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Abstract
We study the stochastic noisy bandit problem with an unknown reward function f∗ in a known
function class F . Formally, a model M maps arms π to a probability distribution M(π) of reward.
A model class M is a collection of models. For each model M , define its mean reward function
fM (π) = Er∼M(π)[r]. In the bandit learning problem, we proceed in rounds, pulling one arm π
each round and observing a reward sampled from M(π). With knowledge of M, supposing that
the true model M ∈ M, the objective is to identify an arm π̂ of near-maximal mean reward fM (π̂)
with high probability in a bounded number of rounds. If this is possible, then the model class is
said to be learnable.

Importantly, a result of Hanneke and Yang (2023) shows there exist model classes for which
learnability is undecidable. However, the model class they consider features deterministic rewards,
and they raise the question of whether learnability is decidable for classes containing sufficiently
noisy models. More formally, for any function class F of mean reward functions, we denote by
MF the set of all models M such that fM ∈ F . In other words, MF admits arbitrary zero-mean
noise. Hanneke and Yang (2023) ask the question: Can one give a simple complete characterization
of which function classes F satisfy that MF is learnable?

For the first time, we answer this question in the positive by giving a complete characterization
of learnability for model classes MF . In addition to that, we also describe the full spectrum of pos-
sible optimal query complexities. Further, we prove adaptivity is sometimes necessary to achieve
the optimal query complexity. Last, we revisit an important complexity measure for interactive de-
cision making, the Decision-Estimation-Coefficient (Foster et al., 2021, 2023), and propose a new
variant of the DEC which also characterizes learnability in this setting.
Keywords: Bandits, Structured Bandits, Learning Theory, Query Complexity

1. Introduction

The multi-armed bandit problem (Robbins, 1952; Auer et al., 2002a,b; Lattimore and Szepesvári,
2020) is a problem in which a learner performs an action and gains a reward round by round, with the
intention of identifying actions with the highest rewards. The multi-armed bandit problem occurs in
many contexts. For instance, imagine one situation where a restaurant customer wants to figure out
which item on the menu is the most delicious. By strategically choosing his order each time he visits
the restaurant, he can eventually identify which item is the most delicious. Many other examples
in practice include recommendation systems, clinical trials, and financial portfolio design (Yue and
Joachims, 2009; Combes et al., 2015; Li et al., 2016, 2010; Slivkins, 2011a). The main theoretical
interests are trying to identify an optimal strategy and corresponding optimal query complexity.
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From a theoretical perspective, one important recent line of work explores the role of model
class in the multi-armed bandit problem. The framework of bandit learning with model classes is
analogous to the idea of concept classes in the PAC learning framework (Vapnik and Chervonenkis,
1974; Valiant, 1984). The PAC learning framework provides a concise and elegant characterization
of learnability and query complexity based on the concept class, thereby unifying different learning
problems into a single theory. In contrast, most of the existing bandit literature focuses on different
special cases, such as linear bandits (McMahan and Blum, 2004; Awerbuch and Kleinberg, 2008;
Abbasi-Yadkori et al., 2011), Lipschitz bandits (Agrawal, 1995; Kleinberg, 2004; Kleinberg et al.,
2008; Slivkins, 2011b) and bandits with smooth functions on a metric space (Bubeck et al., 2011).
There is no unified theory in the bandit literature. In the context of the multi-armed bandit problem,
a model maps actions (also known as arms) to reward distributions, and a model class is a set of
models. The query complexity is the minimal number of queries enough to identify the arm with
near-maximal mean reward. If query complexity is finite, then we say the model class is learnable.
In this setting, one natural question would be: Is it possible to give a general theory based on the
model class in the multi-armed bandit problem? Several papers have already made some efforts
in this direction. Amin et al. (2011) study exact learning in bandit problem, proposing a corre-
sponding Haystack Dimension. Foster et al. (2021, 2023) give a lower bound and a non-matching
upper bound for the query complexity of the multi-armed bandit problem based on their proposed
complexity measure, the Decision-Estimation-Coefficient. Hanneke and Yang (2023) identify the
optimal query complexity of deterministic rewards for binary-valued bandits. Other works have
studied the problem of bandit learning with model classes under the name of structured bandits
since a long time ago (Combes et al., 2017; Tirinzoni et al., 2020; Van Parys and Golrezaei, 2024).
However, a complete characterization of learnability in general has remained elusive.

Perhaps surprisingly, recent work shows this is unavoidable: a result of Hanneke and Yang
(2023) reveals that there exist model classes for which learnability is undecidable within ZFC.
Nevertheless, one promising direction would be identifying fairly general subfamilies of model
classes for which there exist complete characterizations of learnability. In addition, the model class
Hanneke and Yang (2023) consider features deterministic reward. However in the bandit literature,
most of existing works admit noisy rewards structure. Therefore, Hanneke and Yang (2023) ask
the following question: does there exist a simple and complete characterization of learnability for
bandits with arbitrary (zero-mean) noise?

Formally, we define the stochastic noisy bandit problem as follows. There is a set of arms Π. A
model M maps arms π to reward distributions M(π). A model class M is a collection of models.
For each model M , its mean reward function fM (π) = Er∼M(π)[r] ∈ [0, 1]. In other words, for
a model M , each arm π ∈ Π has a reward distribution M(π) with mean value fM (π). Our main
interest in this paper is model classes induced by function classes. A function class F is defined
as a collection of functions f : Π → [0, 1]. For any function class F , we denote by MF the set
of all models M such that fM ∈ F . In other words, MF admits models whose mean function is
in F , but allows for arbitrary zero-mean noise. The learning problem induced by model class MF
is described as follows: it proceeds round by round. In each round i, the learner chooses one arm
πi to pull and receives a reward r(πi) ∈ [0, 1], which is a random variable sampled from M(πi)
(conditionally independent of the past given πi). With the knowledge of F , suppose the true model
M ∈ MF , the objective of the learner is to identify an arm π̂ such that fM (π̂) ≥ supπ f

M (π)− α
with probability at least 1 − δ in a bounded number of rounds, ∀α, δ ∈ (0, 1) and ∀M ∈ MF .
If this is possible, we say function class F is learnable with arbitrary noise. The minimal bound
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on the number of rounds sufficient for achieving this is called the query complexity, denoted by
QC(F , α, δ).

In this work, for the first time, we give a complete characterization of learnability for stochastic
noisy bandits with arbitrary noise: Define generalized maximin volume of function class F

γF ,α = sup
p∈∆(Π)

inf
f∈F

Pπ∼p

(
sup
π∗

f(π∗)− f(π) ≤ α

)
, (1)

where ∆(Π) is the set of all distributions on Π. Then we have:

Theorem 1 F is learnable with arbitrary noise if and only if γF ,α > 0 ∀α ∈ (0, 1) .

This establishes the first complete characterization of learnability for stochastic noisy bandits, which
resolves the open question proposed by Hanneke and Yang (2023), and completes a long line of
research on bandit learnability which has been studied many years1. In addition, we also have
several other results:

• We further explore the optimal query complexity of stochastic noisy bandits and discover it
can range from Θ̃

(
log 1

γF,α

)
to Θ̃

(
1

γF,α

)
. 2

• We also find adaptivity is sometimes necessary for achieving the optimal query complexity.

• We extend arbitrary bounded noise to arbitrary unbounded noise using the median of means
method.

• We find the Ω
(
log 1

γF,α

)
lower bound still remains valid when the model class M contains

only Gaussian noise.

• We propose a variant of the well-known Decision-Estimation-Coefficient (Foster et al., 2021,
2023) and prove it can also characterize learnability of stochastic bandits with arbitrary noise.

We organize our paper as follows: In Section 2, we provide our main learnability character-
ization: we present the upper and lower bounds on the query complexity based on generalized
maximin volume and extend learnability result to no-regret setting. Section 3 describes two results
on the optimal query complexity. Section 4 extends our learnability result to more general noise
settings. Section 5 presents our variant of the Decision-Estimation-Coefficient with corresponding
query complexity analysis.

2. Characterization of Learnability

In this section, we introduce our main learnability results. Theorem 2 and Theorem 3 give sufficient
and necessary conditions of learnability and corresponding query complexities, respectively. Com-
bining Theorem 2 and Theorem 3 gives our characterization of learnability (Theorem 1). Finally, we
extend our learnability results to no-regret learnability (Theorem 6) through a equivalence between
two settings.

1. The work studying the general bandit learnability problem can be traced back to at least Amin et al. (2011), though
work on stochastic bandits even dates back to Robbins (1952).

2. We use Θ̃(f) or Õ(f) to hide additional polylog factor of function f .
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Algorithm 1 Learning algorithm for function class F
Input: Parameter α, δ
Recall Equation (1), γF ,α/2 = supp inff∈F Pπ∼p (supπ∗ f(π∗)− f(π) ≤ α/2).
Let p be the distribution that achieve γF ,α/2.
Sample m = 1

γF,α/2
log 2

δ arms from p : π1, π2, ..., πm.

For each πi, query 8
α2 log

4m
δ times and let f̂(πi) denote the empirical mean of these rewards.

Output: The arm π̂ with the largest empirical mean f̂(π̂).

Theorem 2 (Upper bound) γF ,α > 0 ∀α ∈ (0, 1) is a sufficient condition for learnability of F
with arbitrary noise. In addition, QC(F , α, δ) = O

(
8

γF,α/2α
2 log

2
δ log

(
4

δγF,α/2
log 2

δ

))
.

Proof Recall that γF ,α/2 = inff∈F Pπ∼p (supπ∗ f(π∗)− f(π) ≤ α/2) and p is the distribution
that achieves γF ,α. Based on the definition of p, we have Pπ∼p (supπ∗ f(π∗)− f(π) ≤ α/2) ≥
γF ,α/2 > 0 ∀f ∈ F . When we sample π from distribution p for m = 1

γF,α/2
log(2δ ) times, we have:

P
(
∃πi : sup

π∗
f(π∗)− f(πi) ≤ α/2

)
=1− P

(
∀πi : sup

π∗
f(π∗)− f(πi) > α/2

)
≥1− (1− γF ,α/2)

1
γF,α/2

log( 2
δ
)

≥1− e− log( 2
δ
)

=1− δ

2
.

(2)

Therefore, with probability at least 1− δ
2 , ∃πi, supπ∗ f(π∗)−f(πi) ≤ α/2. Then, based on Lemma

18, let f̂(πi) be the empirical mean of these rewards in 8
α2 log

4m
δ rounds,

P
[∣∣∣f(πi)− f̂(πi)

∣∣∣ ≥ α

4

]
≤ 2e−2 8

α2 log 4m
δ

α2

16 =
δ

2m
.

Using the union bound, with probability at least 1 − δ
2 , the empirical mean of every arm πi

lies within α
4 of its true mean. Consequently, with probability at least 1 − δ, the arm π̂ with the

largest estimated mean satisfies supπ∗ f(π∗) − f̂(π̂) ≤ 3
4α. Thus, for the arm π̂, it follows that

supπ∗ f(π∗)− f(π̂) ≤ α, as desired.

Theorem 3 (Lower bound) γF ,α > 0 ∀α ∈ (0, 1) is a necessary condition for learnability of F
with arbitrary noise. In addition, QC(F , α, δ) = Ω

(
log 1

γF,α

)
.

Proof We want to show if a function class F is learnable, then it must be γF ,α > 0 ∀α ∈ (0, 1).
In this proof, we will focus on models with binary-valued noisy rewards. First, we have ∀M∗ ∈
MF , ∃M∗

B ∈ MF , s.t. fM∗
B = fM∗

and M∗
B(π) is supported on {0, 1} ∀π. Supposing F is
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learnable, let A be any learning algorithm for F and let T be the corresponding query complexity
for a given α and δ. ∀M∗ ∈ MF , if we simulate running A under M∗

B , then with probability at
least 1− δ, it returns π̂ such that supπ∗ fM∗

(π∗)− fM∗
(π̂) ≤ α.

We construct a distribution p that witnesses γF ,α is lower bounded by a function of T . We
execute the algorithm A, but whenever it pulls an arm, we respond with an independent Bernoulli(12 )
reward. Let p be the distribution over the π̂ output by this execution. Then ∀M∗ ∈ MF , with
probability 2−T , the Bernoulli(12 ) rewards all agree with the rewards M∗

B would respond with, and
independent of which rewards M∗

B would respond with. Thus, we have Pπ∼p(supπ∗ fM∗
(π∗) −

fM∗
(π) ≤ α) ≥ (1− δ)2−T > 0.

Finally, we have γF ,α ≥ Pπ∼p(supπ∗ fM∗
(π∗)−fM∗

(π) ≤ α) ≥ (1−δ)2−T > 0. In addition,

we have: T ≥ log 1−δ
γF,α

= Ω
(
log 1

γF,α

)
.

Remark 4 Since our lower bound proof is based on binary noise, this indicates γF ,α > 0 ∀α ∈
(0, 1) is also characterization of learnability for F with binary noise (when the rewards of πi are
binary-valued).

Next in this section, we extends our learnability result to no-regret setting. We say a function
class F is no-regret learnable with arbitrary noise in the stochastic bandit setting if there is an
algorithm A and a function R : N → [0,∞) with R(T ) = o(T ) such that, for any M∗ ∈ MF
and any T ∈ N, T supx f

M∗
(x) − E[

∑T
i=1 r(πi)] ≤ R(T ). Now, we restate an equivalence result

between our setting and no-regret setting in terms of learnability (Hanneke and Yang, 2023). (While
Hanneke and Yang (2023) focuses on the noiseless setting, their proof still applies to noisy settings.)

Theorem 5 (Hanneke and Yang (2023), Theorem 2 ) For any noise model, any (Π,F) is learn-
able in the bandit setting if and only if it is no-regret learnable in the bandit setting.

Combining Theorem 1 and Theorem 5 gives our no-regret learnability results (Theorem 6).

Theorem 6 F is no-regret learnable with arbitrary noise if and only if γF ,α > 0 ∀α ∈ (0, 1).

Finally, we give some illustrating examples, showing how to calculate generalized maximin
volume in these cases.

Example 1 (K-armed bandit) Consider any finite Π and F = [0, 1]Π , the set of all functions
Π → [0, 1]. In this case, choose distribution p to be uniform over |Π| arms, we have γF ,α = 1

|Π| .

Example 2 (Linear bandit) Consider Π = Sd, the origin-centered unit ball in Rd for some d ∈ N,
and F = {x → w⊤x : w ∈ Sd}. Consider d is a constant, γF ,α = Ω(αd). We may construct an
α-net over the arm space Π based on 2-norm. The size of this α-net is O(( 1α)

d). For any w ∈ F ,
let π∗ = argmaxπ∈Πw⊤π, let π be the closet element of the α-net. We have w⊤π∗ − w⊤π ≤
∥w∥∥π∗ − π∥ ≤ 1 · α ≤ α based on Cauchy–Schwarz inequality. Let the distribution p be uniform
over those net elements, thus we have γF ,α = Ω(αd).

Example 3 (Singletons) Consider Π = N and F = {I{π}, π ∈ Π} : the class of singletons. This
is a not learnable class. In this case, γF ,α = 0 since for any distribution p, there exists some
arm π ∈ Π with low probability mass. Consider the function f such that f(π) = 1, we have
Pπ∈p(supπ∗ f(π∗)− f(π) ≤ α) = 0.
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3. Optimal Query Complexity

Further in this section, we explore some properties of optimal query complexity. Theorem 7 shows
every query complexity between Θ̃

(
log 1

γF,α

)
and Θ̃

(
1

γF,α

)
is achievable. Theorem 8 shows

adaptivity is sometimes necessary for achieving optimal query complexity.

Theorem 7 For α ∈ (0, 13) and δ ∈ (0, 12), ∀γ ∈ {1
i : i ∈ N},∀f(γ) ∈

[
log 1

γ ,
1
γ

]
, there exists a

function class F such that γF ,α = γ and QC(F , α, δ) = Θ̃(f(γF ,α)).

Proof Let α ∈ (0, 13) and N ∈ N. Consider the function class F that admits the following binary
tree structure: In this tree, each internal node corresponds to an arm, each leaf node corresponds to
a bucket of N arms and each edge has a value. The edge pointing to the left child has value 1

3 . The
edge pointing to the right child has value 2

3 . The arms inside the buckets either have a mean value of

0 or 1. In total, it has
⌈

1
γF,αN

⌉
leaves. The height of this tree is thus log

⌈
1

γF,αN

⌉
. Each function f

in the function class F is defined as follows: it has only one optimal arm with mean value 1, which
corresponds to an arm in some bucket. For the internal nodes in the branch from the root to this
bucket, if the edge in the branch points to the left child, then the corresponding arm in f has mean
value 1

3 ; if the edge in the branch points to the right child, then the corresponding arm in f has mean
value 2

3 . For the nodes off-branch, they all have a mean value 0. For the arms in the buckets except
for the optimal one, they also have mean value 0.

First, we will argue QC(F , α, δ) ≤ Õ
(
log 1

γF,α
+N

)
. The algorithm can be designed based

on the tree structure: Begin by querying the arm corresponding to the root of the tree. Query it
sufficiently many times so that one can guarantee the mean of the arm belongs to 1

3 or 2
3 with

high probability. Follow the branch consistent with the value of the querying result. Repeat this
procedure for each subsequent internal node along the branch until reaching a leaf node containing
a bucket of arms. Then query every node in this bucket enough times and choose the optimal one.
This process ensures QC(F , α, δ) ≤ Õ

(
log 1

γF,α
+N

)
.

Next, we will argue that identifying a near-optimal arm within this function class F needs
at least querying Ω

(
max

{
log
(

1
γF,α

)
, N2

})
times. For the lower bound proof, we consider the

model class without noise. First, we will show QC(F , α, δ) ≥ N
2 . For every function f in the

function class F , there exists a target bucket of size N that contains the optimal arm. Let π∗ ∼
Uniform(1, ..., N). Let A be any learning algorithm and let π1, ..., πt be the sequence of arms
it would pull if every reward it receives is 0 and let π̂ be its returned arm if all of its rewards
received is 0. In the true scenario, if π∗ /∈ {π1, ..., πt, π̂}, the algorithm will pull π1, ..., πt and
output π̂. Therefore, it fails. P(π∗ /∈ {π1, ..., πt, π̂}) ≥ N−t−1

N . If t ≤ N
2 − 1, then N−t−1

N ≥
1
2 > δ if we take δ ∈ (0, 12). Then, maxπ∗ P(π∗ /∈ {π1, ..., πt, π̂}) ≥ Eπ∗∼Uniform(1,...,N)[P(π∗ /∈
{π1, ..., πt, π̂}|π∗)] = P(π∗ /∈ {π1, ..., πt, π̂}) > δ. Therefore, t ≥ N

2 .

Then, we will show QC(F , α, δ) ≥ Ω
(
log 1

γF,α

)
. Let N = 1, then there are

⌈
1

γF,α

⌉
leaves,

thus the tree has depth log
(⌈

1
γF,α

⌉)
. This can be viewed as active learning with membership

query problem.3 From this perspective, we are able to use Theorem 1 in Kulkarni et al. (1993)

3. In Kulkarni et al. (1993), their problem allows for ϵ error in the objective. However, our setting requires an exact
function. Thus we need to set ϵ to be 0. In our setting, based on our construction, each time we query arms, it is
equivalent to asking whether the target function is within some set.
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to get a lower bound in our setting: Ω
(
log 1

γF,α

)
queries is necessary for our setting. Therefore,

QC(F , α, δ) ≥ Ω
(
log 1

γF,α

)
.

Since the number of arms each buckets N can range from 1 to 1
γF,α

. So QC(F , α, δ) can range

from Θ̃
(
log 1

γF,α

)
to Θ̃

(
1

γF,α

)
.

The query of the adaptive algorithm each round might depend on the previous queries and
corresponding rewards. On the contrary, the query of the non-adaptive algorithm is determined
in advance before all rounds start. Our lower bound proof for learnability uses the non-adaptive
algorithm. It is interesting to know that the adaptive algorithm improves the query complexity in
some cases. Formally, we give our result Theorem 8.

Theorem 8 ∀γ ∈ {2−i : i ∈ N}, there exists a function class F such that γF ,α = γ and for this

function class F , there exists an adaptive algorithm with Õ
(
log 1

γF,α

)
query complexity and every

non-adaptive algorithm has query complexity Ω
(

1
γF,α

)
.

Proof In this proof, we use the same function class construction F as in the proof of Theorem 7,
with N = 1. The upper bound proof follows the same reasoning as in Theorem 7. The remaining
task is to establish the Ω

(
1

γF,α

)
lower bound for non-adaptive algorithms. We continue to analyze

the model class without noise. Let A denote the algorithm, and let the version space represent the
set of all functions in the function class that are consistent with the existing observations. Denote
the arm selected by the algorithm as π̂ and the optimal arm as π∗. Our goal is to lower bound
minAmaxπ∗ Pπ∗(π̂ ̸= π∗). Let π∗ ∼ Uniform(leaves), then we have:

min
A

max
π∗

Pπ∗(π̂ ̸= π∗)

≥min
A

E[Pπ∗(π̂ ̸= π∗|π∗)]

=min
A

P(π̂ ̸= π∗)

=min
A

E[P(π̂ ̸= π∗|π1, f∗(π1), ..., πn, f
∗(πn), π̂)].

(3)

The algorithm has some fixed distribution q. Since it is non-adaptive, it only observes n samples
satisfying (π1, ..., πn) ∼ q (not necessarily i.i.d.). Then we have:

P(π̂ ̸= π∗|π1, f∗(π1), ..., πn, f
∗(πn), π̂) ≥ 1− 1

N(π1, ..., πn,π
∗)
,

where N(π1, ..., πn,π
∗) is the number of leaves in the version space within the tree structure.

Therefore,
P(π̂ ̸= π∗)

=E[P(π̂ ̸= π∗|π1, f∗(π1), ..., πn, f
∗(πn), π̂)]

≥1− E
[

1

N(π1, ..., πn,π
∗)

]
= 1− E

[
E
[

1

N(π1, ..., πn,π
∗)

∣∣∣∣π1, ..., πn]] .
(4)

7



HANNEKE WANG

Then we have the following observation: If π∗, π∗’s sibling, and π∗’s parent are not in-
cluded in {π1, . . . , πn}, then both π∗ and its sibling remain in the version space, implying that
N(π1, . . . , πn,π

∗) ≥ 2.
Let n = 1

10γ . There exists at least 1
2γ −n = 2

5γ parent level nodes such that there does not exists

πi among that parent or either child. This implies with probability greater than 2/(5γ)
1/(2γ) =

4
5 , π∗ is a

child of such a node, thus N(π1, ..., πn,π
∗) ≥ 2. E

[
1

N(π1,...,πn,π∗)

∣∣∣π1, ..., πn] ≤ 1
10 + 4

5 · 1
2 = 1

2 .

Finally, we conclude P(π̂ ̸= π∗) ≥ 1 − 1
2 = 1

2 . Choosing δ ∈ (0, 12) completes the lower bound
proof.

4. Extension to Unbounded and Gaussian Noise

In this section, we extend our existing results to broader and well-known scenarios. First, consider
the model M such that for each arm π, its reward r(π) sampled from M(π) is unbounded but with
variance σ2. Let MU,σ2

F denote a set of all such models such that f ∈ F . With the knowledge of F ,
suppose the true model M ∈ MU,σ2

F , if there exists an algorithm that is able to identify an arm π̂
such that fM (π̂) ≥ supπ f

M (π)−α with probability at least 1− δ in a bounded number of rounds
∀α, δ ∈ (0, 1) and ∀M ∈ MU,σ2

F , then we say function class F is learnable with unbounded noise.
Theorem 9 demonstrates that Algorithm 2 can identify a near-optimal arm in a finite number of

rounds for MU,σ2

F , whenever such identification is possible. In essence, Algorithm 2 replaces direct
mean estimation with the median-of-means method, which offers improved accuracy guarantees
when rewards are unbounded.

Algorithm 2 Learning algorithm for function class F with unbounded reward
Input: Parameter α, δ, σ, cM (constant in median-of-mean method)
Recall Equation (1), γF ,α/2 = supp inff∈F Pπ∼p (supπ∗ f(π∗)− f(π) ≤ α/2).
Let p be the distribution that achieves γF ,α/2.
Sample m = 1

γF,α/2
log 2

δ arms from p : π1, π2, ..., πm.

For each πi, query 16cMσ2 log 2m
δ

α2 times and estimate mean κ using median of mean:
Evenly partition the data into log 1

δ groups and let κ be the median of the set of means of the groups.
Output: The arm π̂ with the largest estimated mean.

Theorem 9 γF ,α > 0 ∀α ∈ (0, 1) is a sufficient condition for learnability of F with unbounded
noise.

Proof First, same as analysis of Theorem 2, with probability at least 1 − δ
2 , ∃πi, supπ∗ f(π∗) −

f(πi) ≤ α
2 . Based on Lemma 19, let f̂(πi) be the estimated mean of πi in 16cMσ2 log 2m

δ
α2 rounds,

P
[∣∣∣f(πi)− f̂(πi)

∣∣∣ ≥ α

4

]
≤ δ

2m
.

For each πi, after sampling 16cMσ2 log 2m
δ

α2 times and estimate using the median of means method,
plus union bound, we have with probability at least 1 − δ

2 , |f(πi) − f̂(πi)| ≤ α
4 ∀πi. Therefore,

8
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in total, with probability at least 1 − δ, the arm π̂ with the largest estimated mean has the property
supπ∗ f(π∗)− f̂(π̂) ≤ 3

4α. For this arm π̂, we have supπ∗ f(π∗)− f(π̂) ≤ α.

Next, consider the model M such that for each arm π, M(π) is a Gaussian distribution with
variance σ2. Let MG,σ2

F denote a set of all such models M such that fM ∈ F . With the knowledge
of F , suppose the true model M ∈ MG,σ2

F , if there exists an algorithm that is able to identify an
arm π̂ such that fM (π̂) ≥ supπ f

M (π)− α with probability at least 1− δ in a bounded number of
rounds ∀α, δ ∈ (0, 1) and ∀M ∈ MG,σ2

F , then we say function class F is learnable with Gaussian
noise. Theorem 10 shows a lower bound for learnability of F with Gaussian noise.

Theorem 10 γF ,α > 0 ∀α ∈ (0, 1) is a necessary condition for learnability of F with Gaussian
noise.

Proof Let ∥P −Q∥TV denote the total variation distance between distributions P and Q. Consider
G1 as a Gaussian distribution with mean 0 and variance σ2, and G2 as a Gaussian distribution with
mean 1 and variance σ2. For any Gaussian distribution G with a mean between 0 and 1, we define
a modified distribution G′ such that ∥PG − PG′∥TV ≤ ϵ, where PG and PG′ are the probability
density functions of G and G′, respectively. First, partition PG′ into m = w + 2 buckets, where w
is a constant to be defined later in this paragraph. For the leftmost and rightmost buckets, find two
points c1 and c2 such that

∫ c1
−∞ PG1(x)dx = ϵ

4 and
∫∞
c2

PG2(x)dx = ϵ
4 . Define G′ to be 0 in these

two buckets. Consequently, ∥PG − PG′∥TV ≤ ϵ
4 for each of these buckets. Using Lemma 20, we

know that Gaussian distributions are L-Lipschitz, i.e., |PG(x1) − PG(x2)| ≤ L|x1 − x2| for any
Gaussian distribution G. For the region between c1 and c2, divide it into w = L(c2−c1)2

ϵ buckets,
each with a width of ϵ

L(c2−c1)
. Let l and r represent the left and right boundaries of a bucket.

Define G′ in each of these middle buckets as a uniform distribution such that:
∫ r
l PG(x)dx =∫ r

l PG′(x)dx − ϵ
2w . The adjustment − ϵ

2w ensures that
∫∞
−∞ PG′(x)dx = 1. Within each middle

bucket, we have PG(r)− PG(l) ≤ ϵ
c2−c1

, leading to ∥PG − PG′∥TV ≤ ϵ(r−l)
2(c2−c1)

= ϵ
2w . Since there

are w buckets in the middle, the total variation distance in this region satisfies ∥PG − PG′∥TV ≤ ϵ
2 .

Combining the contributions from the leftmost, rightmost, and middle regions, we conclude that
∥PG − PG′∥TV ≤ ϵ for any Gaussian distribution G with a mean between 0 and 1.

Let the function F represent an n-round algorithm A, where the input to F is the information
the algorithm receives at each round. For any n-round algorithm A, let P denote the distribution of
F (G1, . . . , Gn, B) and P ′ denote the distribution of F (G′

1, . . . , G
′
n, B). Here, Gi is the distribution

of the original reward in the i-th round, G′
i is the modified distribution in the i-th round following

the modification described in the first paragraph, and B represents the randomness of the algorithm.
Given that ∥PGi − PG′

i
∥TV ≤ ϵ for all i, it follows that ∥P − P ′∥TV ≤ nϵ. By setting ϵ ≤ 1

4n and
δ ∈ (0, 12), the algorithm guarantees that f∗(π̂) ≥ f∗(π∗)−α under P with probability greater than
1
2 . Consequently, under P ′, this result holds with probability greater than 1

4 .
Next, we define the distribution G′′ as follows: it first uniformly selects one of the w + 2

buckets and then uniformly selects a reward within the chosen bucket. Note that the conditional
distribution within each bucket is identical between G′ and G′′ (both are uniform distributions over
a fixed region). We now demonstrate that if the learning algorithm A has finite query complexity n,
then there exists a distribution over arms such that for any function in the class, there is a non-zero
probability of sampling a near-optimal arm. Specifically, let M′ denote the model class where the

9
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arms have reward distributions G′, and let M′′ denote the model class where the arms have reward
distributions G′′. We execute the algorithm A, but whenever A pulls an arm, we respond to its
queries in each round using G′′. ∀M ′ ∈ M′, with probability (w+2)−n, these all agree with rewards
M ′ would respond with, and independent of which rewards M ′ would respond with. Let p be the
distribution over output of π̂ by this execution, we have ∀M∗ ∈ MG,σ2

F , Pπ∼p(supπ∗ fM∗
(π∗) −

fM∗
(π) ≤ α) ≥ 1

4(w + 2)−n > 0.
Finally, we have γF ,α ≥ Pπ∼p(supπ∗ fM∗

(π∗)−fM∗
(π) ≤ α) ≥ 1

4(w+2)−n > 0. Therefore,

we have: T ≥ Ω
(
log 1

γF,α

)
.

Corollary 11 Theorem 9 and Theorem 10 together imply γF ,α > 0 ∀α ∈ (0, 1) is also a charac-
terization of learnability for F with unbounded noise and F with Gaussian noise.

Remark 12 The proof of Theorem 10 for the Gaussian noise model relies on a unified discretiza-
tion scheme used for the histogram approximation of distributions. As a result, this proof can be
directly generalized to any noise distributions that satisfy this property. Examples include Pois-
son distribution, geometric distribution (after rescaling) and other most noise distributions with
Lipschitz-continuous densities.

Corollary 13 The following statements are equivalent:

• γF ,α > 0 ∀α ∈ (0, 1).

• F is learnable with arbitrary noise.

• F is learnable with binary noise.

• F is learnable with Gaussian noise.

5. The Variant of Decision Estimation Coefficient

5.1. Discussion about existing Decision Estimation Coefficient

Recent work (Foster et al., 2021, 2023) provide a well-known complexity measure for bandit learn-
ability and even more general interactive decision making problems, which they termed as Decision
Estimation Coefficient (DEC). Consider the DEC formulation from Foster et al. (2023):

decε(M) = sup
M∈co(M)

inf
p,q∈∆(Π)

sup
M∈M

{Eπ∼p

[
fM (πM )− fM (π)

]
|Eπ∼q

[
D2

H(M(π),M(π))
]
≤ ε2}

(5)
where D2

H denotes the Hellinger distance and πM := argmaxπ∈Π fM (π). For stochastic bandit
problem, Foster et al. (2023) gives an upper bound for the query complexity based on decε̄(T )(M)

for ε̄(T ) = Θ̃(
√

EstH(T )/T ). Here, EstH(T ) represents the complexity when performing online
distribution estimation with the model class M.

In this work, we are considering arbitrary noise, which is a highly complex family of distribu-
tions. It is impossible to achieve non-trivial guarantee based on distribution estimation, hence the
constraint in decε̄(T )(M) does not rule out any function in the function class F . Given this fact, con-
sider function class F1, the set of all functions on two arms. It is easy to show decε̄(T )(MF1) =

1
2

10
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since at best distribution p in Eq.(5) is uniform on two arms. F1 is learnable since the arm number
is finite. As a contrast, consider function class F2 = {1

2Iz, z ∈ R}. Note that for any distribu-
tion p, there exists some arm π where p has 0 probability mass, and there is a model M that has
fM (π) = 1

2 . Thus we have decε̄(T )(MF2) =
1
2 . F2 is not learnable. There exists a learnable func-

tion class F1 and a non-learnable class F2 that decε̄(T )(M) have the same value. This indicates it
cannot characterize learnability in stochastic bandit with arbitrary noise. Even with specific (such
as binary or Gaussian) noise, the complexity of online distribution estimation can still be large. In
these cases, decε̄(T )(M) is not made trivially vacuous by the richness of the noise model. However,
it is still unclear whether it could characterize the learnability of stochastic bandit.

5.2. A new variant of Decision Estimation Coefficient

In this section, inspired by our proposed generalized maximin volume, we give a new variant of De-
cision Estimation Coefficient that can also characterize the learnability of stochastic noisy bandits.
Our modification involves two key changes: first, we replace the Hellinger distance between mod-
els to square loss between functions. Since our focus is on arbitrary noise setting, we replace the
online distribution estimation oracle to the online regression oracle, and update its corresponding
guarantees accordingly. Second, we change the expectation Eπ∼p [supπ∗ f(π∗)− f(π)] to proba-
bility Pπ∼p (supπ∗ f(π∗)− f(π) > α) in Eq.(5). This change is essential for ensuring learnability,
similar to the role of generalized maximin volume.

Our variant of the Decision Estimation Coefficient is inspired by Theorem 8, which demon-
strates that certain function classes allow adaptive algorithms to achieve better query complexity
than non-adaptive algorithms. This insight motivates us to propose a generic adaptive algorithm
and integrate this information into generalized maximin volume. While the algorithm is not always
optimal, it narrows the gap between upper and lower bounds for many function classes. This im-
provement is reflected in our analysis using the proposed variant of DEC. Specifically, when the
function class F admits efficient online regression, the constraint in DEC quickly diminishes to a
small value over a short time horizon T . As a result, DEC effectively becomes a localized version
of the generalized maximin volume.

Formally, we introduce our proposed variant of DEC: given α ∈ (0, 1), let

decε,α(F , f) = inf
p,q∈∆(Π)

sup
f∈F

{
Pπ∼p

(
sup
π∗

f(π∗)− f(π) > α

)∣∣∣∣Eπ∼q

[
(f(π)− f(π))2

]
≤ ε2

}
Further, let co(F) denote the convex hull of function class F , define

decε,α(F) = sup
f∈co(F)

decε,α(F , f)

Definition 14 (Online regression oracle for F) At each time t ∈ [T ], an online regression oracle
Reg for F returns, given

Ht−1 = (π1, r1), ..., (πt−1, rt−1)

with ri ∼ M∗(πi) and πi ∼ pi, an estimator f̂ t ∈ co(F) such that whenever f∗ ∈ F (Equivalently,
M∗ ∈ MF ),

EST(T ) :=
T∑
t=1

Eπt∼pt

[
(f∗(πt)− f̂ t(πt))2

]
≤ EST(T, δ) (6)

11
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with probability at least 1− δ, where EST(T, δ) is a known upper bound.

Next, we will describe another characterization of learnability for stochastic bandits with ar-
bitrary noise based on our variant of the Decision-Estimation-Coefficient. Let T ∈ N, define

EST := EST
(

2T
⌈log 4/δ⌉ ,

δ
4⌈log 4/δ⌉

)
and set ε(T ) := 8

√
⌈log 4/δ⌉

T EST. Then we have:

Theorem 15 F is learnable with arbitrary noise if and only if ∀α∈(0,1),∃T ∈N, decε(T ),α(F)<1.

Algorithm 3 Learning algorithm based on DEC Variant
Input: A number T ∈ N.
Failure probability δ > 0.
Online regression oracle Reg.
Define L := ⌈log 4/δ⌉, J := T

L+1 , and EST := EST
(

2T
⌈log 4/δ⌉ ,

δ
4⌈log 4/δ⌉

)
.

Let Hp,ε(f̄) := {f ∈ F|Eπ∈p[(f(π)− f̄(π))2] ≤ ε2}.

Set ε(T ) := 8

√
⌈log 4/δ⌉

T EST.
/*exploration phase

for t = 1, 2, · · · , J do
Obtain estimate f̂ t = Reg

(
{(πi, ri)}t−1

i=1

)
.

Compute

(pt, qt) = argmin
p,q∈∆(Π)

sup
f∈Hq,ε(T )(f̂

t)

Pπ∼p

(
sup
π∗

f(π∗)− f(π) >
α

2

)
.

with the convention that the value is zero if Hq,ε(T )(f̂
t) = ∅.

Sample decision πt ∼ qt and update regression oracle Reg with (πt, rt).
end
/* exploitation phase

Sample L indices t1, ..., tL ∼ Unif([J ]) independently.
For each ℓ ∈ [L], draw J independent samples π1

ℓ , ..., π
J
ℓ ∼ qtℓ , and observe (πj

ℓ , r
j
ℓ) for each

j ∈ [J ].
For each ℓ ∈ [L] and j ∈ [J ], compute

f̃ j
ℓ := Reg({(πi

ℓ, r
i
ℓ)}

j−1
i=1 ),

and let f̃ℓ := 1
J

∑J
j=1 f̃

j
ℓ .

Set p̂ := ptℓ̂ , where ℓ̂ := argminℓ∈[L] Eπ∼qtℓ [(f̂
tℓ(π)− f̃ℓ(π))

2].
Let γ = 1− sup

f∈Hq,ε(T )(f̂
t
ℓ̂ )
Pπ∼p̂(supπ∗ f(π∗)− f(π) > α

2 ).

Sample m = 1
γ log 2

δ arms from p̂ : π1, π2, ..., πm.

For each πi, query 8
α2 log

4m
δ times. Let f̂(πi) denote the empirical mean of arm πi in those rounds.

Output: The arm π̂ with largest empirical mean f̂(πi).

Theorem 16 (Upper Bound)

∀α ∈ (0, 1),∃T ∈ N, decε(T ),α(F) < 1

12
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is a sufficient condition for learnability of function class F with arbitrary noise. In addition,
QC(F , α, δ) = O

(
T + 8

(1−decε(T ),α/2(F))α2 log
2
δ log

(
4

δ(1−decε(T ),α/2(F)) log
2
δ

))
.

Proof We begin by analyzing the exploitation phase. Recall that we set J := T
⌈log 4/δ⌉+1 ≥ T

2L . We

have that with probability at least 1− δ
4L ,

J∑
t=1

Eπt∼qt

[(
f∗(πt)− f̂ t(πt)

)2]
≤ EST

(
J,

δ

4L

)
≤ EST.

We denote this event by E0, and condition on it going forward. Since we have ε(T )2 ≥ 32
J EST by

definition, it follows from Markov’s inequality that if s ∈ [J ] is chosen uniformly at random, then
with probability at least 1/2,

Eπs∼qs

[(
f∗(πs)− f̂ t(πs)

)2]
≤ ε(T )2

16
. (7)

Going forward, our aim is to show that the exploitation phase identifies such an index s ∈ [J ].
Indeed, for any s ∈ [J ] such that the inequality (7) holds, we have f∗ ∈ Hqs,ε(T )(f̂

s), and hence

Pπ∼ps

(
sup
π∗

f∗(π∗)− f̂s(π) >
α

2

)
≤ decε(T ),α/2(F , f̂s) ≤ decε(T ),α/2(F)

To proceed, first observe that for the uniformly sampled indices t1, . . . , tL ∈ [J ], a standard
confidence boosting argument implies that with probability at least 1− 2−L ≥ 1− δ

4 , there is some
ℓ ∈ [L] so that (7) is satisfied with s = tℓ. We denote this event by F .

Next, recall the definition f̃ℓ =
1
J

∑J
j=1 f̃

j
ℓ . We have that for each ℓ ∈ [L], there is an event that

occurs with probability at least 1− δ
4L , denoted by Eℓ, such that under Eℓ we have

Eπ∼qtℓ

[
(f∗(π)− f̃ℓ(π))

2
]
= Eπ∼qtℓ

(f∗(π)− 1

J

J∑
t=1

f̃ t
ℓ(π)

)2


≤ 1

J

J∑
t=1

Eπ∼qtℓ

[(
f∗(π)− f̃ t

ℓ(π)
)2]

≤ EST(J, δ/4L)
J

≤ EST
J

≤ ε(T )2

32

(8)

We define E := F ∩
⋂L

ℓ=0 Eℓ, so that E occurs with probability at least 1− (L+1)δ
4L − δ

4 ≥ 1− δ
2 .

We now show that the exploitation phase succeeds whenever the event E holds. By the triangle
inequality for square loss, letting ℓ ∈ [L] be any index such that (7) is satisfied with s = tℓ, we have

Eπ∼qtℓ

[(
f̃ℓ(π)− f̂ tℓ(π)

)2]
≤ 2

(
Eπ∼qtℓ

[(
f∗(π)− f̃ℓ(π)

)2
+
(
f∗(π)− f̂ tℓ(π)

)2])
≤ ε(T )2

4
(9)
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In addition, based on the definition of ℓ̂,

E
π∼q

t
ℓ̂

[(
f̃ℓ̂(π)− f̂ tℓ̂(π)

)2]
≤ Eπ∼qtℓ

[(
f̃ℓ(π)− f̂ tℓ(π)

)2]
≤ ε(T )2

4
(10)

Using triangle inequality again, we obtain under the event E ,

E
π∼q

t
ℓ̂

[(
f∗(π)− f̂ tℓ̂(π)

)2]
≤ 2

(
ε(T )2

4
+

ε(T )2

32

)
≤ ε(T )2 (11)

This means that f∗ ∈ H
q
t
ℓ̂ ,ε(T )

(f̂ tℓ̂). In addition,

sup
f∈H

q
t
ℓ̂ ,ε(T )

(f̂
t
ℓ̂ )

P
π∼p

t
ℓ̂

(
f(πM )− f(π) >

α

2

)
= inf

p,q∈∆(Π)
sup

f∈Hq,ε(T )(f̂
t
ℓ̂ )

Pπ∼p

(
f(πM )− f(π) >

α

2

)
= decε(T ),α

2
(F , f̂ tℓ̂)

≤ sup
f∈co(F)

decε(T ),α
2
(F , f)

= decε(T ),α
2
(F)

(12)
Therefore, with probability 1− δ

2 , we have f∗ is contained in H
q
t
ℓ̂ ,ε(T )

(f̂ tℓ̂) and γ ≥ 1−decε(T ),α
2
(F) >

0. When we sample π from distribution p̂ m = 1
γ log(2δ ) times, we have:

P
(
∃πi : sup

π∗
f∗(π∗)− f∗(πi) ≤ α/2

)
=1− P

(
∀πi : sup

π∗
f∗(π∗)− f∗(πi) > α/2

)
≥1− (1− γ)

1
γ
log( 2

δ
)

≥1− e− log( 2
δ
)

=1− δ

2

(13)

Therefore, with probability at least 1− δ
2 , ∃πi, supπ∗ f∗(π∗)−f∗(πi) ≤ α

2 . Then, based on Lemma
18, let f̂(πi) be the empirical mean of πi in 8

α2 log
4m
δ rounds,

P
[∣∣∣f∗(πi)− f̂∗(πi)

∣∣∣ ≥ α

4

]
≤ 2e−2 8

α2 log 4m
δ

α2

16 =
δ

2m

Then, based on union bound, with probability 1− δ
2 , for all arms πi, its empirical mean is within

α
4 from their true mean. Then in total, with probability 1− δ, the arm π̂ with largest estimated mean
has the property supπ∗ f(π∗) − f̂(π̂) ≤ 3

4α. Therefore, for arm π̂, supπ∗ f(π∗) − f(π̂) ≤ α as
desired.

14



STOCHASTIC BANDIT LEARNABILITY

Theorem 17 (Lower Bound)

∀α ∈ (0, 1),∃T ∈ N, decε(T ),α(F) < 1

is a necessary condition for learnability of function class F with arbitrary noise.

Proof For any learnable function class F , we have supp∈∆(Π) inff∈F Pπ∼p(supπ∗ f(π∗)−f(π) ≤
α) > 0 ∀α by Theorem 3. Equivalently, we have infp∈∆(Π) supf∈F Pπ∼p(supπ∗ f(π∗)− f(π) >
α) < 1 ∀α. Following this, we have: supf∈co(F) infp,q∈∆(Π) supf∈F{Pπ∼p(supπ∗ f(π∗) −
f(π) > α)|Eπ∼q[(f(π) − f(π))2] ≤ ε2} < 1∀α∀ε, since any constraint would only make the
maximum value smaller, which will be still smaller than 1.

At last, we wrap up this section by giving an illustrating example to show how our proposed
DEC could improve query complexity in some cases compared to generalized maximin valume.

Example 4 Consider the function class F constructed in Theorem 7 and set N = 1. For clarity,
we denote γF ,α as γ and decε(T ),α(F) as dec. We claim that the upper bound on dec in Theorem 16

achieves a near-optimal query complexity of polylog
(

1
γ

)
.

First, for any function f ∈ F , there are log
(

1
γ

)
non-zero mean values, which are 1

3 , 2
3 or

1. Observing at most O
(
log

(
log( 1

γ
)

δ

))
samples for each value suffices to deduce the correct

outcome. This implies that EST(T, δ) = polylog( 1γ ). Consequently, ε̄(T ) = Õ

(√
log( 1

γ
)

T

)
.

Next, we bound dec for a sufficiently small ε = 1
10 . If f̄ ∈ F , assigning p as a single point mass

on the arm with reward 1 ensures dec = 0. For f̄ ∈ co(F) \ F , we define dec for any fixed f̄ as
0 if there exists q such that the constraint is infeasible for all f ∈ F . Otherwise, if every q has a
non-empty set of functions in F ε-close to f̄ under q, then f̄ is very close to some f ∈ F . In this
case, there exists a leaf with near 1 value where p can place a single point mass, ensuring dec = 0.

To justify this claim for f̄ ∈ co(F)\F , note that at the root level, if f̄ is not close to 1
3 or 2

3 , then
a distribution q with a single point mass at the root makes the constraint set infeasible. Therefore,
f̄ must be close to 1

3 or 2
3 at the root. Without loss of generality, assume f̄ = 1

3 at the root. If f̄ is
not close to 1

3 or 2
3 at the left child, then q with point masses at the root and left child will make the

constraint infeasible. Proceeding recursively, f̄ must follow the appropriate 1
3 or 2

3 values along
some branch in the tree (close to 1

3 when going left, 2
3 when going right). If f̄ is not close to 1 at

the corresponding leaf, then point masses at the leaf’s parent and the leaf render the constraint set
infeasible. Otherwise, f̄ is close to 1 at some leaf, in which case a single point mass at that leaf
ensures the constraint set contains only the function corresponding to the leaf, yielding dec = 0.

6. Conclusions and Future Directions

In this work, we have given a complete characterization of learnability for stochastic noisy bandits
and further explored the range of possible values of the optimal query complexity. One interesting
direction for future work could be extending these results to other variants of learning problem with
bandit feedback, such as contextual bandits (Langford and Zhang, 2007; Li et al., 2010; Slivkins,
2011a; Agarwal et al., 2014; Agrawal and Devanur, 2016; Krishnamurthy et al., 2020; Foster and
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Rakhlin, 2020; Foster and Krishnamurthy, 2021), dueling bandits (Yue and Joachims, 2009), com-
binatorial bandits (Cesa-Bianchi and Lugosi, 2012; Chen et al., 2013; Combes et al., 2015; Chen
et al., 2016).
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Appendix A. Auxiliary Lemma

Lemma 18 Let X1, ..., Xn be independent random variable such that 0 ≤ Xi ≤ 1 almost surely.
Let Z̄ = X1+...+Xn

n . Then:
P(|Z̄ − E[Z̄]| ≥ t) ≤ 2e−2nt2

Equivalently, ∀δ ∈ (0, 1), with probability at least 1− δ,

|Z̄ − E[Z̄]| ≤

√
1

2n
ln

(
2

δ

)
.

Lemma 19 Assume that the sample size n = KB, where K is the number of subsamples and
B is the size of each subsample. We first randomly split the data into K subsample and compute
the mean using each subsample, which leads to a set of estimators. Each estimator is based on
B observations. The median-of-means estimator is the median of all these estimators. For any
distribution D with mean µ and standard deviation σ, the median-of-means estimate κ, on input n
samples, satisfies

P

|κ− µ| > cMσ

√
log 1

δ

n

 ≤ δ,

where cM is an absolute constant.

Lemma 20 (Fact) Gaussian distribution is L-lipschitz, where L is a constant depending on vari-
ance σ2.
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