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Abstract
Electrocardiograms (ECGs) play a vital role in
diagnosing cardiovascular diseases. While re-
cent ECG-text contrastive learning methods have
shown promise, they often overlook the incom-
plete nature of clinical reports. Typically, a report
is generated by identifying key waveform features
and then deriving a diagnosis, yet these interme-
diate features are rarely documented. This gap
limits the model’s ability to capture waveform
patterns and understand the underlying diagnostic
reasoning. To address this, we propose FG-CLEP
(Fine-Grained Contrastive Language ECG Pre-
training), which leverages large language mod-
els (LLMs) to recover the missing waveform fea-
tures from incomplete reports. To further improve
performance, we introduce a semantic similar-
ity matrix to reduce false negatives caused by
the prevalence of common diagnoses and adopt a
sigmoid-based loss function to handle the multi-
label nature of ECG tasks. Experiments on six
datasets show that FG-CLEP consistently outper-
forms state-of-the-art methods in both zero-shot
prediction and linear probing.

1. Introduction
Electrocardiograms (ECGs) are widely used, non-invasive
tools for detecting heart rhythm disorders (Sahoo et al.,
2020; Rath et al., 2021; Ayano et al., 2022). ECG self-
supervised learning leverages unlabeled data to reduce re-
liance on expert-labeled annotations. Existing methods fall
into two categories: comparative self-supervision (Chen
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Figure 1. (a) Doctors typically make diagnoses based on waveform
features. (b) Using LLMs to recover waveform features from di-
agnosis faces two challenges: hallucinations and the non-bijective
relationship

et al., 2020; 2021; Wang et al., 2023; Eldele et al., 2021),
which distinguishes positive and negative samples, and gen-
erative self-supervision (Zhang et al., 2022a; Hu et al., 2023;
Na et al., 2024; Zhang et al., 2022b), which reconstructs
masked signals. However, both types often require labeled
samples for fine-tuning and struggle with unseen classes
during inference.

To tackle the zero-shot challenge, recent works draw inspi-
ration from multimodal models like CLIP (Radford et al.,
2021). Methods such as (Li et al., 2024; Liu et al., 2024a;
Lalam et al., 2023) align ECGs with corresponding reports,
enabling zero-shot predictions. MERL (Liu et al., 2024b)
adds uni-modal alignment and uses LLMs during inference
to generate richer prompts. ESI (Yu et al., 2024) improves
training-time reports using retrieval-augmented generation.
However, these methods overlook a key issue: the absence
of waveform features in ECG reports. As Figure 1(a) shows,
doctors base diagnoses on waveform features, which are
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often omitted in reports. Simply using LLMs to augment re-
ports (Yu et al., 2024), as in Figure 1(b), is unreliable due to
hallucinations (Huang et al., 2023; Günay et al., 2024) and
the non-bijective relation between features and diagnoses
(Jin, 2018).

We propose FG-CLEP, a novel training approach to recover
these missing waveform features. It includes three steps:
(1) training a CLEP model on original ECG-report pairs via
contrastive learning, (2) prompting LLMs to generate po-
tential waveform features from reports and validating them
using CLEP, and (3) continuing training with augmented re-
ports containing validated features. The key is to use CLEP
to filter LLM-generated features based on similarity to the
ECG signal, keeping only high-confidence features. This
addresses both the feature-diagnosis ambiguity and LLM
hallucinations.

In addition, ECG data differ significantly from images, mak-
ing CLIP-style models less effective without adaptation.
Most ECGs are normal (Thai et al., 2017; Yogarajan et al.,
2021), leading to similar report semantics. Prior work treats
only matched ECG-report pairs as positives, which can
cause false negatives. We introduce a semantic similarity
matrix to identify and downweight such cases. Furthermore,
ECG tasks are often multi-label, while prior methods use
softmax-based InfoNCE loss (Oord et al., 2018), which
assumes single-label classification. We replace it with a
sigmoid-based loss to better support multi-label settings.

We validate FG-CLEP on six multi-label ECG datasets
under zero-shot and linear probing settings. Our model
achieves competitive or superior performance compared to
state-of-the-art baselines in both evaluations.

2. Method
We introduce FG-CLEP, a contrastive learning framework
for ECG-report representation learning. It includes a novel
pre-training strategy to recover missing waveform features
and a model architecture designed to handle multi-label
classification and reduce false negatives. Figure 2 illustrates
the full pipeline.

2.1. Model Architecture

FG-CLEP includes an ECG encoder and a text encoder.

ECG Encoder. The ECG encoder Eecg maps ECG signals
to embeddings, followed by a projection head fe:

ep = fe(Eecg(xecg)) (1)

Text Encoder. Similarly, the text encoder Etxt processes
clinical reports, followed by a projection head ft:

LLM
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Continue
Training

Report
Atrial fibrillation, Right 
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these symptoms?

CLEP
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Figure 2. Training Porcess of FG-CLEP. (1) training the CLEP
model using contrastive learning on original ECG-report pairs, (2)
generating potential waveform features based on the original report
using LLMs and validating them with CLEP, and (3) continuing
to train the CLEP model with this augmented report containing
waveform features to obtain the final FG-CLEP model.

tp = ft(Etxt(xtxt)) (2)

Both ep and tp are projected to the same dimension P for
contrastive learning.

Semantic Similarity Matrix False negatives in the pre-
training phase arise from the assumption that ECGs and
reports from different patients are unmatched. However, due
to the prevalence of common diagnoses, many ECGs exhibit
similar symptoms, leading to reports with similar semantics.
To address this, we introduce a Semantic Similarity Matrix
similar to (Sun et al., 2023; Wang et al., 2022) to measure
the similarity of reports from different patients during the
pre-training phase.

We denote an ECG-report dataset as D = {(xecgi , xtxti) |
i ∈ [0, n)}, where (xecgi , xtxti) represents a sample with
paired ECG-report content. The ECG and text signals are
encoded into (ep, tp) as disscussed above, and the semantic
similarity matrix S ∈ RN×N is defined as follows:

Sij = sim(tpi, tpj) =
tpi · tpj

∥tpi∥∥tpj∥
(3)

which measures cosine similarity between reports.

Loss Function

The loss function of our FG-CLEP framework consists of
two parts: the sigmoid-based contrastive loss Lsig and the
false negative mitigation loss Lfnm. These components to-
gether enhance the alignment between ECG signals and
their corresponding textual reports.

Sigmoid-based Contrastive Loss
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Table 1. Results of zero-shot classification. ENS: ensemble inference
macro AUC PTB-XL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

MERL 74.20 75.70 65.90 78.50 82.80 74.40
CLEP 77.50 81.85 66.29 88.60 85.15 80.10
CLEPENS 75.64 82.55 64.74 88.67 83.91 81.24
FG-CLEP 79.28 83.57 67.77 92.31 88.24 82.46
FG-CLEP ENS 79.68 83.65 70.79 91.52 87.08 84.60

Lsig = − 1

B

B∑
i=1

B∑
j=1

log

(
1

1 + e−zij(−t·sim(epj ,tpj)+b)

)
(5)

This loss replaces the traditional softmax with a sigmoid
function, making it more suitable for multi-label ECG clas-
sification. The temperature parameter t controls the smooth-
ness of similarity scores, and the learnable bias b helps
mitigate the imbalance between positive and negative pairs
during early training.

False Negative Mitigation Loss

Lfnm =
1

B

B∑
i=1

B∑
j=1

|sim(epi, tpj)− Sij | (6)

This loss uses a semantic similarity matrix S to reduce the
impact of false negatives, which occur when non-paired but
semantically similar samples are treated as negatives. It en-
courages embedding similarity to match semantic similarity.

Combined Loss

L = Lsig + λLfnm (7)

The final loss combines both terms, where λ is a balancing
hyperparameter.

2.2. Training Process

As shown in Figure 2, our training process includes three
steps: (1) training the CLEP model on ECG-report pairs
via contrastive learning, (2) using LLMs to generate po-
tential waveform features from reports and validating them
with CLEP, and (3) continuing training with reports aug-
mented by validated features to obtain the final FG-CLEP
model. Since waveform features—key to diagnostic reason-
ing—are often missing from reports, we prompt the LLM
with: “What waveform features are most likely to be present
in ECGs with these symptoms?” and format the output as
a Python list. Due to the non-bijective nature of ECG fea-
tures and diagnoses (Jin, 2018) and LLM hallucinations
(Huang et al., 2023; Günay et al., 2024), we validate LLM-
generated features by measuring their similarity to the ECG

using coarse CLEP, keeping only high-confidence results
for augmentation. See Appendix D for pseudo code.

3. Experiments
3.1. Datasets and Implementation

We pre-train the FG-CLEP framework using the MIMIC-
ECG (Gow et al.) dataset and test it on the PTB-XL (Wagner
et al., 2020), CPSC2018 (Liu et al., 2018), and CSN (Zheng
et al., 2022) datasets, following the benchmark proposed
by (Liu et al., 2024b). All the ECGs in the datasets are 12-
lead recordings. The MIMIC-ECG dataset contains nearly
800,000 ECG-report pairs. To improve data quality, we
excluded samples with an empty report or reports contain-
ing fewer than three words, removed reports without useful
information, and discarded ECGs with unexpected situa-
tions. Details regarding the train:validation:test split and
other dataset-specific information are provided in Appendix
B. The detailed implementation is provided in Appendix C.

3.2. Zero-Shot Ability

We conducted a zero-shot ECG classification evaluation on
four PTB-XL subsets, CPSC2018, and CSN. The results are
illustrated in Table 1. Both CLEP and FG-CLEP performed
well. A detailed examination of the data reveals that FG-
CLEP significantly outperforms CLEP on PTBXL-Form,
demonstrating that continue training using fine-grained re-
ports substantially enhanced the model’s ability to capture
local ECG waveform features. This improvement is par-
ticularly evident when using the ensemble method, which
extends the label text to 12 leads (‘label in lead x’, where x
represents any of the 12 leads). This further indicates FG-
CLEP’s fine-grained waveform feature capture capability.
However, the ensemble inference method often proves detri-
mental to CLEP, as seen in PTBXL-Super, PTBXL-Form,
and CPSC2018.

3.3. Linear Evaluation

We evaluate the transferability of the learned model to down-
stream supervised tasks by freezing the ECG encoder and
training a randomly initialized linear classification head us-
ing binary cross-entropy loss. Several contrastive and gen-
erative self-supervised methods are compared. As shown in
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Table 2. Results of Linear Evaluation.
Method PTB-XL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

Random Init 70.45 77.09 81.61 55.82 67.60 77.91 55.82 62.54 73.00 46.26 62.36 79.29 54.96 71.47 78.33 47.22 63.17 73.13
SimCLR(Chen et al., 2020) 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL(Grill et al., 2020) 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins(Zbontar et al., 2021) 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3(Chen et al., 2021) 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam(Chen & He, 2021) 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC(Eldele et al., 2021) 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS(Kiyasseh et al., 2021) 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.96 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL(Wang et al., 2023) 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT(Zhang et al., 2023) 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
ST-MEM(Na et al., 2024) 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36
MERL(Liu et al., 2024b) 82.39 86.27 88.67 64.90 80.56 84.72 58.26 72.43 79.65 53.33 82.88 88.34 70.33 85.32 90.57 66.60 82.74 87.95
lightgrayCLEP 84.04 88.79 89.82 69.09 86.08 92.50 67.89 72.35 82.59 61.79 91.86 90.18 83.12 93.42 96.56 63.00 80.03 93.35
lightgrayFG-CLEP 84.89 89.51 90.77 69.96 85.75 92.62 68.91 74.80 85.42 68.99 91.35 94.08 83.35 93.60 96.65 62.59 79.35 93.46

Table 2, FG-CLEP consistently outperforms other methods
in most cases.

Moreover, comparing the linear probe results (Table 2) with
the zero-shot results (Table 1), we find that FG-CLEP’s
zero-shot performance is comparable to linear probing with
10% of the training data on PTBXL-Sub, PTBXL-Form,
CPSC2018, and CSN. Notably, in PTBXL-Form, zero-shot
performance is even close to the result using the full dataset.
These findings further demonstrate the robustness and gen-
eralizability of our framework.

3.4. Semantic Similarity Matrix

We visualize the semantic similarity matrix in Figure 3. The
left side shows the semantic similarity matrix from a ran-
dom batch. As illustrated, ECGs and reports from different
records may share similarities to some extent. Ignoring
these similarities would result in a diagonal matrix with
ones on the diagonal and zeros elsewhere, which is obvi-
ously wrong. The right side displays a semantic similarity
matrix where the first 16 entries are normal ECGs and the
last 16 are abnormal ECGs. The matrix effectively captures
the semantic similarities of the normal ECGs.

Figure 3. The Heatmap of Semantic Similarity Matrix. Left:
from a random batch; Right: with the first 16 as normal ECG and
the last 16 as abnormal ECG.

3.5. Different LLMs

n the fine-grained pre-training stage, we LLMs to extract po-
tential waveform features associated with ECG reports. To

evaluate the feasibility of our framework, we conducted ex-
periments using a variety of LLMs, including both general-
purpose models and domain-specific medical LLMs. The
results are presented in Table 3. Notably, while larger LLMs
offered some performance improvements, the gains were
modest. Although medical LLMs possess more special-
ized knowledge, they proved less effective at formatting the
waveform feature outputs required by our method. As a
result, their performance did not surpass that of the general-
purpose models.

Table 3. Results on different LLMs.
LLM AUC

Phi-3-mini-4k-instruct (Abdin et al., 2024) 81.51
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) 81.89
Llama3-8B-Instruct (AI@Meta, 2024) 82.27
Llama3-70B-Instruct (AI@Meta, 2024) 82.80

BioMistral-7B (Labrak et al., 2024) 81.67
Llama3-OpenBioLLM-8B (Ankit Pal, 2024) 82.36

4. Conclusion
In this paper, we introduced FG-CLEP, a novel approach for
fine-grained contrastive learning in ECG-text tasks, address-
ing the critical issue of incomplete ECG reports, particularly
the absence of key waveform features. By incorporating
LLMs to generate potential waveform features and validat-
ing them with our pipeline, we were able to enhance the
quality of ECG reports and better capture the diagnostic
reasoning process. Additionally, we tackled the challenges
associated with multi-label classification and frequent false
negatives by introducing a sigmoid-based loss function and
a semantic similarity matrix to guide contrastive learning
respectively. Experimental results across six ECG datasets,
including PTB-XL, CPSC2018, and CSN, demonstrate that
FG-CLEP outperforms existing state-of-the-art methods in
both zero-shot prediction and linear probing, highlighting
its effectiveness in improving ECG classification and facili-
tating more accurate diagnostic insights.
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A. Related Work
ECG Self-Supervised Learning Self-supervised learning in ECG analysis has primarily been explored through two
paradigms: Contrastive self-supervision (Chen et al., 2020; 2021; Wang et al., 2023; Eldele et al., 2021), which typically
involves augmenting the same ECG signal into two different views as positive samples, while different ECG signals serve as
negative samples; Generative self-supervision (Zhang et al., 2022b; Hu et al., 2023; Zhang et al., 2022a; Na et al., 2024),
which first masks a portion of the ECG signal and then attempts to recover the masked part using the unmasked portion.
Unlike previous ECG self-supervised methods that rely on annotations and struggle with unseen classes during fine-tuning,
our FG-CLEP enables direct zero-shot prediction on downstream tasks.

ECG-Report Contrastive Learning Recently, inspired by the strong zero-shot ability of image-caption multimodal
contrastive learning methods like CLIP (Radford et al., 2021), significant efforts have been made in ECG-Report contrastive
learning(Li et al., 2024; Liu et al., 2024b;a; Yu et al., 2024; Lalam et al., 2023). Similar to CLIP (Radford et al., 2021), (Li
et al., 2024; Liu et al., 2024a; Lalam et al., 2023) learns ECG representations by pulling ECGs with their paired reports
while pushing them from unpaired reports. MERL (Liu et al., 2024b) further introduces uni-modal alignment and employs
the CKEPE pipeline at inference to generate more descriptive prompts via LLMs. However, enhancing textual prompts only
during inference creates a distribution mismatch between training and testing text. In contrast, ESI (Yu et al., 2024) enhances
ECG reports during training using a retrieval-augmented generation (RAG) pipeline, integrating LLMs and external medical
knowledge for more detailed descriptions.

Despite these advances, existing methods overlook the absence of fine-grained waveform features in ECG reports. Addition-
ally, due to medical LLM hallucinations (Huang et al., 2023; Günay et al., 2024) and the variability of waveform features for
the same disease across patients (Jin, 2018), relying solely on LLMs (Yu et al., 2024) for report augmentation is unreliable.
To address these challenges, we propose the FG-CLEP training process.

False Negatives in Contrastive Learning Traditional multi-modal contrastive learning (Radford et al., 2021) assumes
that only images and captions from the same record are positive pairs. However, this assumption often fails in the ECG
domain, where most ECGs are normal, and abnormalities typically involve common diseases, leading to frequent false
negatives. There have been several attempts to address this issue (Lavoie et al., 2024; Jiang et al., 2023b; Sun et al., 2023;
Li et al., 2023; Wang et al., 2022). Some approaches (Jiang et al., 2023b; Li et al., 2023) attempt to add a regularization
term to mitigate false negatives. Others (Sun et al., 2023; Wang et al., 2022) introduce a matrix to measure the similarity
between different reports, guiding contrastive learning to identify and address false negatives. In this paper, we explore the
application of the latter approach in the ECG multi-modal contrastive learning domain.

B. Dataset Analysis
We pre-train the FG-CLEP using the MIMIC-ECG dataset and test it on the PTB-XL, CPSC2018, and CSN datasets. All the
ECGs in the datasets are 12-lead recordings. The PTB-XL dataset can be further divided into four subsets, and we follow the
official train:validation:test split. For CPSC2018 and CSN, we split the dataset as 70%:10%:20% for the train:validation:test
split. The statistics of the datasets used are presented in Table 4.

MIMIC-ECG The MIMIC-ECG dataset contains nearly 800,000 ECG-report pairs from approximately 160,000 unique
patients. These diagnostic ECGs utilize 12 leads and are 10 seconds in duration, with a sampling rate of 500 Hz.
https://physionet.org/content/mimic-iv-ecg/1.0/.

PTB-XL The PTB-XL ECG dataset is a large dataset of 21,799 clinical 12-lead ECGs from 18,869 patients of 10-second
length. There are four subsets with multi-label classification tasks: Superclass (5 categories), Subclass (23 categories),
Form (19 categories), and Rhythm (12 categories). Notably, these four subsets have different numbers of samples.
https://physionet.org/content/ptb-xl/1.0.3/.

CPSC2018 This publicly accessible dataset comprises 6,877 standard 12-lead ECG records, each sampled at a
rate of 500 Hz, with durations ranging from 6 to 60 seconds. The dataset is annotated with 9 distinct labels.
http://2018.icbeb.org/Challenge.html.

Chapman-Shaoxing-Ningbo (CSN) This dataset contains 12-lead ECGs of 45,152 patients with a 500 Hz sampling
rate. It features multiple common rhythms and additional cardiovascular conditions, all labeled by professional experts.
https://physionet.org/content/ecg-arrhythmia/1.0.0/.
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Table 4. The statistics of used datasets.

Pretrain # ECGs # Reports

MIMIC-ECG 773,268 773,268

Evaluation # Train # Valid # Test # Classes

PTB-XL Super 17,084 2,146 2,158 5
PTB-XL Sub 17,084 2,146 2,158 23
PTB-XL Form 7,197 901 880 19
PTB-XL Rhythm 16,832 2,100 2,098 12
CPSC2018 4,800 684 1,383 9
CSN 31,606 4,515 9,031 51

C. Implementation Details
Pre-training Implementation: In the pre-training stage, we utilize a randomly initialized 1D-ResNet50 model (He et al.,
2016) as the ECG encoder and BioClinicalBERT (Alsentzer et al., 2019) for text encoding. The AdamW optimizer is
selected with a learning rate of 2× 10−5 and a weight decay of 1× 10−4. CLEP is pre-trained for 10 epochs with original
reports and FG-CLEP is trained for another 3 epochs with fine-grained reports, using a cosine annealing scheduler for
learning rate adjustments and a warmup phase for the first 10% of training steps. A batch size of 100 is maintained. The
temperature parameters t and b are initialized to log 10 and −10, respectively. The default hyperparameter λ is set to 0.5 and
the default threshold for selecting high-confidence waveform features is set to 0.95. We use LLaMA3-8B (AI@Meta, 2024)
as our LLM to query potential waveform features and use vLLM (Kwon et al., 2023) to speed up inference. All experiments
used two NVIDIA A800 80GB GPUs, except LLaMA3-70B ablation, which used four.

Downstream Task Implementation: We evaluated the downstream tasks using both zero-shot and linear probe settings.
For the zero-shot setting, we froze the entire model and used the text of each category as the prompt. We computed the
similarity between the ECG embedding and the category text embedding as the classification probability. Additionally, we
employed an ensemble method to enhance zero-shot performance. Specifically, in addition to using the category as text, we
also added ‘category in lead x’ (x represents any of the 12 leads) as text to compute the probability and used the highest
probability as the final probability for that category. For linear probing, we kept the ECG encoder frozen and updated only
the parameters of a newly initialized linear classifier. We conducted linear probing for each task using 1%, 10%, and 100%
of the training data. For all downstream tasks, we used macro AUC as the metric.

D. Pseudo Code
The pseudo-code of our FG-CLEP training process is shown in algorithm 1

Algorithm 1 FG-CLEP Training Process
1: Input: D = {(xecgi , xtxti) | i ∈ [0, n)}
2: Output: FG-CLEP
3: Perform contrastive training on CLEP using D
4: Generate fine-grained reports
5: for i = 0 to n− 1 do
6: ffeatures = LLM(xtxti , prompt)
7: for j = 1 to m do
8: where m is the number of waveform features generated
9: sim = CLEP(xecgi , fj)

10: if sim > threshold then
11: xtxti = xtxti + fj
12: end if
13: end for
14: end for
15: Continue training CLEP on {(xecgi , xtxti)} to obtain FG-CLEP
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E. Embedding Visualization
We also demonstrate the effectiveness of our representation learning framework by plotting t-SNE visualizations of ECG
embeddings produced for PTB-XL ECGs in five classical waveform features. As shown in Fig. 4, our model produces
well-clustered representations. Furthermore, as expected, FG-CLEP learns more fine-grained local waveform features of
ECGs. Specifically, FG-CLEP clusters ‘prolonged PR interval’ much better than CLEP.

(a) CLEP

(b) FG-CLEP
(a) CLEP (b) FG-CLEP

prolonged PR interval
long QT-interval

high QRS voltages
low QRS voltages

inverted T-waves

Figure 4. Embeddings visualization of PTB-XL ECGs in 5 waveform features by (a)CLEP and (b)FG-CLEP. Dimension reduced by
t-SNE.

F. ECG-Text Retrieval
We attempted to use FG-CLEP to retrieve electrocardiograms (ECGs) from the MIMIC-ECG dataset through text. To test
our model’s ability to capture fine-grained waveform features, we tested a series of typical waveform features such as ‘RSR’
Pattern,’ ‘Inverted T-waves,’ and ‘Low QRS voltages.’ Figure 5 shows the Top 3 retrieved ECGs with probabilities all greater
than 0.99. Our model demonstrated strong capability in retrieving ECGs through waveform feature text, which can lead to
two applications: (1) Helping doctors quickly find similar cases or specific ECG patterns, aiding in diagnosis and treatment
decision-making; (2) In medical education, text-based retrieval can quickly find typical ECG cases, assisting in teaching and
training, thereby improving educational effectiveness.
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。

RSR’ Pattern (rabbit ear pattern)

Inverted T-waves

Low QRS voltages

Figure 5. Top 3 retrieved ECG using FG-CLEP.
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