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Abstract

Reinforcement learning (RL) has become increasingly popular, but applying it suc-
cessfully to real-world problems remains challenging. In contrast, search has been a
powerful yet underused tool in real-world settings, despite achieving notable successes
in several domains. We believe the potential of search-based approaches in real-world
applications has not yet been fully explored, as many real-world applications are com-
binatorial in nature.

Our work explores the use of reinforcement learning guided Monte Carlo tree search
(MCTS) algorithms, using AlphaZero-style agents in the challenging real-world task of
field-programmable gate array (FPGA) component placement. Our preliminary results
show that MCTS can significantly improve a reinforcement learning agent’s perfor-
mance in this task. This, in itself, is not surprising. However, additional results show
that by integrating Gumbel-enhanced MCTS, the policy converges faster and achieves
better performance, demonstrating the utility of search-based approaches in this real-
world application. Our results highlight a broader insight: search is not an outdated
baseline — when used in combination with RL methods, it could be an under-used
approach for solving real-world decision problems.

1 Introduction

In recent years, deep reinforcement learning (RL) has become a popular paradigm for decision-
making tasks, from game playing to robotics (Arulkumaran et al., 2019; Kober J, 2013). Although
often overshadowed by recent advances in deep RL, search has achieved notable success in domains
such as matrix multiplication optimization (Fawzi et al., 2022) and video encoding (Mandhane et al.,
2022). The AlphaZero algorithm (Silver et al., 2018) and its related variations (Silver et al., 2016;
2017; Schrittwieser et al., 2020) have led to revolutionary breakthroughs by combining search and
reinforcement learning, allowing for newfound success in complex combinatorial games such as
Go. In the domain of chip design, deep RL has recently gained traction as a way to assist and
improve traditional placement methods (Lin et al., 2019). Notably, Google introduced a model-free
PPO-based framework for macro placement in ASIC chips (Mirhoseini et al., 2021), which inspired
substantial follow-up work (Lu et al., 2023; Shi et al., 2023; Lai et al., 2023; 2022; Cheng & Yan,
2021; Chang et al., 2022; Yan et al., 2024).

In this paper, we set out to explore the potential of alternative search-driven approaches, which we
believe are better suited for the combinatorial problem of chip design. We use Monte Carlo tree
search (Browne et al., 2012) guided by an RL-trained policy to find desirable FPGA chip designs.
Our preliminary results show that our search-based approach outperforms a model-free PPO-based
baseline in terms of placement quality, measured by estimated wirelength. Furthermore, we experi-
ment with using the Gumbel AlphaZero technique to speed up convergence, and find that it results
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in additional performance improvements. We believe that this work supports the idea that search
can be a powerful tool for improving reinforcement learning techniques, particularly for complex
real-world tasks with combinatorial structure.

2 Background and Related Work

2.1 RL Background

Many real-world decision-making problems, including those in RL, can be modeled as Markov
decision processes (MDPs). An MDP is defined by a tuple ⟨S,A, P,R, γ⟩, where S is the set of
states, A is the set of actions, P (s′|s, a) is the transition probability to the next state s′ given current
state s and action a, R is the reward function, and γ is the discount factor for future rewards. The
objective is to learn a policy that maximizes the expected cumulative reward over time.

2.2 PPO

Proximal policy optimization (PPO) (Schulman et al., 2017) is a widely used on-policy reinforce-
ment learning algorithm known for its stability and simplicity. It updates the policy using a clipped
objective function, which limits how much the new policy can deviate from the old one, thus stabiliz-
ing learning. Its ease of implementation and robust performance have made it a common technique
in RL research.

2.3 AlphaZero

The AlphaZero algorithm (Silver et al., 2018) combines a neural network optimization with MCTS
(Browne et al., 2012) to guide decision making through search and learning. The policy network
provides action priors and value estimates, which MCTS uses to iteratively construct a tree of states.
Each iteration of MCTS consists of four phases:

1. Selection: Starting from the root node (current state), the tree is traversed using the PUCT for-
mula, which balances exploitation (selecting high-value nodes) and exploration (selecting low-
visit nodes) (Kocsis & Szepesvári, 2006; Rosin, 2010).

2. Expansion: When a leaf node is reached, a new node is added to the tree to represent the next
possible state.

3. Evaluation: The policy and value network evaluate the new node to provide a prior distribution
over actions and an estimated return.

4. Backpropagation: The evaluation information is propagated back up the tree to update visit
counts and action values.

During training, episodes are generated from self-play with multiple MCTS iterations and selecting
the most visited action at each step. After completing an episode, the outcome is used to train the
policy via cross-entropy loss and the value network via mean squared error between predicted and
actual returns from rollouts.

2.4 Gumbel AlphaZero

To enhance AlphaZero’s search efficiency, the Gumbel AlphaZero work (Danihelka et al., 2022)
introduces various improvements upon the action selection mechanisms of AlphaZero by integrat-
ing Gumbel-top-k sampling, sequential halving, and value interpolation. These improvements make
Gumbel AlphaZero particularly effective under a limited simulation budget. At the root node, ac-
tions are sampled without replacement using the Gumbel-top-k trick (Kool et al., 2019). The top-
k root node actions (by Gumbel-perturbed log-probability) are selected, then sequential halving
(Karnin et al., 2013) allocates simulations among them, repeatedly discarding the worst half of the
remaining actions until one action remains, which is chosen as the root action. For nodes other
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than the root: 1) Unvisited node actions are evaluated using value interpolation, enabling a complete
policy update; and 2) Visited node actions are selected deterministically based on the visit count
distribution, ensuring theoretical policy improvement. This approach allows Gumbel AlphaZero to
perform well even with limited simulations, unlike traditional AlphaZero, which requires extensive
exploration.

2.5 FPGA Placement

I/O 

RAM
DSP

CLB

Figure 1: This FPGA board is 11 × 11
units in size and incorporates components:
digital signal processors, configurable logic
blocks, I/O blocks, and random access mem-
ory blocks.

The chip placement problem maps a list detailing
a circuit’s components and connections (known as
the netlist), to a physical layout of the components
on the chipboard. The number of FPGA compo-
nents can range from hundreds to tens of thou-
sands for complex high-density designs, illustrating
the scale and variability of the placement challenge.
The placement of these components must respect the
following two constraints: Type constraints specify
which components can be placed on different parts
of the chipboard. Capacity constraints specify the
number of components allowed.

Figure 1 shows an example diagram of an FPGA
chip. The possible component positions are repre-
sented by colored rectangles, where each color cor-
responds to a specific component type.

The most common goal for FPGA placement is to
minimize wirelength and critical path delay. In this
work, we focus on estimated wirelength as our pri-
mary evaluation metric, as it provides a proxy for
placement quality and is computationally inexpen-
sive. We estimate wirelength from placed component locations in our experiments, allowing faster
iteration while still reflecting meaningful placement differences. Full FPGA design tools such as
VTR (Verilog-to-Routing) (Elgammal et al., 2025) can generate the routed wirelength, a more accu-
rate estimate, but require much more simulation time.

2.6 RL-based Placement

AlphaChip (Mirhoseini et al., 2021) was a pioneering work that modeled ASIC macro placement
as an RL problem, using a model-free PPO-based agent to learn placement policies. The authors
proposed a two-stage pipeline, where a model-free RL agent places the large macro components
in the first stage, and a traditional placement tool handles the remaining components in the second
stage. The approach inspired a wave of research exploring state representations, offline learning
methods, and improved exploration strategies (Cheng & Yan, 2021; Cheng et al., 2022; Lai et al.,
2022; 2023). However, the majority of these works remain purely model free and do not leverage
search. A notable exception is EfficientPlace (Geng et al., 2024), which combines PPO with MCTS,
highlighting the promise of integrating search with RL for chip placement.

Despite this progress, the broader class of RL-based placement methods still rarely incorporate
search explicitly. For instance, RLPlace (Elgammal et al., 2021) enhances classical simulated an-
nealing by using a bandit-style RL agent to guide local move strategies. It was later integrated into
the VTR framework (Elgammal et al., 2025), where it remains a key component of the state-of-
the-art simulated annealing-based placement engine. The Divide-and-Conquer RL approach (Wang
et al., 2024) breaks the placement process into sequential subproblems, replying purely on model-
free learning.
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3 Experiments

This section presents preliminary results using RL to tackle FPGA placement problems, highlighting
how advantages in search can significantly improve performance.

3.1 Problem Setup

The FPGA placement problem is formulated as an MDP. Details are in Appendix 5.1, but a sketch
is as follows:

• States consist of the placement status of the current board.

• Actions are defined as placing the current component in a location that does not violate any hard
constraints (e.g., capacity or type limits).

• Rewards are zero until all components are placed, at which point the final reward is proportional
to the estimated wirelength.

3.2 Placement Setup

We evaluate PPO, AlphaZero, and Gumbel AlphaZero agents on simple FPGA placement tasks,
with the goal of comparing model-free RL and search-based RL. We use the tseng.net netlist
and EArch.xml architecture files from MCNC20 benchmark suite (Yang, 1991), a standard dataset
in FPGA design. The full placement instance consists of 56 CLBs and 174 I/O components. From
Table 1, we can see that the number of possible placements grows exponentially with the number
of components to be placed, showing the difficulty of this task. In our experiments the RL agent is
trained to place either 5 or 15 components, while the remaining components remain at the positions
specified by the full VTR solution. Details are in Appendix 5.3.

# Components to place HPWL by random placement Placement permutations
5 ∼ 3400 ∼ 105

15 ∼ 4300 ∼ 1017

56 ∼ 5700 ∼ 1083

230 ∼ 7300 ∼ 10259

Table 1: The number of components to be placed, the approximate average HPWL (i.e., wirelength)
resulting from random placement, and the approximate number of possible placement permutations
shown for different FPGA placement tasks from the MCNC20 dataset.

3.3 Agents Setup

All agents use a common ResNet-based neural network to encode the current chipboard state as a
spatial feature map. The encoded state representation is used as the input to the agent’s learned
networks, which output a probability distribution over actions (policy head) and an estimate of the
expected cumulative return of the state (value head). For the value head, PPO agent outputs a
scalar value, while AlphaZero and Gumbel AlphaZero follows the MuZero categorical value head
(Schrittwieser et al., 2020). To ensure FPGA placement constraints are met, invalid actions are
disalowed (i.e., masked) during both inference and training.

In our initial experiments with the AlphaZero agent, we observed that the MCTS algorithm often
gets stuck in local optima, leading to highly skewed visitation distributions where most simulations
are concentrated on a small number of state-action pairs. This limited exploration and suppressed
the agent’s ability to discover better trajectories. However, setting the exploration constant of the
PUCT formula (Rosin, 2010) too high degrades performance from excessive exploration from nodes
with well-known values. Ideally, we would want much higher exploration on nodes with few visits,
and lower exploration on states with sufficiently many visits. To address this, we introduced a forced
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exploration mechanism: if the most visited child under the root exceeds a dynamic threshold N =
k·nsim

nvalid_actions
, and at least 20% of the root’s children are under this threshold, we randomly select one

under-visited node from the top 20% (by PUCT score). The scalar k controls the sensitivity of this
threshold, and we set k = 2.0 in our experiments. This explicit exploration mechanism encourages
visits to promising but underexplored actions, helping the agent escape suboptimal regions and
improve trajectory diversity. We have found that this method of exploration in combination with
PUCT leads to improved performance for MCTS on this task.

4 Results

We report the training performance of PPO, AlphaZero, and Gumbel AlphaZero on the 5-
components and 15-components FPGA placement tasks. Details are in Appendix 5.2.

Figure 2 shows the HPWL curves for each agent during the training in the 5-components and 15-
components tasks. Datapoints are the best HPWL found over the episodes generated at that training
step, not the best HPWL found over the entire training process. There are two main observations:

1. Starting point differences: Each agent completes their first learning step at different times due
to varying computational overheads. PPO, being model-free, starts training and generating results
fastest, while AlphaZero and Gumbel AlphaZero require additional time for search simulations
before producing results.

2. Search-based agents performance: Given the same training time, both AlphaZero and Gumbel
AlphaZero outperform PPO, achieving better placement quality than PPO. Gumbel AlphaZero
not only finds lower HPWL faster, but also shows significantly less variance across different
configurations. On the 5-component task, Gumbel AlphaZero was able to quickly converge to
the VTR solution across all variations.

Figure 2: Training performance comparison of PPO, AlphaZero, and Gumbel AlphaZero agents
on the 5-component (left) and 15-component (right) FPGA placement tasks. The search agents are
given a simulation budget of 50 for the 5 component task and 100 for the 15 component task. The
y-axis shows HPWL, and the x-axis shows wall-clock training time in seconds. The VTR-generated
placement HPWL (∼ 2 seconds) is marked with an orange star as a reference. Each curve represents
the mean across five random configurations, with the range between the highest and lowest HPWL
found across each configuration.

Table 2 shows the average HPWL (with standard deviation) across 5 different placement configura-
tions for each agent evaluated on the 5-component and 15-component tasks. We load the checkpoint
that achieved the best training HPWL and test it on the same component configuration but with
varied simulation budgets. While this setup does not test generalization to unseen configurations, it
enables a fair comparison of how each agent uses additional simulation resources at inference. From
the table, we observe that with a simulation budget of 1, both AlphaZero and Gumbel AlphaZero
yield performance comparable to PPO. As the simulation budget increases, both the average HPWL
improves and the standard deviation decreases, demonstrating that search-based inference yields
better and more stable placements.
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Metric # Components Simulation budget PPO AlphaZero Gumbel AlphaZero

HPWL

5
1

2899.60 ± 62.60
2954.87 ± 70.66 2805.70 ± 43.76

50 2866.80 ± 66.78 2769.95 ± 22.85
100 2858.14 ± 59.76 2760.63 ± 27.76

15
1

3582.05 ± 178.70
3534.56 ± 269.96 3377.02 ± 259.43

50 3300.76 ± 186.56 3121.31 ± 252.54
100 3204.38 ± 173.93 3091.93 ± 206.22

Time (s)

5
1

0.50 ± 0.02
3.11 ± 0.02 3.18 ± 0.02

50 6.39 ± 0.02 6.42 ± 0.02
100 9.48 ± 0.03 9.96 ± 0.05

15
1

0.83 ± 0.02
3.23 ± 0.02 4.61 ± 0.02

50 13.60 ± 0.03 13.84 ± 0.11
100 24.21 ± 0.09 24.71 ± 0.20

Table 2: Average HPWL and runtime (± standard deviation) for PPO, AlphaZero, and Gumbel
AlphaZero evaluated on five placement configurations for both 5- and 15-component tasks. Results
correspond to the best-performing checkpoint from training. Each method is tested under varying
simulation budgets to assess how effectively it balances placement quality and computational cost
during inference.

While PPO maintains consistently low inference time across simulation budgets, both AlphaZero
and Gumbel AlphaZero incur additional computational cost due to MCTS. As expected, their run-
times increase with the number of simulations, reflecting the overhead of search-based inference.
Notably, Gumbel AlphaZero still achieves better HPWL than AlphaZero at lower budgets, suggest-
ing more efficient use of simulations.

5 Conclusion and Future Work

This work explored how integrating search with reinforcement learning, specifically using Alp-
haZero and Gumbel AlphaZero can enhance performance on real-world inspired combinatorial
tasks. Using FPGA placement as a case study, we show that combining search with RL leads to
faster convergence and improved solution quality, even under limited simulation budgets. Future
work includes extending this direction to more realistic placement metrics and larger problem scales,
as well as leveraging recent works in search-augmented policy improvement Pirnay et al. (2023);
Randall et al. (2024) to further test the generality of our insights.

Acknowledgments

This work has taken place in the Intelligent Robot Learning (IRL) Lab at the University of Al-
berta, which is supported in part by research grants from the Alberta Machine Intelligence Institute
(Amii); a Canada CIFAR AI Chair, Amii; Digital Research Alliance of Canada; Huawei; Mitacs;
and NSERC.



RLC Workshop on RL4RS 2025

Appendix

5.1 State Construction

We define each state as an image composed of the following six channels:

1. The capacity channel indicates the remaining capacity of each grid cell.

2. The action mask channel indicates the locations where the current components can be placed,
with a value of 1 for valid positions and 0 for invalid ones.

3. The input channel indicates the number of times the placed components serve as a source/input
in all nets.

4. The output channel indicates the number of times the placed components serve as a sink/output
in all nets.

5. The output channel indicates the number of connections the placed components has with other
components in the netlist.

6. The wire-mask channel represents how the estimated wirelength increases if a component is
placed in a position (Lai et al., 2022).

Each channel is a matrix of the same size as the chipboard, and together they comprise all relevant
information pertaining to the current state of the chipboard and the components to be placed. The
image composed of these channels is used as the input for our learned policy. This format should
only be used if there is a single appendix (unlike in this document).

5.2 Training Setup

All training has been conducted on a Compute Canada cloud server equipped with 1x Tesla V100-
SXM2-16GB GPU and Intel Xeon Gold 6148 CPU at 2.40GHz. For the 5-components task, we
train each agent for 3600 seconds (1 hour), using a simulation budget of 50 per step for AlphaZero
and Gumbel AlphaZero agent. For the 15-components task, we train each agent for 28800 seconds
(8 hours), using a simulation budget of 100 per step for AlphaZero and Gumbel AlphaZero agent.

To evaluate the consistency of the agent’s performance, we construct 5 different component place-
ment task configurations for each setting (5-components and 15-components), each defined by a
randomly sampled subset of CLBs. For each configuration, the agent is tasked with placing the
selected components, while all other components remain fixed to their VTR-optimal positions. The
agent places the components in a predefined, fixed order, eliminating the additional complexity of
learning placement sequences.

5.3 Placement Setup

To create a more tractable and interpretable setting, we decided to simplify the experiments. We
assume that a placement generated by VTR serves as an expert solution, and we fix the positions
of all components except for a small subset. The RL agent is then trained to place either 5 or 15
components, while the remaining components remain at their VTR-optimal positions. We evaluate
performance using estimated half-perimeter wirelength (HPWL) and report the gap between the
VTR-optima and the RL placement results.

To provide a consistent and bounded learning signal, we define the reward as a linearly scaled
version of the HPWL, mapped to the range (−1, 0). For example, in the 5-components task, we map
HPWL values ranging from 3400 (random placement) to 2733 (VTR-derived placement) linearly to
the interval such that 3400 maps to -1 and 2733 maps to 0. We apply the same reward scaling to the
15-components task, mapping (4300, 2733) to (-1, 0).
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