
A Comparison with Other General MLCO Frameworks

Since obtaining ground-truth labels is non-trivial for NP-hard combinatorial tasks, there exist several
efforts developing general MLCO methods without any requirement of ground-truth labels, including
[8, 29, 30], our single-level baseline PPO-Single and our proposed PPO-BiHyb. Here we make a
comparison concerning the model details and the capable problems of these methods.

Table 4: Comparison of general MLCO frameworks concerning their model details (upper half) and
the capabilities to some popular CO problems according to our understanding (lower half).

model S2V-DQN [30] NeuRewritter [8] Erdős GNN [29] PPO-Single PPO-BiHyb (ours)

data type graph graph & sequence graph graph graph
CO formulation single-level single-level single-level single-level bi-level
learning method RL (DQN) RL (DQN) unsup. learning RL (PPO) RL (PPO)

encoder GNN GNN or LSTM GNN GNN GNN
decode strategy greedy local search random sampling beam search beam search

graph cut X X X X X
vertex cover X X X X X
max clique X X X X X

DAG scheduling X X × X X
graph edit distance X X × X X
Hamiltonian cycle X X × X X
traveling salesman X X × X X

vehicle routing X X × X X
expression simplify × X × × ×

We would also like to discuss the limitations of the approaches including ours. For S2V-DQN [30]
and NeuRewritter [8], training the RL model is challenging due to the sparse reward and large action
space issues especially for large-scale problems. Specifically, for graphs with m nodes, the action
space of S2V-DQN and NeuRewritter is m, and S2V-DQN requires O(m) actions to terminate for
most problems when the number of decisions is proportional to m. This conclusion also holds for
PPO-Single. NeuRewritter may take any number of actions, but the more actions it takes, the more
likely it will reach a better solution. In comparison, the action space of our PPO-BiHyb is m2 (and
decomposed as two sub-actions with space m), and the number of actions is restricted under 20 for
graphs up to 2800 nodes. Therefore, from the perspective of learning, we cut the number of actions
(i.e. mitigate the sparse reward issue) to ease RL training.

As shown in Tab. 4, the PPO-Single that serves as a baseline in our paper is designed following
S2V-DQN [30], and we set the RL method as PPO and use beam search when decoding, to make a
fair comparison between PPO-Single and PPO-ByHib.

Erdős GNN [29] is a novel framework with unsupervised learning, however, its main limitation
is that this framework is incapable of handling constraints beyond simple node constraints. As
shown in Tab. 4, NerRewritter is most general because it can be viewed as a learning-based local
search meta-heuristic that represents the family of meta-heuristics including popular algorithms e.g.
simulated annealing and genetic algorithm, and S2V-DQN and our PPO-BiHyb can handle most CO
over graphs. It is also worth noting that there are some problems that are beyond our knowledge
to tackle, e.g. the expression simplify problem, and it may requires experts with specific domain
knowledge to generalize our proposed framework to more combinatorial problems.

B Implementation Details on PPO-Single

We have discussed the model details of PPO-BiHyb in Sec. 4, and in this section, we discuss the
model details of the single-level RL baseline PPO-Single.

B.1 Case 1: DAG Scheduling

MDP Formulation. Following the implementation from [39], the job nodes are scheduled in
sequential order with PPO-Single. Here state is the current DAG Gk with a timestamp, and some
of the nodes are already scheduled by the current timestamp. To represent the current state of the
problem, the finished nodes, running nodes and unscheduled nodes are marked by different node

15

attributes, so that the state information is fully encoded by the nodes and edges of Gk. Action is
defined as scheduling the next node to be executed, and we define a “wait” action to move timestamp
until the next event when any node finishes. After a node finishes, it will free some resources, and
sometimes add some available nodes to be scheduled. The reward is computed as the negative
makespan time.

State Encoder. In line with PPO-BiHyb, we also adopt GCN [32] to encode the state represented by
DAG. Considering the structure of DAG, we design two GCNs: the first GCN processes the original
DAG, and the second GCN processes the DAG with all edges reversed. The node embeddings from
two GCN modules are concatenated, and an attention pooling layer is adopted to extract a graph-level
embedding.

n =
[
GCN1(Gk) || GCN2(reverse(Gk))

]
, g = Att(n) (13)

Actor Net. Following PPO-BiHyb, the action net is built with a 3-layer ResNets block [22]. Since
we are adopting a single-level RL method, only one action is selected at each step:

P (a) = softmax(ResNet1([n || g])) (14)
For training, we sample a according to P (a). For testing, beam search is performed with a width of
10: actions with top-10 highest probabilities are searched, and all searched actions are evaluated by
their current makespan, and only the best-10 actions are maintained for the next search step.

Critic Net. Also in line with PPO-BiHyb, the critic net is built by max pooling over all node features,
and the pooled feature is concatenated with the graph feature from state encoder, and finally processed
by another ResNet for value prediction.

Ṽ (Gk) = ResNet2 ([maxpool(n) || g]) (15)

B.2 Case 2: Graph Edit Distance

MDP Formulation. Our embodiment of PPO-Single on GED follows [36]. Since there are two
graphs, we discriminate the graphs by subscripts G1,G2. The state is defined as the current partial
solution between two graphs. At each action, the RL agent is required to firstly select a node from
G1 and then select a node from G2. We further add “void nodes” to stand for node addition/deletion
operations. Reward is defined as the negative edit length obtained by editing G1 to G2.

State Encoder. The state encoder is built with GCN [32] to aggregate graph features and the
differentiable Sinkhorn-Knopp (SK) algorithm [49] for message passing across two graphs, and such
designs are in line with our PPO-BiHyb.

n1 = GCN(G1), n2 = GCN(G2), S = SK(n1n
>
2) (16)

The predicted doubly-stochastic matrix by SK is processed by considering the partial matching matrix.
For PPO-Single, if one node is already matched, we assign the corresponding row/column in S as the
known matching information, and we get the modified matrix S′. The difference of node features
between two graphs is obtained:

n = n1 − S′ · n2 (17)
Graph-level features are obtained via attention pooling, which are fed to the critic net. It is worth
noting that the matched nodes and the corresponding edges are occluded when computing the
graph-level features.

g1 = Att(n1), g2 = Att(n2) (18)

Actor Net. Since we are aiming to predict the edit operations from G1 to G2, the actor net is designed
to selected two nodes from two graphs separately. The node selection from the first graph is done by
a ResNet module, and the node selected from the second graph is done by an attention query based
on the selected first node.

P (a1) = softmax (ResNet(n)) , P (a2|a1) = softmax(n2 · tanh(Linear (n[a1]))
>
) (19)

P (a1), P (a2|a1) are used to sample the actions a1,a2 in training, and the beamwidth is set as 10 for
evaluation.

Critic Net. Following PPO-BiHyb, the graph-level features are processed by the neural tensor
network (NTN) [50] followed by 2 fully-connected regression layers whose output is the one-
dimensional value prediction:

Ṽ (G1,G2) = fc (NTN (g1,g2)) (20)

16

B.3 Case 3: Hamiltonian Cycle Problem

MDP Formulation. Since we handle HCP by transforming it to a TSP, our implementation of
PPO-Single on HCP is in line with [30], where state is defined as the graph Gk, and the current partial
tour is encoded by the edges of Gk as a weight of 10. In comparison, the edge weights of the original
graph can be only 0 or 1. Action is defined as selecting the next node to be visited. The reward is
defined as the negative value of the current tour length.

State Encoder. Following PPO-BiHyb, we encode HCP graph with GCN [32]. The node embeddings
from GCN modules are then processed by an attention pooling layer to extract graph-level embeddings.

n = GCN(Gk), g = Att(n) (21)

Actor Net. Following [30, 57], the action of selecting the next visited node is achieved by attention.
More specifically, the attention query is the feature of the previous visited node, and the keys are the
features of all non-visited nodes.

P (ak|ak−1) = softmax
(
n · tanh(Linear(n[ak−1]))>

)
(22)

Here ak means the action at step k, and a0 is fixed as the first node. For training, we sample ak

according to P (ak|ak−1). For evaluation, we perform a beam search with a width of 12 and maintain
the best-12 actions by the tour length.

Critic Net. In line with PPO-BiHyb, the critic net is built by max-pooling from all node features, and
the pooled feature is concatenated with the graph-level feature from the state encoder. The features
are then processed by a 3-layer ResNet module.

Ṽ (Gk) = ResNet ([maxpool(n) || g]) (23)

C Model Hyperparameters

In this section we describe the model parameters for both PPO-Single in Tab. 5 and PPO-BiHyb in
Tab. 6. The model structures are kept to be the same, and some training/evaluation statistics might be
different concerning the differences between single-level and bi-level frameworks. Take the DAG
scheduling problem as an example, the number of actions in each episode is different between these
two methods. For a scheduling problem with m nodes, the single-level PPO-Single requires more
than m actions to reach a complete solution (including the “wait” actions we defined for PPO-Single),
but the number of actions in PPO-BiHyb is restricted to be K, and we empirically set K = 20 to
produce satisfying results. Since the PPO-Single is with a longer episode, we set larger γ = 0.99
hoping the agent will focus more on the long-term reward in the long episode. We also increase the
number of timesteps between two model updates for PPO-Single to reduce the variance of gradients.
The width of beam search is also different to ensure that the inference time of PPO-Single is no less
than ours, but as shown in the main paper, the performance of PPO-Single is still inferior to our
PPO-BiHyb given more time budgets. We set the upper-limit of training time to be 48 hours for all
models.

We also set separate learning rates for the GNN module and the other modules, because we empir-
ically find the GNN easy to collapse when learning with reinforcement learning on combinatorial

Table 5: Hyperparameter configs for PPO-BiHyb on DAG scheduling, GED and HCP problems.

DAG scheduling GED HCP description

heuristic name Critical Path IPFP LKH-fast heuristic algorithm for lower-level optimization
γ 0.95 0.95 0.95 discount ratio for accumulated reward
ε 0.1 0.1 0.1 controls the trust region of PPO

K (#actions) 20 10 8 max number of modified edges (number of actions)
#epoches 10 10 10 number of gradient updates at each update

update timestep 20 10 8 number of timesteps between two updates
GNN learning rate 1× 10−4 1× 10−4 1× 10−4 learning rate for the state encoder GNN

learning rate 1× 10−3 1× 10−3 1× 10−3 learning rate for other modules
#GNN layers 5 3 3 number of GNN layers

node feature dim 64 64 16 dimension of the output node feature of GNN
beamwidth 3 3 12 beam search width

17

Table 6: Hyperparameter configs for PPO-Single on DAG scheduling, GED and HCP problems.

DAG scheduling GED HCP description

γ 0.99 0.99 0.99 discount ratio for accumulated reward
ε 0.1 0.1 0.1 controls the trust region of PPO

#actions 5000 200 600 max number of actions
#epoches 10 10 10 number of gradient updates at each update

update timestep 50 50 20 number of timesteps between two updates
GNN learning rate 1× 10−4 1× 10−4 1× 10−4 learning rate for the state encoder GNN

learning rate 1× 10−3 1× 10−3 1× 10−3 learning rate for other modules
#GNN layers 5 3 3 number of GNN layers

node feature dim 64 64 16 dimension of the output node feature of GNN
beamwidth 10 10 12 beam search width

optimization. Besides, there are some recent attempts (e.g. submission in this link5) studying the
power of randomly initialized GNNs. We empirically find the randomly initialized GNN learned with
reduced learning rate produces satisfying result with our MLCO testbed.

D Inference Time

In this section, we report the inference time of both PPO-Single baseline and our PPO-BiHyb on all
test cases, as shown in Tab. 7.

Table 7: Comparison of inference time (in seconds) of PPO-Single [39, 36, 30] and PPO-BiHyb (ours)
on all problems considered in this paper. We control the beam search size of PPO-Single to ensure
that its inference time is no less than ours.

dataset TPC-H (DAG scheduling) AIDS (GED) FHCP (HCP)
problem size 50 100 150 20/30 30/50 50+ 500/600

PPO-Single [39, 36, 30] 415.4 2761.6 6852.3 288.4 982.0 1350.4 3322.4
PPO-BiHyb (ours) 48.7 110.1 407.9 224.6 513.2 1297.9 272.2

It is worth noting that our PPO-BiHyb is slower than the heuristic algorithm adopted for lower-level
optimization because this heuristic algorithm is called multiple times in the RL routine. We also
consider more time-consuming heuristics, and the following heuristics considered in our experiments
are with a comparable inference time with PPO-BiHyb: Hungarian-search for GED and LKH-
accu for HCP. For DAG scheduling, we tried by firstly formulating DAG scheduling as an integer
linear programming, and then solving the relaxed linear programming problem by the GLOP solver
delivered with Google ORTools. However, it did not converge within 24 hours for even the smallest
test set (TPC-H-50), thus we gave up this baseline.

E A Study on How RL Modifies the Graph

In this section we include a brief study on the AIDS dataset for graph edit distance problem about the
relation between the number of actions taken by RL and the reward. Here we list the average number
of actions, the average reward values, and the Pearson correlation for all test instances:

Table 8: For PPO-BiHyb on AIDS dataset, the average number of actions and the reward, and the
Pearson correlation between number of actions and the reward.

AIDS-20/30 AIDS-30/50 AIDS-50+
act reward # act reward # act reward

4.1 8.3 2.7 9.3 3.4 24.9
ρ =0.054 ρ =0.075 ρ =0.680

5https://openreview.net/forum?id=L7Irrt5sMQa

18

https://openreview.net/forum?id=L7Irrt5sMQa

The average number of actions is relatively small with respect to the number of nodes, suggesting
that in general, the RL agent learns to modify a small fraction of "critical edges" that can lead to a
large reward. Besides, we also compute the Pearson correlation between the number of actions and
the reward, and only the largest AIDS-50+ has a large correlation. It is not surprising because a larger
graph should require more modifications to achieve a better reward, and for smaller graphs, such
correlation seems not significant.

F Computer Resources

Experiments on DAG scheduling and GED are conducted on an internal cluster with Tesla P100
GPU, Intel E5-2682v4 CPU @ 2.50GHz and 128GB memory. Experiments on HCP are conducted
on our workstation with RTX2080Ti GPU, Intel i7-7820X CPU @ 3.60GHz and 64GB memory. All
experiments are run with only one GPU.

G Broader Impact

In this paper, we propose a general ML approach to solve CO over graphs, whose applications can
be found in scheduling real-world tasks to increase efficiency. We would like to discuss the broader
impact of this paper according to the following aspects:

a) Who may benefit from this research. The companies and organizations who use our optimization
technique and their shareholders may benefit from this research, as our technique is aimed to increase
efficiency, cut expenses and increase profits. Besides, a broader range of people may also benefit,
because an increased efficiency usually means a save of resources and perhaps less pollution, which
will further benefit the whole society.

b) Who may be put at risk from this research. The proposed optimization method may take the
place of some job positions e.g. dispatchers who used to perform the optimization tasks with human
expertise. The optimization method may also burden the workload of employees when pursuing the
optimization goal. Therefore, it might be appealing to take account of the happiness of employees
when scheduling, and it calls for more responsibilities of the company to provide training programs
and new positions for the affected people and to care more about the rights of the workers.

c) What are the consequences of failure of the system. A failure of our ML-based CO approach will
fail to cut the cost of finishing the task. More specifically, the performance will degenerate to be
the same as the performance of the heuristic method adopted to solve the lower-level optimization.
In most cases, the underlying task will not fail because the heuristic will still provide a feasible
(although sub-optimal) solution.

H Licenses and Further Information on Used Assets

The following datasets and codebases are used for this research and we list their license information
as follows:

• The usage of TPC-H dataset is under clause 9 of the End-User License Agreement (EULA)
of TPC6: “THE TPC SOFTWARE IS AVAILABLE WITHOUT CHARGE FROM TPC”.

• The AIDS dataset is collected by [43] and is free for academic use.
• The open-source repository GEDLIB [5] is under LGPL-3.0 License.
• The FHCP challenge dataset is publicly available and the authors require to cite their

paper [21] in new publications.
• LKH-3 is an implementation of the Lin-Kernighan traveling salesman heuristic, which is

described in [24]. The code is distributed for research use. The author reserves all rights to
the code.

All datasets and codebases are publicly available. The datasets cover problems that arise from
business computing, anti-HIV molecules and pure Hamiltonian graph data, which are not closely
related to human identities and shall not contain offensive or biased information.

6http://tpc.org/TPC_Documents_Current_Versions/txt/TPC-EULA_v2.2.0.txt

19

http://tpc.org/TPC_Documents_Current_Versions/txt/TPC-EULA_v2.2.0.txt

