4: Effects of each component in noun recognition.

Noun Ground-Truth-Verb
Filter Explainer Refine value↑ val-all↑ grnd↑ grnd-all↑

13.51 0.42 9.05 0.14
✓ 28.51 4.06 21.71 2.58
✓ ✓ 29.16 4.33 22.11 2.67
✓ ✓ 29.39 4.51 23.22 3.01
✓ ✓ ✓ 29.92 4.68 23.57 3.08

for verb recognition. 3) CLSDE achieves a slight performance gain
in the accuracy of noun classification because general noun descrip-
tions often fail to apply in specific contexts. 4) RECODE fails to
improve the accuracy of verb recognition, likely due to the insuffi-
cient local information provided by semantic roles (i.e., not clear
and detailed enough to understand actions). 5) The proposed LEX
exhibits significant performance gains across all metrics compared
to all baseline models, e.g., 32.41% and 58.34% in terms of verb accu-
racy under Top-1-Verb and Top-5-Verb, and 29.92% noun accuracy
under Ground-Truth, respectively. This indicates the effectiveness
of using explainers in zero-shot GSR.

4.3 Ablation Studies
As aforementioned, each component of our proposed LEX frame-
work can serve as a plug-and-play module for zero-shot GSR. This
section4 ablated all the proposed components on the test split of
SWiG dataset [36].

4.3.1 Key Components in Verb Recognition. We first investigated
the two major elements utilized in verb recognition: 1) Verb Ex-
plainer, which denotes using verb-centric descriptions for verb
4More ablation studies are left in the Appendix.

classification (Sec. 3.1.3); and 2) Weighting, which denotes the
employment of description weighting for the text embeddings of all
generated verb-centric descriptions (Sec. 3.1.2). Results are shown
in Table 2. The first row corresponds to the performance of the
CLS baseline. As seen, CLS achieves 30.18% top-1 and 55.49% top-5
verb accuracy. Upon applying the proposed verb explainer (the sec-
ond row), we observe consistent and substantial improvements for
both top-1 accuracy (30.18%→ 32.13%) and top-5 accuracy (55.49%
→ 57.84%). This highlights the importance of our “recognition
with explainer” strategy and validates the viability of our motiva-
tion. Moreover, LEX achieves better performance across all metrics
with the weighting strategy. This indicates that the proposed verb
explainer and weighting strategy can work synergistically.

4.3.2 Key Component in Semantic Role Grounding. We next studied
the impact of our Grounding Explainer, which adopts rephrased
verb-centric templates as grounding input (Sec. 3.2.1). As illustrated
in Table 3, our grounding explainer proves to be effective, e.g., 0.81%
accuracy improvement in terms of the grounding (grnd) metrics.

4.3.3 Key Components in Noun Recognition. We further analyzed
the influence of three major components proposed for noun recogni-
tion: 1) Filter, which denotes filtering those unreasonable nouns by
using LLMs (Sec. 3.3.1); 2) Noun Explainer, which denotes using
scene-specific noun descriptions for noun prediction (Sec. 3.3.3);
and 3) Refine, which denotes using contextual information of the
scene to refine final results (Sec. 3.3.4). From the results in Table 4,
we have the following findings: 1) Filtering those unreasonable
noun candidates leads to significant performance gains across all
noun metrics(e.g., 15% in value metrics and 3.64% in val-all met-
rics). 2) Substantial improvements can be made by incorporating
the noun explainer which aims to provide more contextual informa-
tion (e.g., 28.51% → 29.16% in value metrics). 3) Furthermore, after
incorporating the refine module, we achieve considerable gains of
0.88% in value metrics and 1.51% in grnd metrics. 4) Finally, by
integrating three core components, LEX delivers the best perfor-
mance across all metrics. This validates the effectiveness of our
comprehensive modular designs.

4.3.4 Different Architectures of CLIP. Last, we examined the im-
pact of the utilized CLIP’s architectures. As outlined in Table 5,
regardless of the visual encoder employed, our LEX demonstrates
consistent and substantial improvements across all metrics. Such
impressive results further verify the robustness of our approach.

4.4 Qualitative Comparison Result
We visualized CLIP’s attention maps for various images and query
prompts in Figure 6. As is displayed in Figure 6 (a), we can observe
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Table 5: Ablation studies on different architectures of CLIP.

Top-1-Verb Top-5-Verb Ground-Truth-Verb
Architecture Method verb value val-all grnd grnd-all verb value val-all grnd grnd-all value val-all grnd grnd-all

ViT-L/14
CLS 38.69 6.50 0.16 4.23 0.02 64.65 10.95 0.22 4.23 0.02 15.65 0.38 10.24 0.10
LEX 42.00 13.06 2.60 10.26 1.76 68.35 21.40 4.25 16.40 2.83 30.37 5.39 23.62 3.54

ViT-L/14@336px
CLS 40.04 6.69 0.17 4.41 0.05 65.67 11.03 0.19 4.41 0.05 15.38 0.31 10.49 0.11
LEX 42.63 13.66 2.94 10.67 1.98 69.18 22.32 4.57 17.18 3.04 31.54 5.83 24.02 3.85

ViT-B/32
CLS 30.18 4.70 0.16 3.09 0.07 55.49 9.31 0.23 3.09 0.07 13.51 0.42 9.05 0.14
LEX 32.41 9.37 1.61 7.26 0.98 58.34 17.68 3.19 13.77 2.15 29.92 4.68 23.57 3.08

ViT-B/16
CLS 32.68 5.08 0.19 3.36 0.05 58.41 9.80 0.22 3.36 0.05 14.06 0.58 9.45 0.16
LEX 35.11 10.03 1.93 7.74 1.19 64.18 18.29 3.71 14.05 2.44 28.96 5.01 22.72 3.16

instructing: 25.01

instructing: student could be shown 
taking notes, pointing to something on 
a book or screen to ask questions.
scoring: agent's body posture 
indicating the moment of scoring, such 
as arms raised or jumping. 

scoring: 26.17 instructing 27.08 scoring: 15.34GT: instructing 

class-based description-based

sneezing: 25.10 coughing: 29.13

sneezing: nearby tissues, 
handkerchiefs, or objects suggesting 
preparedness for sneezing.
coughing: agent's posture, possibly 
hunched or bent slightly forward 
during the cough.

sneezing 32.06 coughing: 24.13GT: sneezing 

(a)

GT: male child toddler: 27.47male child: 25.26

male child: male child, could be 
outdoors or in a more complex indoor 
for tipping. 
toddler: toddler, enclosed space like a 
living room with soft floor coverings to 
cushion falls.

male child 29.14 toddler: 17.35

outdoors: 25.38GT: outdoors blank: 26.87

blank: blank, generally pure white 
background.
outdoors: outdoors, maybe droplets on 
leaves and surfaces, and a general 
sheen on roads. 

blank: 26.87outdoors: 28.84

(b)

Noun 

Verb

Figure 6: Visualization of CLIP’s attention maps on input images with different prompts. (a) Examples of verb recognition.
The right side shows the general verb-centric description prompts generated for each verb, which are used to visualize the
corresponding attention map. (b) Examples of noun recognition. The red box indicates the bounding box corresponding to the
semantic role. The right side shows the scene-specific noun description prompts generated for each noun.

that class-based approaches might focus on areas irrelevant to the
query verb. For example, given the class-based prompt for the verb
“sneezing”, CLIP wrongly attends to the child’s hair and arms. With
the detailed guidance of verb-centric descriptions, CLIP can focus
on the correct areas, which indicates the importance of providing
more contextual information instead of only class names. Similar
conclusions can be drawn in terms of noun recognition, as depicted
in Figure 6 (b). More qualitative results are left in the Appendix.

5 CONCLUSION
In this paper, we proposed a novel approach LEX for zero-shot
GSR utilizing large language models to provide rich, contextual

explanations at each critical stage of the GSR process. By inno-
vating beyond the constraints of conventional class-based prompt
inputs, our approach leverages LLMs to clarify ambiguous actions,
accurately ground semantic roles, and ensure context-aware noun
identification. Furthermore, our framework enhances model inter-
pretability and adaptability across varied visual scenes without
requiring direct training on annotated datasets. Additionally, we
introduced a description weighting mechanism to measure the
contribution of generated descriptions and assign corresponding
weights, thereby enhancing the discriminative power of the method.
Extensive validation on the SWiG dataset affirmed the effectiveness
and interoperability of our proposed LEX.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Seeing Beyond Classes: Zero-Shot Grounded Situation Recognition via Language Explainer ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2022. Exploring structure-aware transformer over interaction proposals for

human-object interaction detection. In CVPR.
[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,

Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021).

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. NeurIPS 33 (2020),
1877–1901.

[5] Yu-Wei Chao, Zhan Wang, Yugeng He, Jiaxuan Wang, and Jia Deng. 2015. Hico:
A benchmark for recognizing human-object interactions in images. In ICCV.
1017–1025.

[6] Guikun Chen, Xia Li, Yi Yang, and Wenguan Wang. 2024. Neural clustering based
visual representation learning. In CVPR.

[7] Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-Fu Chang. 2018. Zero-
Shot Visual Recognition Using Semantics-Preserving Adversarial Embedding
Networks. In CVPR.

[8] Zhi-Qi Cheng, Qi Dai, Siyao Li, Teruko Mitamura, and Alexander Hauptmann.
2022. Gsrformer: Grounded situation recognition transformer with alternate
semantic attention refinement. In ACM MM. 3272–3281.

[9] Meng-Jiun Chiou, Henghui Ding, Hanshu Yan, Changhu Wang, Roger Zimmer-
mann, and Jiashi Feng. 2021. Recovering the unbiased scene graphs from the
biased ones. In ACM International Conference on Multimedia.

[10] Junhyeong Cho, Youngseok Yoon, and Suha Kwak. 2022. Collaborative trans-
formers for grounded situation recognition. In CVPR. 19659–19668.

[11] KR1442 Chowdhary and KR Chowdhary. 2020. Natural language processing.
(2020), 603–649.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[13] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey on in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

[14] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its nature, scope, limits, and
consequences. Minds and Machines (2020), 681–694.

[15] Zixian Guo, Bowen Dong, Zhilong Ji, Jinfeng Bai, Yiwen Guo, and Wangmeng
Zuo. 2023. Texts as images in prompt tuning for multi-label image recognition.
In CVPR. 2808–2817.

[16] Dong-Jin Kim, Xiao Sun, Jinsoo Choi, Stephen Lin, and In So Kweon. 2020. De-
tecting human-object interactions with action co-occurrence priors. In ECCV.
718–736.

[17] Fanjie Kong, Yanbei Chen, Jiarui Cai, and Davide Modolo. 2024. Hyperbolic
learning with synthetic captions for open-world detection. In CVPR.

[18] Klemens Lagler, Michael Schindelegger, Johannes Böhm, Hana Krásná, and To-
bias Nilsson. 2013. GPT2: Empirical slant delay model for radio space geodetic
techniques. (2013), 1069–1073.

[19] Junnan Li, Dongxu Li, Silvio Savarese, and StevenHoi. 2023. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language
models. In International conference on machine learning. PMLR, 19730–19742.

[20] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. 2022. Blip: Bootstrapping
language-image pre-training for unified vision-language understanding and
generation. In ICML. PMLR, 12888–12900.

[21] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong,
and Steven Chu Hong Hoi. 2021. Align before fuse: Vision and language repre-
sentation learning with momentum distillation. Advances in neural information
processing systems (2021), 9694–9705.

[22] Kexin Li, Zongxin Yang, Lei Chen, Yi Yang, and Jun Xiao. 2023. Catr:
Combinatorial-dependence audio-queried transformer for audio-visual video
segmentation. In ACM MM. 1485–1494.

[23] Lin Li, Long Chen, Yifeng Huang, Zhimeng Zhang, Songyang Zhang, and Jun
Xiao. 2022. The devil is in the labels: Noisy label correction for robust scene
graph generation. In CVPR. 18869–18878.

[24] Lin Li, Long Chen, Hanrong Shi, Hanwang Zhang, Yi Yang, Wei Liu, and Jun
Xiao. 2022. Nicest: Noisy label correction and training for robust scene graph
generation. arXiv preprint arXiv:2207.13316 (2022).

[25] Li Li, Wei Ji, Yiming Wu, Mengze Li, You Qin, Lina Wei, and Roger Zimmermann.
2024. Panoptic scene graph generation with semantics-prototype learning. In
AAAI, Vol. 38. 3145–3153.

[26] Lin Li, Jun Xiao, Guikun Chen, Jian Shao, Yueting Zhuang, and Long Chen. 2024.
Zero-shot visual relation detection via composite visual cues from large language
models. NeurIPS 36 (2024).

[27] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan
Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. 2022.
Grounded language-image pre-training. In CVPR. 10965–10975.

[28] Manling Li, Ruochen Xu, ShuohangWang, Luowei Zhou, Xudong Lin, Chenguang
Zhu, Michael Zeng, Heng Ji, and Shih-Fu Chang. 2022. Clip-event: Connecting
text and images with event structures. In CVPR. 16420–16429.

[29] Wei Lin, Leonid Karlinsky, Nina Shvetsova, Horst Possegger, Mateusz Kozinski,
Rameswar Panda, Rogerio Feris, Hilde Kuehne, and Horst Bischof. 2023. Match,
expand and improve: Unsupervised finetuning for zero-shot action recognition
with language knowledge. In ICCV. 2851–2862.

[30] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan
Li, Jianwei Yang, Hang Su, Jun Zhu, et al. 2023. Grounding dino: Marrying
dino with grounded pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499 (2023).

[31] Dengsheng Lu and Qihao Weng. 2007. A survey of image classification methods
and techniques for improving classification performance. International journal of
Remote sensing 28, 5 (2007), 823–870.

[32] Sachit Menon and Carl Vondrick. 2022. Visual Classification via Description from
Large Language Models. In ICLR.

[33] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?. In EMNLP. 11048–11064.

[34] Zachary Novack, Saurabh Garg, Julian McAuley, and Zachary C Lipton. 2023.
Chils: Zero-shot image classification with hierarchical label sets. In ICML.

[35] Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, Xinlei Zhou, Ran Wang,
Chee Peng Lim, Xi-Zhao Wang, and QM Jonathan Wu. 2022. A review of gener-
alized zero-shot learning methods. IEEE TPAMI 45, 4 (2022), 4051–4070.

[36] Sarah Pratt, Mark Yatskar, Luca Weihs, Ali Farhadi, and Aniruddha Kembhavi.
2020. Grounded situation recognition. In ECCV. Springer, 314–332.

[37] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In ICML. 8748–8763.

[38] Bernardino Romera-Paredes and Philip Torr. 2015. An embarrassingly simple
approach to zero-shot learning. In ICML. PMLR, 2152–2161.

[39] Yibing Song, Ruifei Zhang, Zhihong Chen, Xiang Wan, and Guanbin Li. 2023.
Advancing visual grounding with scene knowledge: Benchmark and method. In
CVPR. 15039–15049.

[40] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang. 2020.
Unbiased scene graph generation from biased training. In CVPR. 3716–3725.

[41] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[42] Meng Wei, Long Chen, Wei Ji, Xiaoyu Yue, and Tat-Seng Chua. 2022. Rethinking
the two-stage framework for grounded situation recognition. In AAAI, Vol. 36.
2651–2658.

[43] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. 2018.
Zero-shot learning—a comprehensive evaluation of the good, the bad and the
ugly. IEEE TPAMI 41, 9 (2018), 2251–2265.

[44] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. 2018. Feature
generating networks for zero-shot learning. In CVPR. 5542–5551.

[45] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. 2017. Scene graph
generation by iterative message passing. In CVPR. 5410–5419.

[46] Jie Xu, Hanbo Zhang, Qingyi Si, Yifeng Li, Xuguang Lan, and Tao Kong. 2024.
Towards Unified Interactive Visual Grounding in The Wild. In ICRA.

[47] An Yan, YuWang, Yiwu Zhong, Chengyu Dong, Zexue He, Yujie Lu,William Yang
Wang, Jingbo Shang, and Julian McAuley. 2023. Learning concise and descriptive
attributes for visual recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 3090–3100.

[48] Shaotian Yan, Chen Shen, Zhongming Jin, Jianqiang Huang, Rongxin Jiang,
Yaowu Chen, and Xian-Sheng Hua. 2020. Pcpl: Predicate-correlation perception
learning for unbiased scene graph generation. In ACM MM. 265–273.

[49] Chen Yang and Thomas A Cleland. 2024. Annolid: Annotate, Segment, and Track
Anything You Need. arXiv preprint arXiv:2403.18690 (2024).

[50] Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-
Burch, and Mark Yatskar. 2023. Language in a bottle: Language model guided
concept bottlenecks for interpretable image classification. In CVPR. 19187–19197.

[51] Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi. 2016. Situation recognition:
Visual semantic role labeling for image understanding. 5534–5542.

[52] Qifan Yu, Juncheng Li, Yu Wu, Siliang Tang, Wei Ji, and Yueting Zhuang. 2023.
Visually-prompted language model for fine-grained scene graph generation in
an open world. In ICCV. 21560–21571.

[53] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2023.
Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.
org/abs/2205.01068 (2023), 19–0.



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[54] Zhen Zhang, Anran Lin, Chun Wai Wong, Xiangyu Chu, Qi Dou, and KW Au.
2023. Interactive Navigation in Environments with Traversable Obstacles Using
Large Language and Vision-Language Models. arXiv preprint arXiv:2310.08873

(2023).
[55] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019. Object

detection with deep learning: A review. 30, 11 (2019), 3212–3232.


	Abstract
	1 Introduction
	2 Related Work
	3 ZS-GSR via Language Explainer
	3.1 Verb Recognition via Verb Explainer
	3.2 Role Localization via Grounding Explainer
	3.3 Noun Recognition via Noun Explainer

	4 Experiment
	4.1 Experimental Setup
	4.2 Quantitative Comparison Result
	4.3 Ablation Studies
	4.4 Qualitative Comparison Result

	5 Conclusion
	References

