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ABSTRACT

Source-Free Domain Adaptation (SFDA) seeks to adapt a pre-trained source model
to a target domain using only unlabeled target data, without access to the original
source data. While current state-of-the-art methods rely on leveraging weak super-
vision from the source model to extract reliable information for self-supervised
adaptation, they often overlook the uncertainty that arises during the transfer
process. In this paper, we conduct a systematic and theoretical analysis of the
uncertainty inherent in existing SFDA methods and demonstrate its impact on
transfer performance through the lens of Distributionally Robust Optimization.
Building upon the theoretical results, we propose a novel instance-dependent un-
certainty control algorithm for SFDA. Our method quantifies and exploits the
uncertainty during adaptation, significantly improving model performance. Ex-
tensive experiments on benchmark datasets and empirical analyses confirm our
theoretical findings and the effectiveness of the proposed method. This work offers
new insights into understanding and advancing SFDA performance. We release
our code at https://github.com/xugezheng/UCon_SFDA.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable performance across a wide range of tasks.
However, their performance can degrade significantly when a domain shift occurs between training
(source) and test (target) data. Traditional solutions rely on transferable knowledge from labeled
source data to classify unlabeled target data, but access to source data is often restricted due to privacy
concerns or proprietary constraints. To address this, Source-Free Domain Adaptation (SFDA) has
emerged as a solution, aiming to adapt a pre-trained source model to an unlabeled target domain
without accessing the original source data (Liang et al., 2020; Yang et al., 2021b;a).

Recent work has integrated self-supervised learning with transfer learning in SFDA, with contrastive
learning-based self-supervised methods gaining widespread use and empirical support (Yang et al.,
2022; Karim et al., 2023; Chen et al., 2022; Hwang et al., 2024; Mitsuzumi et al., 2024). A key
challenge in applying contrastive learning methods to SFDA lies in selecting and utilizing positive
and negative samples of target data using a well-trained source model. Different from conventional
contrastive learning methods using data augmentations as positive samples, in SFDA, the neighbors
in the feature space can provide stronger supervision and usually be treated as positives, and the
negative samples are the remaining data in the training mini-batch. However, due to the domain shift,
these methods face severe uncertainty, as will be elaborated shortly.

In this paper, we systematically and theoretically examine the uncertainty present in SFDA through
the lens of Distributionally Robust Optimization (DRO). Unlike previous studies that primarily focus
on empirical strategies (Roy et al., 2022; Litrico et al., 2023; Pei et al., 2023; Lee et al., 2022), our
work offers a comprehensive analysis of two types of uncertainty arising from the use of negative
and positive samples in existing SFDA methods, aiming to enhance SFDA performance by explicitly
controlling the uncertainty. Specifically, on one hand, random sampling of negative samples in
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Figure 1: This figure summarizes key findings from our experiments, to be detailed in Section 4.4:
(a) Presence of false negatives across different datasets; (b) Inconsistency between predictions for
original images and their augmented views by the source model; (c) Illustration of varying predictive
accuracies between certain and uncertain target data during adaptation on Office-Home (Ar → Cl).

applications often introduces outliers, or “false negatives” – samples that belong to the same class
as the considered target data point but are mistakenly selected as negatives (as shown in Figure 1a).
This discrepancy leads to a deviation of the empirical negative distribution from the true distribution,
thus introducing variability into the loss calculation. To address this sampling bias, we introduce a
negative uncertainty set, which consists of distributions obtained by slightly perturbing the training
negative distribution, and consider an outlier-robust worst-case risk within this set. We theoretically
derive an informative upper bound for this risk, which motivates incorporating a dispersion control
term into the loss function. Moreover, to address the prediction inconsistency between a target image
and its augmented view (as shown in Figure 1b), we propose an augmentation-based dispersion
control approach to mitigate uncertainty introduced by noisy negative samples. On the other hand,
domain shift causes models trained on source data to produce uncertain probability estimates for
target data. In such cases, the supervisory information from positive examples may not fully align
with the ground truth, making the use of neighboring predictions for supervision introduce additional
uncertainty. Unlike existing methods that focus on mitigating uncertainty (Roy et al., 2022; Litrico
et al., 2023; Mitsuzumi et al., 2024), we aim to utilize this information more effectively. To better
accommodate the uncertainty in the predicted probabilities of positive samples, we consider a positive
uncertainty set centered around these probabilities and examine the worst-case risk within this set.
We theoretically show that the optimal solution for target points involves a partial label set. To make
the most of this uncertain information, we propose novel criteria to identify uncertain data and use
partial labels to relax supervision for these samples. As illustrated in Figure 1c, leveraging such
uncertainty information improves performance compared to relying only on certain data.

Our contributions are as follows: (1) We theoretically analyze two key sources of uncertainty in con-
trastive learning-based SFDA methods, identifying two types of worst-case risks under a unified DRO
framework. This investigation explains why current contrastive learning methods can significantly
improve SFDA performance (Section 4.2) while revealing the overlooked uncertain information
in existing methods (Section 4.3). Our theoretical analysis also provides a novel perspective in
understanding the SFDA problem. (2) Based on our theoretical result, we design a novel Uncertainty
Control algorithm for SFDA (UCon-SFDA) to minimize the negative effects of uncertainty in nega-
tive sample selection while leveraging the uncertain information from positive sample predictions
to enhance the model’s discriminability (Section 4.4). (3) We conduct extensive experiments to
demonstrate the effectiveness of the proposed method.

2 RELATED WORK

Source-Free Domain Adaptation (SFDA). SFDA focuses on adapting a well-trained source model
to a target domain with only unlabeled target data. Since source data are not accessible during
adaptation, some methods extract source information through prototype generation (Qiu et al.,
2021), or minimization of reliance on source data through adversarial training (Li et al., 2020b). To
address the lack of labels for target data, several methods aim to enhance supervision. For example,
SHOT (Liang et al., 2020) employs deep clustering to create pseudo-labels, while NRC (Yang
et al., 2021a) and G-SFDA (Yang et al., 2021b) leverage neighboring predictions to guide the
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adaptation process. Yi et al. (2023) formulates SFDA as a problem of learning from noisy labels.
Recently, self-supervised learning has gained attention in SFDA, particularly contrastive learning-
based self-supervised methods. For instance, AaD (Yang et al., 2022) introduces positive and negative
samples into SFDA and uses a simplified contrastive loss to enhance model discriminability while
maintaining diversity; C-SFDA (Karim et al., 2023) utilizes a teacher-student framework to enhance
the self-training in SFDA; methods like DaC (Zhang et al., 2022), AdaContrast (Chen et al., 2022),
and SF(DA)2 (Hwang et al., 2024) explore explicit or implicit data augmentation to further boost
SFDA performance. I-SFDA (Mitsuzumi et al., 2024) offers a new perspective by approaching SFDA
through self-training. Despite these advancements, a comprehensive theoretical framework explaining
their effectiveness remains absent. Moreover, most existing methods do not fully account for the
uncertainty inherent in the adaptation process, which can negatively impact SFDA performance.

Uncertainty in SFDA. Given the absence of both source data and target labels, handling uncertainty
is a key challenge in SFDA, particularly in the presence of domain shifts. Most existing research
addresses prediction or representation uncertainty by reweighting loss functions or prioritizing more
confident samples during training (Roy et al., 2022; Litrico et al., 2023; Pei et al., 2023; Lee et al.,
2022). In contrast to these approaches, we provide a systematic and comprehensive analysis of various
sources of uncertainty in contrastive learning-based SFDA from an instance-dependant perspective.
Building on this analysis, we propose a novel algorithm that improves SFDA performance by
effectively controlling variance during adaptation.

3 PRELIMINARIES

We use [k] to denote the set {1, . . . , k} for any positive integer k. For a ∈ R, we define a+ =
max{a, 0}, and let ⌊a⌋ and ⌈a⌉ denote the floor and the ceiling of a, respectively. Let a ∧ b denote
min(a, b) for a, b ∈ R. For a vector v, the jth element is denoted as vj , and v⊤ indicates its transpose.
For vectors v1 and v2, their inner product is denoted ⟨v1, v2⟩. Let 1(·) represent the indicator function.

Problem Setup. For a K-class classification problem, let X ⊂ Rd represent the input space, and let
Y = [K] denote the label space, with d denoting the input dimension. Let X and Y denote the random
input and label, respectively, and let x and y represent their realizations. In SFDA, we assume that
the source domain distribution P S

xy and the target domain distribution PT
xy are unknown distributions

over X × Y that may be distinct. We factorize these distributions as products of the marginal and
conditional distributions for the corresponding variables, indicated by the subscripts: P S

xy = P S
xP

T

y|x
and PT

xy = PT
x P

T

y|x. For the source domain, we have a source model hS : X → Y , which, for example,

is a DNN-based predictor pre-trained with NS labeled examples DS ≜ {xS
i , y

S
i }

NS
i=1 drawn from P S

xy.
In the target domain, let DT ≜ {xT

i }
NT
i=1 denote the unlabeled target domain data, consisting of NT

observations of independent and identically distributed (i.i.d.) random variables drawn from PT
x , and

is used as the training set. Given the source model hS and unlabeled target data DT, our goal is to
learn a target model hT : X → Y that predicts labels in the target domain by adapting hS on DT.

To facilitate our analysis in the context of deep learning, let fT(·;θT) : X → ∆K−1 denote the
network output for the target data, indexed by the parameter vector θT associated with the DNN
architecture, taking values in the parameter space Θ, where ∆K−1 denotes the K-simplex, and the
jth component of the vector-valued function fT(x;θT), denoted fT(x;θT)[j], models the predicted
conditional probability P(Y = j|X = x) for the target domain data. We then define the target model
hT as hT(x;θT) = argmaxj∈[K] fT(x;θT)[j] for any x ∈ X . Similarly, the source model hS, along
with fS(·;θS) : X → ∆K−1 and θS, is defined for the source data. In applications, the source and
target models hS(·;θS) and hT(·;θT), or more specifically fS(·;θS) and fT(·;θT), are often specified
with the same network architecture, with the target model’s parameters initialized from the source
model. Consequently, we use the generic notation h(·;θ) or f(·;θ) to represent these models without
distinction in the following development, unless it is needed to distinguish them.

Given an anchor point X = x from the target set (i.e., the data point used as a reference to determine
positive and negative examples), a positive example refers to a sample in the target set DT that belongs
to the same class as x, and a negative example refers to a sample from a different class. The latter is
also called a “true negative”, in contrast to the “false negative” mentioned in Section 1, which refers
to a sample that belongs to the same class as the anchor point but is mistakenly selected as a negative.
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4 THEORETICAL ANALYSIS AND ALGORITHM

4.1 MOTIVATION

Existing SFDA methods typically decompose their training loss into two components: (1) discrim-
inability, which enhances the model’s ability to distinguish between unlabeled target samples, and (2)
diversity, which encourages predictions to be distributed across different classes (Yang et al., 2022;
Mitsuzumi et al., 2024; Cui et al., 2020). Among these approaches, contrastive learning methods are
perhaps the most widely used, where the goal is to maximize the similarity between positive pairs to
improve discriminability and minimize the similarity between negative pairs to ensure diversity. This
can be formulated as the following expected risk with contrastive loss:

Rbasic(θ) = EPT
x

[
−EP +

{
Sθ(X

+; X)
}
+ EP -

{
Sθ(X

-; X)
}]
, (1)

where the function Sθ(·; ·), mapping from X ×X to [0, 1], represents the similarity measure between
two instances, such as cosine similarity, as detailed in Section 3. The outer expectation EPT

x
is taken

with respect to the input distribution for X in the target domain, and the inner expectations EP + and
EP - are evaluated under the conditional distributions of positive example X+ and negative example
X -, respectively, given X.

In contrastive learning-based SFDA, for each target input xT
i in a mini-batch B, the set of positive

examples relative to xT
i , denoted Ci, consists of its κ-nearest neighbours in the target domain data DT,

where κ is typically chosen between 2 and 5. The negative set is taken as B\{xT
i }, which, however,

inevitably includes a fraction of false negatives, introducing sampling bias. While a well-trained
source model helps to ensure that neighboring positive samples in the feature space provide effective
supervision for most unlabeled target data, some highly uncertain samples persist due to domain shift.
To address these issues, we propose a robust strategy for managing uncertainty in SFDA using DRO.

4.2 NEGATIVE SAMPLING UNCERTAINTY AND DISPERSION CONTROL

To address sampling bias and distribution shift in negative examples, we formulate an expected DRO
risk: for each given x ∈ X and δ > 0,

R -
x(θ;P

-, δ) = sup
Q -∈Γδ(P -)

[
EQ -

{
Sθ(X

-; x)
}]
, (2)

where the expectation EQ -
{
Sθ(X

-; x)
}

is evaluated under the conditional distribution Q - of X -,
given X = x, taken from the set Γδ(P

-). Here, Γδ(P
-) represents an uncertainty set of probability

measures centered around the reference probability distribution P -, with a radius δ > 0 that facilitates
robustness. Commonly, Γδ(P

-) is defined as the distance-based uncertainty set:

Γδ(P
-) = {Q - ∈ Pp(X ) : 𝒹(Q -, P -) ≤ δ} , (3)

where Pp(X ) denotes the class of Borel probability measures on X with finite pth moment for
some p > 1, and 𝒹 is a discrepancy metric of probability measures. Popular choices of 𝒹 are
φ-divergences (including Kullback–Leibler (KL) divergence and χ2 divergence as special cases
(Duchi, 2016)) and Wasserstein distances (Gao, 2023; Gao et al., 2024; Blanchet & Murthy, 2019).

In practice, negative samples are often drawn uniformly from the training data, which frequently
leads to the inclusion of false negatives. Let P -

train represent the distribution of these negative samples,
modeled using Huber’s ϵ-contamination method: P -

train = (1 − ϵ)P - + ϵP̃ -, where ϵ ∈ (0, 1) is
the contamination level, and P̃ - represents an arbitrary contamination distribution (Huber, 1992).
For instance, consider some x ∈ X . Suppose we collect n negative samples, where a fraction ⌊εn⌋
are i.i.d. false negatives drawn from P̃ -, and the rest are true negatives from P -. The resulting
empirical distribution of the observed negative samples follows this model with a contamination level
of ⌊εn⌋/n. To mitigate overfitting to worst-case instances that are likely to be outliers, we minimize
a refined outlier-robust expected risk (Nietert et al., 2024a;b; Zhai et al., 2021):

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}
. (4)

By definition, the minimizer of (4) is designed to ignore “hard” data points that contribute the most to
the worst-case risk and instead focus on the (1− ϵ)-fraction of “easy” data points in the training set.
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Figure 2: Illustrative visualization of the effect of dispersion control: (a) No dispersion control, (b)
Direct dispersion control between the anchor and false-negative pairs, and (c) Dispersion control
with pseudo-false negatives.

This helps prevent overfitting to outliers, thereby reducing the risk of pushing the target data point
away from others within the same class. For different choices of the discrepancy metric 𝒹 in the
uncertainty set (3), we establish a unified upper bound on the outlier-robust risk R -

x(θ;P
-

train, δ, ϵ).

Specifically, for an ϵ-contaminated training distribution P -
train with 0 < ϵ < 1, let p -

train denote
the associated density or mass function. For any given x ∈ X , define the associated truncated
distribution P ∗ with density/mass function p∗: p∗(x-) ≜ 1

1−ϵp
-
train(x

-)1 {Sθ(x
-; x) ≤ s∗} for any

negative example x - of x, where s∗ is the 1 − ϵ quantile satisfying P -
train {Sθ(X

-; x) ≤ s∗} =
1 − ϵ. In contrastive SFDA, for each anchor point x from the target set, the truncated version
of P -

train, denoted as P ∗, concentrates all its mass on regions where the similarity falls below the
(1 − ϵ)-quantile. In the following theorem, let ℜ1 ≜ 1

1−ϵ

∫ s∗

0
s dP -

train {Sθ(X
-; x) ≤ s}, ℜ2 ≜

1
1−ϵ

∫ s∗

0
s2 dP -

train {Sθ(X
-; x) ≤ s}, EP∗

{
Sθ(X

-; x)
}
= ℜ1, and VP∗

{
Sθ(X

-; x)
}
= ℜ2 −ℜ2

1.

Theorem 4.1. Suppose the similarity measure Sθ satisfies the smoothness conditions in Lemma 4
in Appendix A.3 for all θ ∈ Θ. Then for a small δ > 0 and for different choices of the discrepancy
metric 𝒹 in (3), we have the following upper bounds on the risk R -

x(θ;P
-

train, δ, ϵ) in (4):
(i) If 𝒹 is the χ2-divergence, then

R -
x(θ;P

-
train, δ, ϵ) ≤ EP∗

{
Sθ(X

-; x)
}
+
√
δVP∗

{
Sθ(X -; x)

}
.

(ii) If 𝒹 is the KL-divergence, then

R -
x(θ;P

-
train, δ, ϵ) ≤ EP∗

{
Sθ(X

-; x)
}
+
√
2δVP∗

{
Sθ(X -; x)

}
+O(δ).

(iii) If 𝒹 is the p-Wasserstein distance with p ∈ [1,+∞) and the cost function c(·, ·) in Definition
A.1 is chosen as a norm ∥ · ∥ with the dual norm ∥ · ∥∗, then for q satisfying 1

p + 1
q = 1,

R -
x(θ;P

-
train, δ, ϵ) ≤ EP∗

{
Sθ(X

-; x)
}
+ δ {EP∗∥∇Sθ(X

-; x)∥q∗}
1/q

+O(δ2∧p).

Remark 4.1. Theorem 4.1 demonstrates that R -
x(θ;P

-
train, δ, ϵ) is essentially upper bounded by the

sum of two key terms regardless of a specific form of 𝒹 considered in the theorem. The first term
controls the average risk over potential true negatives, behaving similarly to the traditional negative
sample loss (Yang et al., 2022). This is implemented as the negative sample loss L -

CL in (7), to
be presented in Section 4.4. The second term facilitates the dispersion in similarity between these
true negatives, helping to distinguish anchor-true-negative pairs from anchor-false-negative ones;
it encourages greater separation between prediction similarities for anchor-true-negative pairs and
anchor-false-negative pairs, as shown by the wider gray area in Figure 2b than that in Figure 2a.

Remark 4.2. In practice, domain shift makes it challenging to distinguish between false negatives
and true negatives. To address this, we propose to achieve dispersion control by manually constructing
pseudo-false negatives using techniques such as data augmentation. As shown in Figure 1b, for a
given anchor point x, the source model’s prediction on its augmented version, denoted as AUG(x),
may differ from the prediction for x. When this happens, AUG(x) is automatically treated as a false
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negative for x. Motivated by the dispersion control term, we treat these augmentations as pseudo-false
negatives and minimize the negative similarity between the anchor point and its augmented prediction.
As illustrated in Figure 2c, this approach effectively amplifies the contrast between anchor-false-
negative similarity and anchor-true-negative similarity, expanding the width of the gray region to
improve the separation of the data points in the same class as the anchor point from the true negatives.
This dispersion control effect is captured through the loss term L -

DC in (7), as detailed in Section 4.4.

4.3 POSITIVE SUPERVISION UNCERTAINTY AND PARTIAL LABELING

For each anchor point x in the target domain DT, let p ≜ (p1, . . . , pK)⊤ ≜ f(x;θ) ∈ ∆K−1 denote
the target model’s predicted probabilities for x, where f(·;θ) is described at the end of Section 3, and
pj represents the jth component of f(x;θ). Similarly, for the positive example x+ associated with x,
let p+ ≜ (p+

1, . . . , p
+
K)⊤≜ f(x+;θ) ∈ ∆K−1 represent the predicted probabilities for x+. When using

cosine similarity, the supervision information from the positive example x+ encourages the model
training to minimize the negative similarity, defined as −⟨p+, p⟩ = −

∑K
j=1 pjp

+
j .

In SFDA, leveraging a well-trained source model and the similarity between the source and target
domain distributions, neighboring examples in the feature space are often treated as positive samples.
While many of these positive samples provide effective supervision for unlabeled target data, there
can still be highly uncertain examples due to domain shift. To better handle this uncertainty in
model predictions, we explore the optimal prediction for an anchor point x by solving the following
worst-case risk minimization problem based on DRO:

p⋆ ∈ inf
p∈∆K−1

R+
x(p; x

+, δ), with R+
x(p; x

+, δ) ≜ sup
q+∈Γδ(p+)

⟨q+,−p⟩, (5)

where Γδ(p
+) is the uncertainty set centered around the reference distribution p+, as defined in (3).

Using the proof techniques in Guo et al. (2024), we derive a closed-form expression for p⋆ as follows.

Theorem 4.2. Let {p+
1 , . . . , p

+
K} be arranged in decreasing order, denoted as p+

(1) ≥ . . . ≥ p+
(K),

with the corresponding indexes denoted as χ(1), . . . , χ(K). If p-Wasserstein distance with the 0-1
cost function is used, then the optimal solution p⋆ ≜ (p⋆1 , . . . , p

⋆
K)⊤ of (5) is given as follows:

(i) If 1
K ≥ 1

k∗

∑k∗

j=1 p
+
(j) −

1
k∗ δ

p for all k∗ ∈ [K − 1], then p⋆j = 1
K for all j ∈ [K].

(ii) If there exists some k0 ∈ [K − 1] such that 1
k0

∑k0

j=1 p
+
(j) −

1
k0
δp > 1

K and 1
k0

∑k0

j=1 p
+
(j) −

1
k0
δp ≥ 1

k∗

∑k∗

j=1 p
+
(j) −

1
k∗ δ

p for all k∗ ∈ [K − 1], then p⋆(j) =
1
k0

for j ∈ [k0] and p⋆(j) = 0

for j = k0 + 1, . . . ,K, where p⋆(j) denotes the χ(j)th element of p⋆ corresponding to p+
(j).

Remark 4.3. Theorem 4.2 suggests that the optimal prediction for an anchor point can be represented
by a set of instance-dependent partial labels. The advantage of using partial labels, rather than the
full predicted probabilities, as the supervision signal is that it retains uncertain yet potentially more
accurate label information, while eliminating interference from labels that are more likely to be
incorrect. In the special case where p+

(1) ≥ max{ 1
K + δp, p+

(2) + δp}, the optimal solution simplifies
to p⋆(1) = 1 and p⋆(j) = 0 for j = 2, . . . ,K. That is, the optimal solution selects the label with the
highest predicted probability for the anchor point, rather than a set of partial labels, when the gap
between the top two probabilities exceeds a given threshold. We refer to this scenario as certain label
information; otherwise, we classify it as uncertain label information.

Remark 4.4. Motivated by Theorem 4.2 and Remark 4.3, we propose to leverage both certain and
uncertain label information in distinct ways to effectively capture and utilize prediction uncertainty.
Specifically, when an instance x receives certain label information, the optimal prediction for x
corresponds to the label with the highest predicted probability. This certain supervision signal is
incorporated through the positive supervision loss term L+

CL in (8). When uncertain label information
is present, the optimal prediction for x is expressed as a set of partial labels. Instead of relying solely
on the estimated pseudo labels, we construct a partial label set for x. This approach offers a more
robust supervisory signal by accounting for multiple potential labels and reducing reliance on noisy
single-label predictions. This information is captured through the partial label loss term L+

PL in (8).
To distinguish between certain and uncertain label information in applications, we use the ratio of the
two highest predicted probabilities, as detailed in Section 4.4.
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4.4 IMPLEMENTATION

Our algorithm builds upon the conventional contrastive loss commonly adopted in previous
works (Yang et al., 2022; Mitsuzumi et al., 2024):

LCL ≜ L+
CL + λ -

CLL -
CL, (6)

where L+
CL = 1

NT

∑NT

i=1

{
−
∑

x+
i∈Ci

Sθ(x
+
i ; xi)

}
; L -

CL = 1
NT

∑NT

i=1

∑
x -
i ∈B\{xi} Sθ(x

-
i ; xi) with

B denoting the mini-batch; λ -
CL represents a tuning parameter; and similarity is computed as

Sθ(x
+
i ; xi) = ⟨f(x+

i ;θ), f(xi;θ)⟩ or Sθ(x
-
i ; xi) = ⟨f(x -

i ;θ), f(xi;θ)⟩. Here, positive samples
are the κ-nearest neighbours in the feature space from the training set DT, and negative samples are
the remaining data points in the same mini-batch B. Building on this simple yet widely adopted
implementation in SFDA, our approach focuses on effectively controlling uncertainty during the
adaptation process by refining both the negative and positive sample components.

Dispersion Control via Data Augmentation Alignment. To minimize the effect of false negatives,
we introduce a dispersion control term L -

DC, which complements the conventional negative sample
loss L -

CL. This leads to the following negative uncertainty control loss:

L -
UCon ≜ λ -

CLL -
CL + λDCL -

DC ≜ λ -
CLL -

CL + λDC

{
− 1

NT

NT∑
i=1

dθ (AUG (xi) , xi)
}
, (7)

where dθ (AUG (xi) , xi) = ⟨f(xi;θ), log f (AUG (xi) ;θ)⟩, which represents the cosine similarity
between the network output of xi and the log probabilities of its augmented version AUG (xi).
Often, AUG (xi) can be obtained through a series of stochastic transformations, including grayscale
conversion, slight rotation, posterization, and Gaussian blur, as implemented in self-supervised
learning (Chen et al., 2020). Similar to previous work (Yang et al., 2022), the decay coefficient λ -

CL is
defined as λ -

CL = (1+10· iter
max iter )

β , where β and λDC are hyperparameters, and “iter” and “max iter”
represent the current iteration value and the maximum number of adapting iterations, respectively.
λDC regulates the minimization of the negative similarity between the anchor point and its augmented
prediction, which is determined either through tuning hyperparameter or the inconsistency rate of
data augmentation (shown in Figure 1b). Further details can be found in Appendices C.5 and D.

Different from previous works that exclude false negative (Chen et al., 2022; Litrico et al., 2023) or
adjust the coefficient λ -

CL (Mitsuzumi et al., 2024), our proposed dispersion control term utilizes data
augmentation to mimic false negatives without introducing additional uncertainty. This approach
implicitly reduces the variability in prediction similarity between anchor points and noisy negative
samples, while enhancing the model’s prediction consistency.

Supervision Relaxation by Partial Label Training. As highlighted in Theorem 4.2, partial labels
help control uncertainty in positive sample predictions in SFDA. Our experimental findings (reported
in Figure 1c) demonstrate that neighboring samples in the feature space can provide accurate label in-
formation for initially confident target samples. However, highly uncertain samples require additional
processing. To handle these uncertain samples, we propose an innovative approach to select uncertain
samples during adaptation by tracking the ratio between the largest and second-largest predicted prob-
abilities. Specifically, we maintain an uncertain data bank, defined as𝒰 =

{
x ∈ DT :

f(x;θ)(1)
f(x;θ)(2)

≤ τ
}

,
where f(x;θ)(i) is the ith largest predicted probabilities for x. The threshold τ is typically set to a
small value, usually between 1 and 1.5, to capture highly uncertain samples. Additionally, we store
the historical TOP-KPL predicted labels for each data xi to construct a partial label set, denoted as
𝒴PL,i, which is then used to further supervise the training of uncertain data. The procedures for
determining τ and KPL are detailed in Appendices B and D. Aftering incorporating the partial label
loss L+

PL, the positive uncertainty control loss term L+
UCon is defined as:

L+
UCon ≜ L+

CL + λPLL+
PL ≜ L+

CL + λPL ·
1

NT

NT∑
i=1

∑
yk,i∈𝒴PL,i

1{xi∈𝒰}ℓCE(yk,i, f(xi;θ)), (8)

where ℓCE is the smoothed cross-entropy loss, and λPL is a hyperparameter.

Unlike most uncertainty-based approaches in SFDA, which focus on excluding or reducing the
negative impact of highly uncertain data during adaptation (Roy et al., 2022; Litrico et al., 2023), our
method leverages uncertainty to extract additional label information from these samples, relaxing the
training process and boosting the performance.
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Overall Uncertainty Control SFDA Loss. The final Uncertainty Control SFDA loss, LUCon−SFDA,
is defined as:

LUCon−SFDA = LCL + λPLL+
PL + λDCL -

DC. (9)
The pseudocode for the algorithm (Algorithm 1) and the training process can be found in Appendix B.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate the proposed method, we conduct experiments on several SFDA benchmarks
under three different domain shift scenarios: general SFDA, SFDA with severe label shift, and source-
free partial set domain adaptation. For general SFDA, we test our method on the following datasets:
Office-31 (Saenko et al., 2010), Office-Home (Venkateswara et al., 2017), VisDA2017 (Peng et al.,
2017), and DomainNet-126 (Litrico et al., 2023). VisDA2017 is a relatively large-scale classification
dataset with 12 classes, consisting of 152K synthetic images and 55K real-world object images. We
use the synthetic images as the source domain and the real images as the target domain. Office-31
contains 4,652 images from three domains (Amazon, DSLR, and Webcam) across 31 categories,
while Office-Home comprises 15,550 images from four domains (Real, Clipart, Art, and Product)
with 65 classes. DomainNet-126 is a subset of the larger DomainNet dataset that includes over 600K
images across 345 categories and six domains (Clipart, Infograph, Painting, Quickdraw, Real, and
Sketch) (Peng et al., 2019). Following the setup of previous work (Litrico et al., 2023), we use 126
selected classes from four of these sub-domains for our experiments.

We further evaluate our method on more complex SFDA tasks. For SFDA with label shift, we employ
the VisDA-RUST dataset, which presents a severe label imbalance in the target domain (Li et al.,
2021). For source-free partial set domain adaptation, we follow the setup in Liang et al. (2020) for
the Office-Home dataset, where only the first 24 classes are retained in the target domain. In addition,
we use “→” to indicate the adaptation direction from the source to the target domain.

Implementation Details. To ensure fair comparisons, we use the same DNN architectures and
training schemes as previous state-of-the-art approaches (Liang et al., 2020; Yang et al., 2022; Hwang
et al., 2024). Specifically, we adopt ResNet-50 as the backbone model for the Office-31, Office-Home,
and DomainNet-126 datasets, and ResNet-101 for VisDA. We replace the original fully connected
layer in ResNet with a bottleneck layer followed by batch normalization, and then add a simple
linear layer with weight normalization for the classification. For adaptation training on the target
domain, we use the SGD optimizer with the same learning rate scheduler as in Liang et al. (2020).
For evaluation, we report the average accuracy for Office-31, Office-Home, and DomainNet-126.
For VisDA2017 and VisDA-RUST, we report both per-class top-1 accuracy and the overall average.
All experiments are run with three random seeds, and the average results are reported. Further
implementation details, including hyperparameter selection, can be found in Appendix B.

5.2 OVERALL EXPERIMENTAL RESULTS

The experimental results are summarized in Tables 1- 4 and Table C2 in Appendix C.1, with the best
results highlighted in bold. Our proposed method consistently outperforms all baseline methods,
especially on the large-scale datasets VisDA2017 (+1.2%) and DomainNet-126 (+1.9%). For
VisDA2017, a dataset with only 12 classes, conventional negative sample selection methods that treat
the entire batch as negative samples often introduce significant noise and uncertainty. By incorporating
the negative sample uncertainty loss, we investigate this issue and see a notable performance boost.
Furthermore, our method excels in more challenging tasks, characterized by overall lower accuracy,
such as Ar → Cl and Pr → Cl on Office-Home (as shown in Table 3 and Table C2), and it consistently
performs well across nearly all tasks on DomainNet-126 (as demonstrated in Table 4).

In more complex scenarios like VisDA-RUST (with severe label imbalance), we observe a per-
formance gain of +2.1%, while for the partial set Office-Home setup, our method shows a +0.6%
improvement. These results further confirm the robustness and generality of our proposed method,
particularly in handling highly imbalanced target domain data and challenging SFDA tasks.

Additional experimental results and analyses, including self-prediction accuracy, data augmentation
consistency, variance control effect, hyperparameter sensitivity, performance under various similarity
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Table 1: Classwise accuracy (%) on the VisDA2017 dataset (ResNet-101): synthetic (source) → real (target)

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

3C-GAN (Li et al., 2020b) 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT (Liang et al., 2020) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
A2Net (Xia et al., 2021) 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA (Yang et al., 2021b) 96.1 83.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
NRC (Yang et al., 2021a) 96.8 91.3 82.4 62.4 96.2 95.9 86.1 80.6 94.8 94.1 90.4 59.7 85.9
CPGA (Qiu et al., 2021) 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0
AdaContrast (Chen et al., 2022) 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 47.9 86.8
CoWA-JMDS (Lee et al., 2022) 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
DaC (Zhang et al., 2022) 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
AaD (Yang et al., 2022) 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
C-SFDA (Karim et al., 2023) 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8
SF(DA)2 (Hwang et al., 2024) 96.8 89.3 82.9 81.4 96.8 95.7 90.4 81.3 95.5 93.7 88.5 64.7 88.1
I-SFDA (Mitsuzumi et al., 2024) 97.5 91.4 87.9 79.4 97.2 97.2 92.2 83.0 96.4 94.2 91.1 53.0 88.4

UCon-SFDA (Ours) 98.4 90.7 88.6 80.7 97.9 96.9 93.1 83.8 97.6 95.9 92.6 59.1 89.6

Table 2: Classwise accuracy (%) on the VisDA-RSUT dataset (ResNet-101)

Method plane bcycle bus car horse knife mcycl person plant sktbrd train truck Per-class

Source only (He et al., 2016) 79.9 15.7 40.6 77.2 66.8 11.1 85.1 12.9 48.3 14.3 64.6 3.3 43.3
SHOT (Liang et al., 2020) 86.2 48.1 77.0 62.8 92.0 66.2 90.7 61.3 76.9 73.5 67.2 9.1 67.6
CoWA-JMDS (Lee et al., 2022) 63.8 32.9 69.5 59.9 93.2 95.4 92.3 69.4 85.1 68.4 64.9 32.3 68.9
NRC (Yang et al., 2021a) 86.2 47.6 66.7 68.1 94.7 76.6 93.7 63.6 87.3 89.0 83.6 20.0 73.1
AaD (Yang et al., 2022) 73.9 33.3 56.6 71.4 90.1 97.0 91.9 70.8 88.1 87.2 81.2 39.4 73.4
SF(DA)2 (Hwang et al., 2024) 79.0 43.3 73.6 74.7 92.8 98.3 93.4 79.1 90.1 87.5 81.1 34.2 77.3

UCon-SFDA (Ours) 84.1 37.1 87.4 70.6 95.4 92.9 94.4 83.0 93.7 92.0 86.7 35.3 79.4

measures utilized in dispersion control term, and complexity analyses, are provided in Appendix C.
A further reduction in the number of hyperparameters within our algorithm, along with two enhanced
automatic variants of UCon-SFDA, is detailed in the Appendix D.

Table 3: Classification accuracy (%) on the Office-Home dataset (ResNet-50) under source-free
partial-set domain adaptation

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

SHOT (Liang et al., 2020) 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
AaD (Yang et al., 2022) 67.0 83.5 93.1 80.5 76.0 87.6 78.1 65.6 90.2 83.5 64.3 87.3 79.7

UCon-SFDA (Ours) 65.6 87.8 91.0 78.6 79.3 87.6 80.2 65.9 87.3 83.2 69.1 88.7 80.3

5.3 ANALYSIS

Ablation Study. To evaluate the effectiveness and necessity of each component in our algorithm,
we conduct an ablation study across four datasets. The results, shown in Table 5, demonstrate that
both partial label supervision training and dispersion control can enhance the performance of the
baseline approach (LCL). While L+

PL can better handle severe label shift scenarios, as seen in the
VisDA-RUST dataset, L -

DC performs better on more difficult tasks. Notably, adding the dispersion
control term alone improves or matches the performance of most negative sample denoising and
uncertainty-based methods, such as those from Roy et al. (2022); Litrico et al. (2023); Chen et al.
(2022); Mitsuzumi et al. (2024), without requiring any additional networks. Combining both positive
and negative uncertainty control can boost each other and enhance the performance.

Negative Sampling Dispersion Control. To further evaluate the effect of the dispersion control by
L -

DC, we calculate the variance in prediction similarity between anchor-true-negative pairs during
adaptation. Figure 3c illustrates that introducing L -

DC succesfully reduces this variance. Furthermore,
the SF(DA)2 method (Hwang et al., 2024) approaches the problem from a graph-based perspective and
introduces a quadratic regularized term on the predicted probability similarity of anchor-negative pairs.
This is equivalent to directly minimizing the variance. Our experimental results also demonstrate the
effectiveness of our data augmentation-based dispersion control.

Positive Supervision Uncertainty Relaxation. As shown in Figure 3a, the top-1 self-predicted label
is more accurate for certain data (blue dot line) than for uncertain ones (yellow dot line), indicating
that uncertain data require additional supervision during adaptation. To further validate the proposed
partial label supervision for uncertain target data, we define a neighbor label set that contains top-1
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Table 4: Classification accuracy (%) on Office-31 (left) and DomainNet-126 (right) using ResNet-50

Method A → D A → W D → W W → D D → A W → A Avg.

SHOT (Liang et al., 2020) 94.0 90.1 98.4 99.9 74.7 74.3 88.6
3C-GAN (Li et al., 2020b) 92.7 93.7 98.5 99.8 75.3 77.8 89.6
A2Net (Xia et al., 2021) 94.5 94.0 99.2 100.0 76.7 76.1 90.1
NRC (Yang et al., 2021a) 96.0 90.8 99.0 100.0 75.3 75.0 89.4
CPGA (Qiu et al., 2021) 94.4 94.1 98.4 99.8 76.0 76.6 89.9
CoWA-JMDS (Lee et al., 2022) 94.4 95.2 98.5 99.8 76.2 77.6 90.3
AaD (Yang et al., 2022) 96.4 92.1 99.1 100.0 75.0 76.5 89.9
C-SFDA (Karim et al., 2023) 96.2 93.9 98.8 99.7 77.3 77.9 90.5
I-SFDA (Mitsuzumi et al., 2024) 95.3 94.2 98.3 99.9 76.4 77.5 90.3

UCon-SFDA (Ours) 94.8 95.4 98.9 100.0 77.1 77.1 90.6

Method S→P C→S P→C P→R R→S R→C R→P Avg.

Source only (He et al., 2016) 50.1 46.9 53.0 75.0 46.3 55.5 62.7 55.6
TENT (Wang et al., 2020) 52.4 48.5 57.9 67.0 54.0 58.5 65.7 57.7
DivideMix (Li et al., 2020a) 64.3 61.3 67.7 77.3 62.4 68.1 69.5 67.2
SHOT (Liang et al., 2020) 66.1 60.1 66.9 80.8 59.9 67.7 68.4 67.1
NRC (Yang et al., 2021a) 65.7 58.6 64.5 82.3 58.4 65.2 68.2 66.1
AaD (Yang et al., 2022) 65.4 54.2 59.8 81.8 54.6 60.3 68.5 63.5
AdaContrast (Chen et al., 2022) 65.9 58.0 68.6 80.5 61.5 70.2 69.8 67.8
GPUE (Litrico et al., 2023) 67.5 64.0 68.8 76.5 65.7 74.2 70.4 69.6
SF(DA)2 (Hwang et al., 2024) 67.7 59.6 67.8 83.5 60.2 68.8 70.5 68.3

UCon-SFDA (Ours) 68.1 66.5 69.3 81.0 64.3 75.2 71.1 71.5

Table 5: Ablation study results across different datasets and tasks

Method
VisDA2017 VisDA-RUST DomainNet-126 OfficeHome

Sync → Real Sync → Real P → R R → P Avg. Ar → Cl Pr → Cl Avg.

LCL 87.6 75.5 78.9 67.8 66.9 58.6 57.9 72.6
LCL + L -

DC 89.0 78.9 80.2 70.3 69.8 61.2 59.7 73.3
LCL + L+

PL 88.1 79.1 80.8 69.5 68.8 60.2 59.3 73.1
LUCon−SFDA 89.6 79.4 81.0 71.1 71.5 61.5 62.2 73.6

self-predicted labels of the neighbors. We compare the label information provided by this neighbor
label set with our proposed partial label set. By comparing the two lines for neighbor label set
accuracy marked with ‘x’ in Figure 3b, we observe that for uncertain data, the neighbor label set
becomes increasingly unstable as training progresses, with accuracy sometimes even decreasing. This
explains why we choose not to rely on neighbor labels in our algorithm. Instead, we use the sample’s
own TOP-KPL predictions to form a partial label set. A closer look at the difference between the two
blue lines and the two yellow lines in Figure 3b reveals that the partial label set provides a greater
accuracy gain for uncertain data than for certain data. Interestingly, the accuracy of the neighbor’s
labels is consistently higher than the overall accuracy of the model’s self-prediction, which explains
why we apply relaxed supervision through partial label loss only for uncertain data.
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Figure 3: (a) Self-prediction accuracies across data with varying levels of predictive uncertainty on
Office-Home (Ar → Pr). (b) Comparison of the partial label set and neighbor label set quality across
different uncertainty levels. (c) Comparison of prediction similarity variances between anchor-true
negative pairs, with and without the dispersion control term L -

DC, on Office-Home (Ar → Cl).

6 CONCLUSION

In this paper, we thoroughly analyze two types of uncertainty in SFDA arising from the use of
positive and negative samples. By examining the uncertainty in the negative sample distribution
during training, we construct an outlier-robust worst-case risk and derive an informative upper bound
for it. This analysis not only explains why current contrastive learning methods significantly enhance
SFDA performance but also leads to the design of an augmentation-based dispersion control approach
to mitigate the uncertainty introduced by noisy negative samples. Furthermore, by investigating the
prediction uncertainty of positive examples, we identify a partial label set as the optimal solution
for the target data. This insight uncovers previously overlooked uncertain information in existing
algorithms and motivates us to propose novel criteria for distinguishing uncertain data, thereby using
partial labels to relax the supervision from positive examples.
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APPENDICES - TECHNICAL DETAILS AND ADDITIONAL EXPERIMENTS

A TECHNICAL DETAILS

We introduce key notations for the subsequent subsections. Let R≥0 represent the set of all non-
negative real values. Given v = (v1, . . . , vp)

⊤ and q ∈ [1,+∞], the Lq norm is defined as

∥v∥q =
(∑p

j=1 |vj |q
)1/q

for 1 ≤ q < ∞, and ∥v∥∞ = maxj |vj | when q = +∞. Let (Ω,G, µ)
represent a probability measure space, where Ω is a set, G is the σ-algebra of subsets of Ω, and µ is
the associated probability measure. For q > 0, let Lq(Ω,G, µ), or simply Lq(µ), denote the space
of Borel-measurable functions f : Ω → R such that

∫
|f |qdµ <∞. For a random variable Z ∼ µ,

we may interchangeably write the expectation and variance of f(Z) respectively as Eµ{f(Z)} and
Vµ {f(Z)}, Eµ(f) and Vµ(f), or EZ∼µ{f(Z)} and VZ∼µ {f(Z)}. We use P(Ω) to denote the set of
Borel probability measures on Ω, and let Pp(Ω) represent the subset of P(Ω) with finite qth moment
for q > 0. That is, µ ∈ Pp(Ω) if and only if EZ∼µ(Z

q) <∞. Clearly, Pq(Ω) ⊂ Pr(Ω) if q ≥ r.

A.1 NOTATION TABLE

The notation table provides a summary for the key notations used throughout the paper, with the
symbols, descriptions, and the first appearance place included in the first, second, an the third columns,
respectively.

Notations Descriptions First appearance

X ⊂ Rd d-dimensional input space Section 3

Y = [K] label space for K-classification Section 3

P S
xy; DS

underlying distribution over X × Y related to source domain
unavailable source domain data DS ≜ {xS

i , y
S
i }

NS
i=1

Section 3

PT
xy; DT

underlying distribution over X × Y related to target domain
unlabeled target domain data DT ≜ {xT

i }
NT
i=1

Section 3

fS(x;θS)/fT(x;θT)/f(x;θ) :
X 7→ ∆K−1 predicted probabilities of source/target/general model Section 3

hS(x;θS)/hT(x;θT)/h(x;θ) :
X 7→ Y

source/target/general classifier:
= argmaxj∈[K] fS(x;θS)[j]/fT(x;θT)[j]/f(x;θ)[j]

Section 3

Sθ(x
′; x)

similarity between x′ and x
e.g., Sθ(x

′; x) =< f(x′;θ), f(x;θ) >
Section 4.1, Eq. (1)

PT
x (empirical: P̂x) distribution of input X (target) Section 3

P +(·; x), or simply P +

(empirical: P̂ +)
conditional distribution for positive sample over X , given x Section 4.1, Eq. (1)

P -(·; x), or simply P -

(empirical: P̂ -)
conditional distribution for negative sample over X , given x Section 4.1, Eq. (1)

L+
CL / L -

CL positive/negative contrastive loss Section 4.3, Remark 4.4

L+
PL / L -

DC partial label/dispersion control loss Section 4.3, Remark 4.4

L+
UCon / L -

UCon overall positive/negative uncertainty control loss Section 4.4, Eq. (8)

LUCon−SFDA uncertainty control source-free domain adaptation loss Section 4.4, Eq. (9)

λPL / λDC / λ -
CL

partial label/dispersion control/negative contrastive
loss coefficient Section 4.4, Eq. (8) / (7) / (6)

κ number of neighbors for each anchor point Section 4.1

KPL update number for partial label set Section 4.4 (Page 7)

τ uncertain sample selection ratio Section 4.4 (Page 7)

β decay exponent of negative contrastive loss Section 4.4 (Page 7)

𝒵 / ℱ / 𝒴PL / 𝒰 feature/predicted probabilities/
partial label set/uncertainty sample bank Appendix B, Algorithm 1

AUG(x) data augmentation of input sample x Section 4.2, Remark 4.2

A.2 PRELIMINARIES ON DISCREPANCY METRICS AND LINEAR PROGRAMMING

We begin by presenting some definitions and optimization results of the p-Wasserstein distance and
φ-divergence, which can be chosen for the discrepancy metric 𝒹 in (3). These materials will be used
in the proof of Theorem 4.1.
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Definition A.1 (p-Wasserstein distance (Blanchet & Murthy, 2019)). Let Ω denote a Polish space
(i.e., a complete separable metric space), endowed with a metric c : Ω×Ω → R≥0, also called a cost
function. Then, for p ≥ 1 and any P,Q ∈ Pp(Ω), the Wasserstein distance of order p for P and Q is
defined as

Wp(P,Q) ≜ inf
Π∈Cpl(P,Q)

[
E(S1,S2)∼Π {cp(S1, S2)}

]1/p
,

where Cpl(P,Q), sometimes called the coupling set of P and Q, comprises all probability measures
on the product space Ω × Ω such that their marginal measures are P (·) and Q(·). Here, cp(·, ·)
represents {c(·, ·)}p.

Definition A.2 (φ-divergence (Ali & Silvey, 1966; Duchi, 2019)). Let P and Q be probability
distributions on a measurable space (Ω,G), where G is the σ-algebra of subsets of Ω. Let φ : R+ −→
R be a convex function satisfying φ(1) = 0 and φ(t) = +∞ for t < 0. Without loss of generality,
assume that P and Q are absolutely continuous with respect to the common dominating measure
µ. Let p and q denote the density or mass functions of P and Q with respect to the measure µ,
respectively; that is, Q(dx) = q(x)dµ(x) and P (dx) = p(x)dµ(x). The φ-divergence between P
and Q is then defined as

Dφ(P∥Q) :=

∫
Ω

q(x)φ

(
p(x)

q(x)

)
dµ(x) + φ′(∞)P{q = 0},

where φ′(∞) represents limx→∞ φ(t)/t.

Example A.1 (Duchi, 2019, Chapter 2.2). Taking φ to be of different forms gives popular examples
of φ-divergences:

• Kullback-Leibler (KL) divergence: taking φ(t) = t log t gives

Dφ(P∥Q) ≜ DKL(P∥Q) =

∫
p log(p/q)dµ.

• The total variation distance: taking φ(t) = 1
2 |t− 1| yields

Dφ(P∥Q) ≜ ∥P −Q∥TV =
1

2

∫ ∣∣p
q
− 1
∣∣qdµ = sup

A⊂Ω
|P (A)−Q(A)|.

• The Hellinger distance: taking φ(t) = (
√
t − 1)2 = t − 2

√
t + 1 leads to the squared

Hellinger distance

Dφ(P∥Q) ≜ H2(P∥Q) =

∫
(
√
p−√

q)2dµ.

• The χ2-divergence: taking φ(t) = (t− 1)2 produces the χ2-divergence

Dφ(P∥Q) ≜ χ2(P∥Q) =

∫
(
p

q
− 1)2dµ.

Lemma 1 (Strong duality for robust risk based on p-Wasserstein distance; Gao et al., 2024, Lemma
EC.1). Consider the p-Wasserstein distance Wp(·, ·) with p ∈ [1,∞) defined in Definition A.1. Given
an upper semi-continuous loss function h : Ω → R, a nominal distribution P ∈ Pp(Ω), and a radius
δ > 0, the resulting robust risk based on the p-Wasserstein distance Wp(·, ·) is defined as

𝓋P ≜ sup
Q∈P(Ω)

[
EZ∼Q

{
h(Z)

}
:Wp(P,Q) ≤ δ

]
,

and the dual problem is defined as

𝓋D ≜ min
γ≥0

{
γδp + EZ∼P

[
sup
z′∈Ω

{
h(z′)− γcp(z′, Z)

}]}
.

Then, 𝓋P = 𝓋D.
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Lemma 2 (Strong duality for robust risk based on φ-divergence; Duchi & Namkoong, 2021, Proposi-
tion 1; Shapiro, 2017, Section 3.2). Consider the φ-divergence Dφ(·∥·) defined in Definition A.2.
Given a loss function h : Ω → R, a nominal distribution P on the measure space (Ω,G), and a
radius δ > 0, the resulting robust risk based on the φ-divergence Dφ(·∥·) is defined as

𝓋P ≜ sup
Q≪P

[
EZ∼Q

{
h(Z)

}
: Dφ(Q||P ) ≤ δ

]
,

and the dual problem is defined as

𝓋D ≜ inf
γ≥0,η∈R

{
EP

[
γφ∗

{
h(Z)− η

γ

}]
+ γδ + η

}
,

where φ∗(t) = sups{ts− φ(s)} for any t ∈ R is the Fenchel conjugate. Then, 𝓋P = 𝓋D. Moreover,
if the supremum in 𝓋P is finite, then there exist finite γ ≥ 0 and η ∈ R that attain the infimum in 𝓋D.
Lemma 3 (Hansen & Sargent, 2008, Proposition 1.4.2). Let (Ω,G, µ) represent a σ-finite measure
space, where Ω is a set, G is the σ-algebra of subsets of Ω, and µ is the associated measure. Suppose
h : Ω → R is a bounded measurable function. Then the following results hold:

(i) The variational formula:

− log

∫
Ω

exp{−h(ω)}dµ(ω) = inf
ν∈P(Ω)

{
DKL(ν∥µ) +

∫
Ω

h(ω)dν(ω)

}
(A1)

(ii) Suppose ν∗ is the probability measure on Ω which is absolutely continuous with respect to
µ and satisfies

dν∗

dµ
(ω) ≜

exp{−h(ω)}∫
Ω
exp{−h(ω)}dµ(ω)

for ω ∈ Ω.

Then the infimum in the variational formula (A1) is attained uniquely at ν∗.

A.3 PROOF OF THEOREM 4.1

Before presenting and proving the formal version of Theorem 4.1, we first examine the robust risk
given in (2) for different choices of the discrepancy metric 𝒹 in (3), including χ2-divergence, KL-
divergence, and p-Wasserstein distance with p ∈ [1,+∞). Proof techniques in Duchi & Namkoong
(2021); Zhai et al. (2021); Gao (2023); Gao et al. (2024); Lam (2016); Guo et al. (2023) are used.
Lemma 4. For different choices of the discrepancy metric 𝒹 in (3), we have the following results on
the robust risk R -

x(θ;P
-, δ) given in (2):

(i) If 𝒹 is the χ2-divergence and δ ≤ VP -
{
Sθ(X

-; x)
}
/
[
EP -

{
Sθ(X

-; x)
}]2

, then

R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-; x)
}
+
√
δVP -

{
Sθ(X -; x)

}
.

(ii) If 𝒹 is the KL-divergence, then,

R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-; x)
}
+
√
2δVP -

{
Sθ(X -; x)

}
+O(δ).

with δ > 0 being small.

(iii) Suppose 𝒹 is the p-Wasserstein distance with p ∈ [1,+∞) and the cost function c(·, ·) in
Definition A.1 is chosen as a norm ∥ · ∥ with the dual norm ∥ · ∥∗. Assume the following
smoothness conditions:

a. For any x̃ -, x -, x ∈ X , ∃ℳ1,ℳ2 > 0 and ζ ∈ [1, p], such that

∥∇Sθ(x̃
-; x)−∇Sθ(x

-; x)∥∗ ≤ ℳ1 +ℳ2∥x̃ - − x -∥ζ−1.

b. There exists η0 > 0 and ℳ3 > 0, such that for any x̃ -, x -, x ∈ X , if ∥x̃ - − x -∥ ≤ η0,
then ∥∇Sθ(x̃

-; x)−∇Sθ(x
-; x)∥∗ ≤ ℳ3∥x̃ - − x -∥.

Let q denote the Hölder number of p, that is 1
p + 1

q = 1. Then

R -
x(θ;P

-, δ) ≤ EP -
{
Sθ(X

-; x)
}
+ δ {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

+O(δ2∧p).
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Proof of (i) with 𝒹 set as the χ2-divergence:

For the χ2-divergence, we have φ(t) = (t − 1)2 for t ≥ 0 and φ(t) = +∞ for t < 0 by Example
A.1. Then the Fenchel conjugate of φ is given by

φ∗(t) = sup
s∈R

{ts− φ(s)} = sup
s≥0

{
ts− (s− 1)2

}
= sup

s≥0

{
−
(
s− t+ 2

2

)2

+
t2

4
+ t

}

=


t2

4
+ t, for t ≥ −2

− 1, for t < −2

=
1

4
{(t+ 2)+}2 − 1. (A2)

Step (i): Upper bound on the primal problem.

If the discrepancy metric 𝒹 in (3) is chosen as the χ2-divergence, then the robust risk R -
x(θ;P

-, δ)
is expressed as

R -
x(θ;P

-, δ) = sup
Q -≪P -

[
EQ -

{
Sθ(X

-; x)
}
: χ2(Q -∥P -) ≤ δ

]
. (A3)

The expectation EQ -
{
Sθ(X

-; x)
}

in (A3) can be expressed as:

EQ -
{
Sθ(X

-; x)
}
= EP -

{
Sθ(X

-; x)
dQ -
dP -

}
= EP -

{
Sθ(X

-; x)
}
+ EP -

{
Sθ(X

-; x)

(
dQ-
dP -

− 1

)}
= EP -

{
Sθ(X

-; x)
}
+ EP -

{[
Sθ(X

-; x)− EP -
{
Sθ(X

-; x)
}](dQ -

dP -
− 1

)}
,

where the first inequality holds via a change of measure and the fact that Q - ≪ P -, dQ -
dP - denotes the

Radon–Nikodym derivative, and the last equality is true since EP -
(

dQ -
dP - − 1

)
= 0.

By the Cauchy-Schwarz inequality, we further obtain that

R -
x(θ;P

-, δ)− EP -
{
Sθ(X

-; x)
}

=

√√√√{EP -
[
Sθ(X -; x)− EP -

{
Sθ(X -; x)

}]2} ·

{
EP -

(
dQ -
dP -

− 1

)2
}

=

√{
EP -

[
Sθ(X -; x)− EP -

{
Sθ(X -; x)

}]2} · χ2(Q -∥P -)

≤
√{

EP -
[
Sθ(X -; x)− EP -

{
Sθ(X -; x)

}]2} · δ,

where the second equality is due to the definition of χ2-divergence given in Example A.1, and the
last step is due to the constraint in (A3). Therefore, by (A3), we obtain that

R -
x(θ;P

-, δ) ≤ EP -
{
Sθ(X

-; x)
}
+

√{
EP -

[
Sθ(X -; x)− EP -

{
Sθ(X -; x)

}]2} · δ

≜µ+
√
δV , (A4)

where µ ≜ EP -
{
Sθ(X

-; x)
}

and V ≜ EP -
[
Sθ(X

-; x)− EP -
{
Sθ(X

-; x)
}]2

.

Step (ii): Attaining the equality in the upper bound using duality.

17



Published as a conference paper at ICLR 2025

Next, we prove that the equality in the upper bound in (A4) can be achieved by leveraging the strong
duality result of the φ-divergence based robust risk. Specifically, according to Lemma 2 and (A2),

R -
x(θ;P

-, δ) = inf
γ≥0,η∈R

{
EP

[
γφ∗

{
Sθ(X

-; x)− η

γ

}]
+ γδ + η

}
= inf

γ≥0,η∈R

{
EP

[
γ · 1

4

{
Sθ(X

-; x)− η

γ
+ 2

}2

+

− γ

]
+ γδ + η

}

= inf
γ≥0,η∈R

[
1

4γ
EP

{
Sθ(X

-; x)− η + 2γ
}2

+
− γ + γδ + η

]
= inf

γ≥0,η̃∈R

[
1

4γ
EP

{
Sθ(X

-; x)− η̃
}2

+
+ (1 + δ)γ + η̃

]
≜ inf

γ≥0,η̃∈R
ψ(γ; η̃),

where the second last equality holds by taking η̃ ≜ η − 2γ.

We now examine the minimum of ψ(γ; η̃) by fixing one argument. First, given η̃, taking derivatives
of ψ(γ; η̃) with respect to γ gives that the optimal γ to infimize the preceding expression is given by:

γ∗ =

√√√√√EP

{
Sθ(X -; x)− η̃

}2

+

4(1 + δ)
.

Then substituting γ∗ into ψ(γ; η̃) gives

R -
x(θ;P

-, δ) = inf
η̃∈R

[√
(1 + δ)EP

{
Sθ(X -; x)− η̃

}2

+
+ η̃

]
. (A5)

Next, g(η̃) ≜
√

(1 + δ)EP

{
Sθ(X -; x)− η̃

}2

+
+ η̃. By taking

η̃∗ = µ−
√
V

δ
, (A6)

where µ and V are defined after (A4), we obtain that

g(η̃∗) =

√
(1 + δ)EP

{
Sθ(X -; x)− η̃∗

}2

+
+ η̃∗

=

√
(1 + δ)EP

{
Sθ(X -; x)− η̃∗

}2

+ η̃∗

=

√
(1 + δ)EP

{
Sθ(X -; x)− µ+

√
V

δ

}2

+ µ−
√
V

δ

=

√√√√(1 + δ)

[
EP

{
Sθ(X -; x)− µ

}2

+
V

δ
+ 2

√
V

δ
EP

{
Sθ(X -; x)− µ

}]
+ µ−

√
V

δ

=

√
(1 + δ)

(
V +

V

δ

)
+ µ−

√
V

δ

= µ+
√
δV ,

where the first step holds since η̃∗ = µ−
√

V
δ < 0, and the fifth step is due to the definitions of µ

and V .

Step (iii): Mean-dispersion form of the robust risk.
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With η̃∗ = µ −
√

V
δ in (A6), the dual objective (A5) in its infimum form achieves the equality in

(A4), which is the upper bound of the primal problem (A3) in its supremum form. Consequently, we
obtain that

R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-; x)
}
+

√{
EP -

[
Sθ(X -; x)− EP -

{
Sθ(X -; x)

}]2} · δ.

The proof is completed.

Proof of (ii) with 𝒹 set as the KL-divergence:

If the discrepancy metric 𝒹 in (3) is chosen as the KL-divergence, then the robust risk R -
x(θ;P

-, δ)
is expressed as

R -
x(θ;P

-, δ) = sup
Q -≪P -

[
EQ -

{
Sθ(X

-; x)
}
: DKL(Q

-∥P -) ≤ δ
]

= sup
Q -≪P -

[
EQ -

{
Sθ(X

-; x)
}
: EQ -

{
log

(
dQ-

dP -

)}
≤ δ

]
. (A7)

By a change of measure and denoting the likelihood ratio L(ω) ≜ dQ -(ω)
dP -(ω) for ω ∈ X , the objective

and the constraint in (A7) can be expressed as

EQ -
{
Sθ(X

-; x)
}
= EP -

{
Sθ(X

-; x)
dQ-

dP -

}
≜ EP -

{
Sθ(X

-; x)L(X -)
}
;

EQ -

{
log

(
dQ -

dP -

)}
= EP -

[{
log

(
dQ -

dP -

)}
dQ -

dP -

]
= EP -

[
L(X -) log {L(X -)}

]
.

Therefore, the expression of the robust risk R -
x(θ;P

-, δ) can be rewritten as:

R -
x(θ;P

-, δ) =


max
L∈L

EP -
{
Sθ(X

-; x)L(X -)
}

s.t. EP -
[
L(X -) log {L(X -)}

]
≤ δ,

(A8)

where L = {L ∈ L1(P -) : EP -{L(X -)} = 1; L ≥ 0 a.s.}.

Since (A8) is a convex optimization problem with respect to L, by introducing the Lagrange multiplier
γ > 0, it can be further expressed as:

R -
x(θ;P

-, δ) = max
L∈L,γ≥0

EP -
{
Sθ(X

-; x)L(X -)
}
− γ
{
EP -

[
L(X -) log {L(X -)}

]
− δ
}
. (A9)

Step (i): Optimal form of the likelihood ratio L∗.

Suppose we can find γ∗ ≥ 0 and L∗ ∈ L such that L∗ maximizes (A9) for a fixed γ =

γ∗ and EP -
[
L(X -) log {L(X -)}

]
= δ. Then, for any L ∈ L satisfying the constraint

EP -
[
L(X -) log {L(X -)}

]
≤ δ in (A8), we have that

EP -
{
Sθ(X

-; x)L∗(X -)
}

=EP -
{
Sθ(X

-; x)L∗(X -)
}
− γ∗

{
EP -

[
L∗(X -) log {L∗(X -)}

]
− δ
}

≥EP -
{
Sθ(X

-; x)L(X -)
}
− γ∗

{
EP -

[
L(X -) log {L(X -)}

]
− δ
}

≥EP -
{
Sθ(X

-; x)L(X -)
}
,

and hence, L∗ is the optimal solution of (A8).

We first assume the existence of such γ∗ ≥ 0 and consider the form of the corresponding L∗.
Let f(L; γ) ≜ EP -

{
Sθ(X

-; x)L(X -)
}
− γ

{
EP -

[
L(X -) log {L(X -)}

]
− δ
}

denote the objective
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function in (A9). For a fixed γ∗ ∈ R, we consider the form of L∗ ∈ argmaxL∈L f(L; γ∗), which can
be expressed as

L∗ ∈ argmax
L∈L

EP -
{
Sθ(X

-; x)L(X -)
}
− γ∗

{
EP -

[
L(X -) log {L(X -)}

]
− δ
}

⇔ L∗ ∈ argmax
L∈L

−γ∗
(
EP -

{
− Sθ(X

-; x)L(X -)/γ∗
}
+ EP -

[
L(X -) log {L(X -)}

])
⇔ L∗dP - ∈ argmin

Q -∈Pp(X )

EQ -
{
− Sθ(X

-; x)/γ∗
}
+DKL(Q

-∥P -)
]
.

By Lemma 3, we obtain that

L∗(X -) = exp

{
Sθ(X

-; x)

γ∗

}
/EP -

[
exp

{
Sθ(X

-; x)

γ∗

}]
. (A10)

is the unique optimal solution of L∗ ∈ argmaxL∈L f(L; γ∗) for a fixed γ∗ since the similarity measure
Sθ is a bounded function.

Step (ii): Existence of γ∗.

If the γ∗ in Step (i) exists, then the optimal L∗ is given in (A10), and the constraint and objective in
(A8) can be expressed as below:

δ = EP -
[
L∗(X -) log {L∗(X -)}

]
= EP -

(
exp {Sθ(X

-; x)/γ∗}
EP - [exp {Sθ(X -; x)/γ∗}]

·
{
Sθ(X

-; x)

γ∗
− logEP -

[
exp

{
Sθ(X

-; x)

γ∗

}]})
=

1

γ∗
· EP - [Sθ(X

-; x) · exp {Sθ(X
-; x)/γ∗}]

EP - [exp {Sθ(X -; x)/γ∗}]
− logEP -

[
exp

{
Sθ(X

-; x)

γ∗

}]
= ϱ̄ · EP - [Sθ(X

-; x) · exp {ϱ̄ · Sθ(X
-; x)}]

EP - [exp {ϱ̄ · Sθ(X -; x)}]
− logEP -

[
exp {ϱ̄ · Sθ(X

-; x)}
]

≜ ϱ̄h′(ϱ̄)− h(ϱ̄). (A11)

In addition,

EP -
{
Sθ(X

-; x)L∗(X -)
}
=
EP - [Sθ(X

-; x) · exp {Sθ(X
-; x)/γ∗}]

EP - [exp {Sθ(X -; x)/γ∗}]
=h′(ϱ̄), (A12)

where we let ϱ ≜ 1/γ, ϱ̄ ≜ 1/γ∗, and h(ϱ) = logEP - [exp {ϱ · Sθ(X
-; x)}]. Here h is the cumulant

generating function of Sθ(X
-; x), which is infinitely differentiable and strictly convex for non-

constant Sθ(X
-; x), and passes through the origin (Shalizi & Kontorovich, 2006). Moreover, using a

power series expansion, we obtain that:

h(ϱ) =

∞∑
j=1

h(j)(0) ϱj ,

where h(j) denotes the jth derivative of h, and h(j)(0) is referred to as the jth cumulant. It can be
verified that

h(1)(0) = EP -
{
Sθ(X

-; x)
}
;

h(2)(0) = EP -
{[

Sθ(X
-; x)− EP -

{
Sθ(X

-; x)
}]2}

> 0;

h(3)(0) = EP -
{[

Sθ(X
-; x)− EP -

{
Sθ(X

-; x)
}]3}

.
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By the strict convexity of h, we have that d {ϱh′(ϱ)− h(ϱ)} /dϱ = h′′(ϱ) > 0, and hence ϱh′(ϱ)−
h(ϱ) is strictly increasing in ϱ. Moreover, by (A11), using the Taylor series expansion, we obtain that

δ = ϱ̄ h′(ϱ̄)− h(ϱ̄)

= ϱ̄

+∞∑
j=0

1

j!
h(j+1)(0) ϱ̄j −

+∞∑
j=0

1

j!
h(j)(0) ϱ̄j

=

+∞∑
j=1

1

(j − 1)!
h(j)(0) ϱ̄j −

+∞∑
j=1

1

j!
h(j)(0) ϱ̄j

=

+∞∑
j=1

{
1

(j − 1)!
− 1

j!

}
h(j)(0) ϱ̄j

=
1

2
h(2)(0) ϱ̄2 +

1

3
h(3)(0) ϱ̄3 +O(ϱ̄4). (A13)

Since h(2)(0) > 0 and the remainder is continuous in ϱ, we conclude that there exists a small ϱ̄
satisfying the equation (A13) for a small enough δ, and that ϱ̄ is the unique solution of (A11). Corre-
spondingly, for γ∗ = 1/ϱ̄, the associated L∗ satisfies the constraint EP -

[
L∗(X -) log {L∗(X -)}

]
= δ.

Hence, R -
x(θ;P

-, δ) = EP -
{
Sθ(X

-; x)L∗(X -)
}

.

Step (iii): Mean-dispersion form of the robust risk.

Now, we examine the form of the robust risk. By (A13), we have

2δ

h(2)(0)
= ϱ̄2 +

2h(3)(0)

3h(2)(0)
ϱ̄3 +O(ϱ̄4) = ϱ̄2

{
1 +

2h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

}
,

and further obtain that

ϱ̄ =

√
2δ

h(2)(0)
·

√
1
/{

1 +
2h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

}

=

√
2δ

h(2)(0)
·

√
1− 2h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

=

√
2δ

h(2)(0)
·
{
1− h(3)(0)

3h(2)(0)
ϱ̄+O(ϱ̄2)

}

=

√
2δ

h(2)(0)
− 2h(3)(0)

3{h(2)(0)}2
δ +O(δ).

Hence, by (A12), we have that

R -
x(θ;P

-, δ) =EP -
{
Sθ(X

-; x)L∗(X -)
}

=h′(ϱ̄) = h(1)(0) + h(2)(0)ϱ̄+
h(3)(0)

2
ϱ̄2 +O(ϱ̄2)

=h(1)(0) +
√
2h(2)(0)δ +O(δ)

=EP -
{
Sθ(X

-; x)
}
+

√
2EP -

{[
Sθ(X -; x)− EP -

{
Sθ(X -; x)

}]2}
δ +O(δ).

Therefore, the proof is established.

Proof of (iii) with 𝒹 set as the p-Wasserstein distance:
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If the discrepancy metric 𝒹 in (3) is chosen as the p-Wasserstein distance, then the robust risk
R -

x(θ;P
-, δ) is expressed as

R -
x(θ;P

-, δ) = sup
Q -∈P(Ω)

[
EQ -

{
Sθ(X

-; x)
}
:Wp(Q

-, P -) ≤ δ
]
. (A14)

Let ∆R -
x ≜ R -

x(θ;P
-, δ)−EP -

{
Sθ(X

-; x)
}

denote the difference of the robust risk and the nominal
risk. By Lemma 1, we have that

∆R -
x =min

γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
Sθ(x̃

-; x)− γ∥x̃ - −X -∥p
}]}

− EP -
{
Sθ(X

-; x)
}

=min
γ≥0

(
γδp + EP -

{
sup
x̃ -∈Ω

[{
Sθ(x̃

-; x)− Sθ(X
-; x)

}
− γ∥x̃ - −X -∥p

]})
. (A15)

Step (i): Upper bound on Sθ(x̃
-; x)− Sθ(x

-; x).

For any x̃ -, x - ∈ X , by the mean value theorem, there exists x̌ - ∈ X between x̃ - and x - such that

Sθ(x̃
-; x)− Sθ(x

-; x) = ⟨∇Sθ(x̌
-; x), x̃ - − x -⟩,

which implies that

|Sθ(x̃
-; x)− Sθ(x

-; x)− ⟨∇Sθ(x
-; x), x̃ - − x -⟩|

=|⟨∇Sθ(x̌
-; x)−∇Sθ(x

-; x), x̃ - − x -⟩|
≤∥∇Sθ(x̃

-; x)−∇Sθ(x
-; x)∥∗∥x̃ - − x -∥

≤∥∇Sθ(x̃
-; x)−∇Sθ(x

-; x)∥∗∥x̃ - − x -∥, (A16)

where the inequality in the penultimate step is due to the Cauchy–Schwarz inequality.

If ∥x̃ - − x -∥ ≤ η0, by the smoothness condition (b), we have that

∥∇Sθ(x̃
-; x)−∇Sθ(x

-; x)∥∗ ≤ ℳ3∥x̃ - − x -∥. (A17)

If ∥x̃ - − x -∥ ≥ η0, by the smoothness condition (a), we have that

∥∇Sθ(x̃
-; x)−∇Sθ(x

-; x)∥∗ ≤ ℳ1 +ℳ2∥x̃ - − x -∥ζ−1. (A18)

Combining (A16), (A17) and (A18), we obtain that

|Sθ(x̃
-; x)− Sθ(x

-; x)− < ∇Sθ(x
-; x), x̃ - − x - > |

= 1(∥x̃ - − x -∥ ≤ η0) ·ℳ3∥x̃ - − x -∥2 + 1(∥x̃ - − x -∥ ≥ η0) ·
(
ℳ1∥x̃ - − x -∥+ℳ2∥x̃ - − x -∥ζ

)
≜ I1 + I2,

where

I1 ≜ 1(∥x̃ - − x -∥ ≤ η0) ·ℳ3∥x̃ - − x -∥2;
I2 ≜ 1(∥x̃ - − x -∥ ≥ η0) ·

(
ℳ1∥x̃ - − x -∥+ℳ2∥x̃ - − x -∥ζ

)
.

For I1: if 1 ≤ p ≤ 2, we have

I1 ≤ 1(∥x̃ - − x -∥ ≤ η0) ·ℳ3

(
η0

∥x̃ - − x -∥

)2−p

∥x̃ - − x -∥2

≤ℳ3η
2−p
0 ∥x̃ - − x -∥p.

If p > 2, we have I1 ≤ ℳ3∥x̃ - − x -∥2.

For I2, we have the following upper bound:

I2 ≤1(∥x̃ - − x -∥ ≥ η0) ·

{
ℳ1

(
∥x̃ - − x -∥

η0

)p−1

∥x̃ - − x -∥+ℳ2

(
∥x̃ - − x -∥

η0

)p−ζ

∥x̃ - − x -∥ζ
}

≤
(
ℳ1η

−(p−1)
0 +ℳ2η

−(p−ζ)
0

)
∥x̃ - − x -∥p.
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Combining the discussions above, we have that

|Sθ(x̃
-; x)− Sθ(x

-; x)− < ∇Sθ(x
-; x), x̃ - − x - > |

≤

{
ℳ̄ ∥x̃ - − x -∥p, if 1 ≤ p ≤ 2;

ℳ̄
(
∥x̃ - − x -∥p + ∥x̃ - − x -∥2

)
, if p > 2,

(A19)

where ℳ̄ ≜ max{ℳ3η
2−p
0 ,ℳ3,

(
ℳ1η

−(p−1)
0 +ℳ2η

−(p−ζ)
0

)
}.

Step (ii): Mean-dispersion form of the robust risk when p ∈ [1, 2].

When p ∈ [1, 2], by (A15) and (A19), we have that

∆R -
x ≤ min

γ≥0

(
γδp + EP -

{
sup
x̃ -∈Ω

[{
⟨∇Sθ(X

-; x), x̃ - −X -⟩+ ℳ̄ ∥x̃ - −X -∥p
}
− γ∥x̃ - −X -∥p

]})
= min

γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
⟨∇Sθ(X

-; x), x̃ - −X -⟩ − (γ − ℳ̄)∥x̃ - −X -∥p
}]}

≤ min
γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
∥∇Sθ(X

-; x)∥∗∥x̃ - −X -∥ − (γ − ℳ̄)∥x̃ - −X -∥p
}]}

= min
γ≥−ℳ̄

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t− γtp
}]}

+ ℳ̄δp

≤ min
γ≥0

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t− γtp
}]}

+ ℳ̄δp

≜ I4 + ℳ̄δp, (A20)

where I4 ≜ minγ≥0

{
γδp + EP -

[
supt≥0

{
∥∇Sθ(X

-; x)∥∗t− γtp
}]}

, and the third step is due to
the Cauchy–Schwarz inequality.

By taking the derivative of the function in I4 with respect to t and setting it to zero, we obtain the
optimal value of t, given by

t∗ = {∥∇Sθ(X
-; x)∥∗/(γp)}1/(p−1).

Let q denote the Hölder number of p, that is 1
p + 1

q = 1. Then, q = p
p−1 and q

p = 1
p−1 . We have that

sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t− γtp
}

=∥∇Sθ(X
-; x)∥∗t∗ − γ(t∗)p

=∥∇Sθ(X
-; x)∥∗ ·

{
∥∇Sθ(X

-; x)∥∗
γp

} 1
p−1

− γ ·
{
∥∇Sθ(X

-; x)∥∗
γp

} p
p−1

=∥∇Sθ(X
-; x)∥

p
p−1
∗ (γp)−

1
p−1 − ∥∇Sθ(X

-; x)∥
p

p−1
∗ γ−

1
p−1 p−

p
p−1

=∥∇Sθ(X
-; x)∥q∗(γp)

− 1
p−1

(
1− 1

p

)
.

Thus, we further obtain that

I4 = min
γ≥0

[
γδp +

(
1− 1

p

)
(γp)−

1
p−1EP -

{
∥∇Sθ(X

-; x)∥q∗
}]

. (A21)

Similarly, by taking the derivative of the function in (A21) with respect to γ and setting it to zero, we
obtain the optimal value of γ, given by

γ∗ =
1

p
δ−(p−1) {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

.
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Hence, by substituting γ∗ into the corresponding expression and simplifying, we further obtain that

I4 =
1

p
δ−(p−1) {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

δp

+

{
1

p
δ−(p−1) {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

}− 1
p−1

(
p− 1

p

)
p−

1
p−1

=
1

p
δ {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

+

(
p− 1

p

)
δ {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

=δ {EP -∥∇Sθ(X
-; x)∥q∗}

1/q
. (A22)

Combining (A20) and (A22), we obtain that

∆R -
x ≤ δ {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

+ ℳ̄δp.

Step (iii): Mean-dispersion form of the robust risk when p ∈ (2,∞).

When p ∈ (2,∞), by (A15) and (A19), similar to (A20) in Step (ii), we have that

∆R -
x ≤min

γ≥0

(
γδp + EP -

{
sup
x̃ -∈Ω

[{
⟨∇Sθ(X

-; x), x̃ - −X -⟩

+ ℳ̄( ∥x̃ - −X -∥p + ∥x̃ - −X -∥2)
}
− γ∥x̃ - −X -∥p

]})
≤min

γ≥0

{
γδp + EP -

[
sup
x̃ -∈Ω

{
∥∇Sθ(X

-; x)∥∗∥x̃ - −X -∥

+ ℳ̄∥x̃ - −X -∥p + ℳ̄∥x̃ - −X -∥2 − γ∥x̃ - −X -∥p
}]}

=min
γ≥0

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t+ ℳ̄tp + ℳ̄t2 − γtp
}]}

≤min
γ≥0

{
γδp + EP -

[
sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t+ ℳ̄t2 − γtp
}]}

+ ℳ̄δp

= min
γ1,γ2≥0

{
(γ1 + γ2)δ

p + EP -
[
sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t+ ℳ̄t2 − (γ1 + γ2)t
p
}]}

+ ℳ̄δp

≤ min
γ1≥0

{
γ1δ

p + EP -
[
sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t− γ1t
p
}]}

+ min
γ2≥0

{
γ2δ

p + sup
t≥0

(
ℳ̄t2 − γ2t

p
)}

+ ℳ̄δp

≜I5 + I6 + ℳ̄δp (A23)

where

I5 ≜ min
γ1≥0

{
γ1δ

p + EP -
[
sup
t≥0

{
∥∇Sθ(X

-; x)∥∗t− γ1t
p
}]}

;

I6 ≜ min
γ2≥0

{
γ2δ

p + sup
t≥0

(
ℳ̄t2 − γ2t

p
)}
.

For I5, similar to the discussion on I4 with p ∈ [1, 2] as in (A22), we obtain that, for p ∈ (2,∞),

I5 = δ {EP -∥∇Sθ(X
-; x)∥q∗}

1/q
. (A24)
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For I6, by taking the derivative of the function in I6 with respect to t and setting it to zero, we obtain
the optimal value of t, given by t∗ =

{
2ℳ̄/(γ2p)

}1/(p−2)
, leading to

I6 = min
γ2≥0

{
γ2δ

p + ℳ̄(t∗)2 − γ2(t
∗)p
}

= min
γ2≥0

{
γ2δ

p + ℳ̄ ·
(
2ℳ̄
γ2p

) 2
p−2

− γ2

(
2ℳ̄
γ2p

) p
p−2 }

= min
γ2≥0

{
γ2δ

p +
(γ2p

2

)− 2
p−2 ℳ̄

p
p−2 − γ

− 2
p−2

2 ·
(p
2

)− 2
p−2 ·

(p
2

)−1

· ℳ̄
p

p−2

}
= min

γ2≥0

{
γ2δ

p +
p− 2

p

(γ2p
2

)− 2
p−2 ℳ̄

p
p−2

}
. (A25)

By taking the derivative of the function in (A25) with respect to γ2, we obtain the optimal value of
γ2, given by

γ∗2 = ℳ̄δ−(p−2)
(p
2

)−1

,

yielding

I6 = γ∗2δ
p +

p− 2

p

(
γ∗2p

2

)− 2
p−2

ℳ̄
p

p−2 = ℳ̄δ2. (A26)

Combining (A24), (A26), and (A26), we obtain

∆R -
x ≤ δ {EP -∥∇Sθ(X

-; x)∥q∗}
1/q

+ ℳ̄δ2 + ℳ̄δp. (A27)

Hence, the proof is completed.

Proof of Theorem 4.1.

To show the results, we examine the outlier robust risk (4) for different choices of the discrepancy
metric 𝒹 in (3). Proof techniques in Zhai et al. (2021) are used.

Proof of (i) with 𝒹 set as the χ2-divergence:

If the discrepancy metric 𝒹 in (3) is chosen as the χ2-divergence, by (4) and Lemma 4, we have that

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-; x)
}
+
√
δVP ′

{
Sθ(X -; x)

}
:

∃P̃ ′ ∈ Pp(X ) s.t. P -
train = (1− ϵ)P ′ + ϵP̃ ′

}
. (A28)

We consider the following quantity:

ℜ1 ≜ inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-; x)
}
: ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′∈Pp(X )

{∫ +∞

0

[1− P ′ {Sθ(X
-; x) ≤ s}] ds : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}
,

(A29)

where in the second step, we use the fact that for a nonnegative random variable Z with cumulative
distribution function F , EF (Z

k) = k
∫ +∞
0

uk−1{1− F (u)}du if the kth moment EF (Z
k) exists.

Since P -
train = (1− ϵ)P ′ + ϵP̃ ′, we have that for any s ≥ 0,

P ′ {Sθ(X
-; x) ≤ s} ≤ min

{
1

1− ϵ
P -

train {Sθ(X
-; x) ≤ s} , 1

}
. (A30)
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As in Zhai et al. (2021), we show that the equality in (A30) can be achieved by some P ∗ ∈ Pp(X ).
Specifically, since P -

train and Sθ are continuous, there exists an s∗ such that

P -
train {Sθ(X

-; x) > s∗} = ϵ.

Define

p∗(x -) ≜


1

1− ϵ
p -

train(x
-), if Sθ(x

-; x) ≤ s∗;

0, if Sθ(x
-; x) > s∗,

(A31)

where p -
train represents the density or mass function of P -

train. Let P ∗ denote the associated measure of
p∗. Then, we have ∫

X
dP ∗(x -) =

1

1− ϵ

∫
Sθ(x -;x)≤s∗

dP -
train(x

-)

=
1

1− ϵ
P -

train {Sθ(X
-; x) ≤ s∗}

=1.

Therefore, P ∗ defined in (A31) is the probability distribution achieving the equality in (A30). Thus,
by substituting P ∗ into (A29) and utilizing (A30), ℜ1 can be written as:

ℜ1 =EP∗
{
Sθ(X

-; x)
}

=

∫ +∞

0

[1− P ∗ {Sθ(X
-; x) ≤ s}] ds

=

∫ +∞

0

[
1− 1

1− ϵ
P -

train {Sθ(X
-; x) ≤ s}

]
1
[
P -

train

{
Sθ(X

-; x) ≤ s
}
≤ 1− ϵ

]
ds

=

∫ +∞

0

[
1− 1

1− ϵ
P -

train {Sθ(X
-; x) ≤ s}

]
1(s ≤ s∗)ds

=
1

1− ϵ

[
(1− ϵ)s∗ −

∫ s∗

0

P -
train {Sθ(X

-; x) ≤ s} ds

]

=
1

1− ϵ

{[
s P -

train {Sθ(X
-; x) ≤ s}

]∣∣∣s∗
0

−
∫ s∗

0

P -
train {Sθ(X

-; x) ≤ s} ds

}

=
1

1− ϵ

∫ s∗

0

s dP -
train {Sθ(X

-; x) ≤ s} . (A32)

For the variance term in (A28), we consider the 2nd moment:

ℜ2 ≜ EP∗

[{
Sθ(X

-; x)
}2]

=2

∫ +∞

0

s [1− P ∗ {Sθ(X
-; x) ≤ s}] ds

=

∫ +∞

0

2s ·
[
1− 1

1− ϵ
P -

train {Sθ(X
-; x) ≤ s}

]
1(s ≤ s∗)ds

=
1

1− ϵ

[
(1− ϵ)(s∗)2 −

∫ s∗

0

2sP -
train {Sθ(X

-; x) ≤ s} ds

]

=
1

1− ϵ

{[
s2 P -

train {Sθ(X
-; x) ≤ s}

]∣∣∣s∗
0

−
∫ s∗

0

2sP -
train {Sθ(X

-; x) ≤ s} ds

}

=
1

1− ϵ

∫ s∗

0

s2 dP -
train {Sθ(X

-; x) ≤ s} . (A33)
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Thus, we obtain the upper bound on the outlier robust risk R -
x(θ;P

-
train, δ, ϵ) given in (A28):

R -
x(θ;P

-
train, δ, ϵ) ≤EP∗

{
Sθ(X

-; x)
}
+
√
δVP∗

{
Sθ(X -; x)

}
=ℜ1 +

√
δ(ℜ2 −ℜ2

1),

where ℜ1 and ℜ2 are given in (A32) and (A33), respectively.

Proof of (ii) with 𝒹 set as the KL-divergence:

If the discrepancy metric 𝒹 in (3) is chosen as the KL-divergence, by (4) and Lemma 4, we have that

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}

= inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-; x)
}
+
√
2δVP ′

{
Sθ(X -; x)

}
:

∃P̃ ′ ∈ Pp(X ) s.t. P -
train = (1− ϵ)P ′ + ϵP̃ ′

}
.

Similar to the proof of Theorem 4.1 (i) with the χ2-divergence, we construct the distribution P ∗ in
(A31) and obtain the following upper bound on the outlier robust risk R -

x(θ;P
-

train, δ, ϵ):

R -
x(θ;P

-
train, δ, ϵ) ≤EP∗

{
Sθ(X

-; x)
}
+
√
2δVP∗

{
Sθ(X -; x)

}
=ℜ1 +

√
2δ(ℜ2 −ℜ2

1),

where ℜ1 and ℜ2 are given in (A32) and (A33), respectively.

Proof of (iii) with 𝒹 set as the p-Wasserstein distance:

If the discrepancy metric 𝒹 in (3) is chosen as the p-Wasserstein distance, by (4) and Lemma 4, we
have that

R -
x(θ;P

-
train, δ, ϵ) = inf

P ′∈Pp(X )

{
R -

x(θ;P
′, δ) : ∃P̃ ′ ∈ Pp(X ) s.t. P -

train = (1− ϵ)P ′ + ϵP̃ ′
}
.

≤ inf
P ′∈Pp(X )

{
EP ′

{
Sθ(X

-; x)
}
+ δ {EP ′∥∇Sθ(X

-; x)∥q∗}
1/q

+O(δ2∧p) :

∃P̃ ′ ∈ Pp(X ) s.t. P -
train = (1− ϵ)P ′ + ϵP̃ ′

}
.

Similar to the proof of Theorem 4.1 (i) with the χ2-divergence, we construct the distribution P ∗ in
(A31) and obtain the following upper bound on the outlier robust risk R -

x(θ;P
-

train, δ, ϵ):

R -
x(θ;P

-
train, δ, ϵ) ≤EP∗

{
Sθ(X

-; x)
}
+ δ {EP∗∥∇Sθ(X

-; x)∥q∗}
1/q

=ℜ1 + δ {EP∗∥∇Sθ(X
-; x)∥q∗}

1/q
,

where ℜ1 is given in (A32).

A.4 PROOF OF THEOREM 4.2

We complete the proof following the deviations for Theorem 3.2 of Guo et al. (2024). By Lemma 1,
when the p-Wasserstein distance with 0− 1 cost is used to construct the uncertainty set, the robust
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risk R+
x(p; x

+, δ) in (5) for positive example x+, can be equivalently written as:
R+

x(p; x
+, δ) = sup

q+∈Γδ(p+)
⟨q+,−p⟩

= sup

[
EY∼q+

{ K∑
k=1

−pk1(Y = k)
}
:Wp(p

+, q+) ≤ δ

]

= inf
γ≥0

(
γδp + EY∼p+

{
sup

y′∈[K]

[{ K∑
k=1

−pl1(y
′ = k)

}
− γ
{
1(y′ = Y)

}p
]})

= inf
γ≥0

[
γδp +

K∑
j=1

p+
j max

{
− p1 − γ, . . . ,−pj−1 − γ,−pj ,−pj−1 − γ, . . . ,−pK − γ

}]

= inf
γ≥0

[
γδp +

K∑
j=1

p+
j max

{
1− p1 − γ, . . . , 1− pj−1 − γ, 1− pj , 1− pj−1 − γ, . . . ,

1− pK − γ
}]

− 1

≜ inf
γ≥0

{
h(γ; p)

}
− 1,

where h(γ; p) ≜ γδp+
∑K

j=1 p
+
j max

{
1−p1− γ, . . . , 1−pj−1− γ, 1−pj , 1−pj−1− γ, . . . , 1−

pK − γ
}

. Consequently, the minimax problem (5) can be equivalently expressed as:

inf
p∈∆K−1

inf
γ≥0

{
h(γ; p)

}
− 1,

which is a special case of the optimization problem in Theorem 3.2 of Guo et al. (2024), where the
constant term −1 has no effect on the optimal solution. Thus, Theorem 4.2 follows directly from
Theorem 3.2 of Guo et al. (2024).

B EXPERIMENTAL DETAILS

Source Models. For the source models, we use those provided by Liang et al. (2020) and Yang et al.
(2021a) for the Office-Home and VisDA2017 datasets. Since no open-source models are available for
Office-31 and DomainNet-126, we train the source models ourselves using the training methodologies
from SHOT (Liang et al., 2020) and C-SFDA (Karim et al., 2023), respectively.

Target Adaptation Training. We train both the model backbone and classifier during the adaptation
process, primarily following the SHOT (Liang et al., 2020) and AaD (Yang et al., 2022) setups. For
optimization, we use SGD with a momentum of 0.9 and a weight decay of 1e−3. We also use the
Nesterov update method. The initial learning rate for the bottleneck and classification layers is set
to 0.001 across all datasets. For the backbone models, the initial learning rates are set as follows:
5e−4 for Office-Home, 1e−4 for DomainNet-126 and Office-31, and 5e−5 for VisDA2017. We use
the same learning rate scheduler as Liang et al. (2020) for the Office-Home and DomainNet-126
datasets. The batch size is 64 for all datasets. We train for 30 epochs on VisDA2017 and 45 epochs
on Office-Home, Office-31, and DomainNet-126. All experiments are run on a single 32GB V100 or
40GB A100 GPU.

Hyperparameters Selection. In SFDA, hyperparameter selection presents a significant challenge
due to the lack of labeled target data and the distribution shift between domains. In our experiments,
we follow the common pipeline for hyperparameter tuning in the literature (e.g., Yang et al. (2022);
Hwang et al. (2024)), and employ the SND (Soft Neighborhood Density) score (Saito et al., 2021)
and sensitivity analysis to guide the hyperparameter selection. Notably, most hyperparameters in our
method do not require intensive tuning, and their choices can be guided by our theoretical analysis
outlined below.

Our UCon-SFDA method consists of three main components: the basic contrastive loss LCL, the
dispersion control term L -

DC, and the partial label term L+
PL. Given the complexity of the parameter
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space, we simplify the hyperparameter selection process by avoiding exhaustive consideration of
all parameter combinations. Instead, we adopt a sequential, incremental approach to tune the
parameters for the three loss terms, one at a time.

First, for the hyperparameters in the LCL terms (first three columns in Table B1), including the
number of positive samples κ, the decay exponent β for the negative term, and the negative sample
loss coefficient λ -

CL, we largely follow the configurations used in Yang et al. (2022) and Hwang
et al. (2024). As in previous works, we directly set λ -

CL to 1. For datasets with more classification
categories, such as Office-Home, Office, and DomainNet-126, where noise in negative samples is
less pronounced, we use a smaller decay exponent to enhance the impact of true-negative samples
during adaptation. In contrast, for VisDA, which contains only 12 classes with a batch size of 64, we
apply a faster decay rate to mitigate the influence of false-negative samples.

Next, we consider the hyperparameter associated with the dispersion term, λDC. In our initial
experimental trials, we set this value to either 0.5 or 1, based on a balance between the loss terms,
L+

CL and L -
DC, and the sensitivity analysis of hyperparameters.

Finally, for the hyperparameters λPL, KPL, and τ in the partial label loss, we also perform the basic
sequential tuning under the guidance of theoretical insights. According to the proposed algorithm,
we use τ to select uncertain data points and merge the top-KPL predicted classes into the partial label
set for each selected data point. Theoretically, a smaller τ (yet naturally larger than 1) represents a
more uncertain set. As we want to apply the partial label loss only to uncertain data points and avoid
the introduction of additional label uncertainty for more confident data points, we consider a value in
{1.1, 1.3, 1.5} for τ . We find that τ = 1.1 is sufficient for achieving promising performance, except
for simpler tasks with a high initial prediction accuracy, such as Office-31. Next, the value of the
partial label number KPL should be determined based on the algorithm and the number of categories
in the dataset. Generally, a small KPL is preferred, as the partial label set is gradually enlarged with
each epoch. A large KPL could result in an overly large partial label set, potentially introducing more
uncertainty. Empirically, we evaluate KPL ∈ {1, 2, 3}, and find that KPL = 2 performs well for most
datasets, except for VisDA2017, whose total number of classes is only 12 and KPL = 1 is sufficient.
Finally, we tune λPL by considering λPL ∈ {0.001, 0.01, 0.05, 0.1} and select the best-performing
value based on the guidance of the hyperparameter sensitivity analyses.

The final selected parameter values used in our experiments are summarized in Table B1, which are
obtained by a relatively straightforward tuning process conducted on a subspace of hyperparameters.
We note that more refined tuning over the full combinatorial hyperparameter space can further enhance
the performance of our algorithm; additional analysis on the sensitivity of these hyperparameters is
provided in Appendix C.5.

Table B1: Hypermaraters on different datasets

Dataset κ λ -
CL β λDC λPL KPL τ

Office-31 3 1 1 1 0.05 2 1.3
Office-Home 3 1 0 0.5 0.001 2 1.1

Office-Home (partial set) 5 1 0.75 1 0.1 2 1.1
VisDA2017 5 1 5 1 0.01 1 1.1

VisDA-RUST 3 1 5 0.5 0.1 2 1.1
DomainNet-126 2 1 0.75 0.5 0.1 2 1.1

Algorithm. The overall description of adaptation process with our UCon-SFDA method is shown in
Algorithm 1
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Algorithm 1: UCon-SFDA - Uncertainty-Controlled Source-Free Domain Adaptation
Input: Pre-Trained Source Model: fS(x;θS)

Target Data: DT ≜ {xT
i }

NT
i=1

Training Epochs: T
1 // Initialization Process
2 Initialize a target model fT(x;θ0) = fS(x;θS)
3 Construct feature bank 𝒵 and predicted score bank ℱ as described in Yang et al. (2022)
4 Initialize the partial label bank 𝒴PL and uncertainty sample bank 𝒰 as proposed in Section 4.4
5 // Training/Adaptation Process
6 for epoch=1 to T do
7 for iterations t = 1,2,3,... do
8 Forward Propagation: obtain feature zi, predicted probabilities fT(xi;θt) and
9 fT(AUG(xi);θt) for each sample xi in mini-batch B

10 Bank Refresh: update 𝒵 and ℱ using zB and fT(xB;θt) as described in
11 Yang et al. (2022); update 𝒴PL and 𝒰 as proposed in Section 4.4
12 Compute Negative Uncertainty Control Loss L -

UCon in Eq. (7) using fT(xB;θt) and
fT(AUG(xB);θt)

13 Compute Positive Uncertainty Control Loss L+
UCon in Eq. (8) using 𝒵, ℱ, 𝒴PL and 𝒰

14 Compute the total Uncertainty Control Source-Free Domain Adaptation Loss
LUCon−SFDA = L+

UCon + L -
UCon

15 Update the parameters of fT(θt) via LUCon−SFDA

16 end for
17 end for

Output: Target Adapted Model fT(xi;θT)

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL RESULT ON OFFICE-HOME

The experimental results on the Office-Home dataset are reported in Table C2.

Table C2: Classification accuracy (%) on the Office-Home dataset (ResNet-50)

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

SHOT (Liang et al., 2020) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
A2Net (Xia et al., 2021) 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
G-SFDA (Yang et al., 2021b) 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
NRC (Yang et al., 2021a) 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
CPGA (Qiu et al., 2021) 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
CoWA-JMDS (Lee et al., 2022) 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
DaC (Zhang et al., 2022) 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8
C-SFDA (Karim et al., 2023) 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5
AaD (Yang et al., 2022) 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
I-SFDA (Mitsuzumi et al., 2024) 60.7 78.9 82.0 69.9 79.5 79.7 67.1 58.8 82.3 74.2 61.3 86.4 73.4

UCon-SFDA (Ours) 61.5 80.5 82.1 69.3 80.8 78.7 67.0 62.2 82.0 72.2 61.9 85.5 73.6

C.2 PARTIAL LABEL SET EVALUATION

We conduct the self-prediction, partial label set, and neighbor label set evaluations across all 12 tasks
on the office-home dataset. The results of self-prediction are shown in Figure C1 to Figure C4, and
the results of partial label set and neighbor set comparison are shown in Figure C5 to Figure C8.
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(c) Ar → Rw

Figure C1: Self-prediction accuracy among different data certainty levels on Office-Home dataset
with source domain Ar
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(a) Cl → Ar
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(c) Cl → Rw

Figure C2: Self-prediction accuracy among different data certainty levels on Office-Home dataset
with source domain Cl

0 10 20 30 40
Training Process

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Overall Self-Prediction Accuracy
Uncertain Data Self-Prediction Accuracy
Certain Data Self-Prediction Accuracy

(a) Pr → Ar
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(b) Pr → Cl
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(c) Pr → Rw

Figure C3: Self-prediction accuracy among different data certainty levels on Office-Home dataset
with source domain Pr
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(a) Rw → Ar
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(b) Rw → Cl
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(c) Rw → Pr

Figure C4: Self-prediction accuracy among different data certainty levels on Office-Home dataset
with source domain Rw
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(a) Ar → Cl
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(b) Ar → Pr
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(c) Ar → Rw

Figure C5: Label set correctness among different data certainty levels on Office-Home dataset with
source domain Ar
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(a) Cl → Ar
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(b) Cl → Pr
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(c) Cl → Rw

Figure C6: Label set correctness among different data certainty levels on Office-Home dataset with
source domain Cl
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(c) Pr → Rw

Figure C7: Label set correctness among different data certainty levels on Office-Home dataset with
source domain Pr
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(a) Rw → Ar
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(c) Rw → Pr

Figure C8: Label set correctness among different data certainty levels on Office-Home dataset with
source domain Rw

C.3 DATA AUGMENTATION IN SFDA
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Figure C9: Inconsistency between the prediction results between the anchor image and its augmented
view by source model

The data augmentation technique has been used in SFDA to improve prediction consistency, enhance
the target model’s generalizability, and control feature space variance (Karim et al., 2023; Mitsuzumi
et al., 2024; Xu et al., 2025). However, these methods intuitively treat the augmented views as
positive samples of the original image, without considering the model’s initial representational or
predictive capacity on these data. Moreover, they often overlook the fact that such data are more
likely to be negative samples in terms of the self-predicted pseudo-label (Pu et al., 2021).

Here, we evaluate the prediction accuracy and consistency of the original target data and their
augmented version by applying the source model to Office-Home and VisDA-2017. The consistency
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is defined as:

CONSISTENCY ≜
NT∑
i=1

1 {fS(xi;θS) = fS(AUG(xi);θS)} .

As shown in Figure C9, the source model exhibits a low accuracy in predicting the augmented data
and demonstrates a high inconsistency between the predictions for the anchor data and its augmented
versions. This experimental result is counterintuitive. It empirically explains why directly using
the augmented predictions as additional labels or supervisory signals sometimes fails to effectively
improve SFDA performance and may even have a negative impact.

C.4 VARIANCE CONTROL EFFECT

We evaluate the dispersion control effect achieved by our augmentation-based L -
DC across all 12

tasks on the office-home dataset. The results are shown in Figure C10 to Figure C13. The consistent
dispersion reduction achieved validates the effectiveness of our proposed method.
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(c) Ar → Rw

Figure C10: Dispersion control loss effect on Office-Home dataset with source domain Ar
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(c) Cl → Rw

Figure C11: Dispersion control loss effect on Office-Home dataset with source domain Cl

C.5 SENSITIVITY ANALYSES OF HYPERPARAMETERS

To further understand the performance of the proposed method, we conduct comprehensive experi-
ments to study the sensitivity of our method to different choices of hyperparameters involved in our
algorithm. While we primarily use the hyperparameter configurations from previous works (Yang
et al., 2022; Hwang et al., 2024) for λ -

CL, κ and β, we also investigate the sensitivity of our method
relative to different choices of β, KPL, τ , λPL and λDC. The experimental results are summarized in
Figure C14(a), (b), (c), Figure C15 and Figure C16, respectively.

Specifically, in Figure C14(a)-(c), the solid lines represent the accuracy of different methods with
respect to different values of β, KPL, and τ . In Figure C14(b)-(c), we add the dashed horizontal lines
to indicate the performance on different datasets without the partial label loss for a clear comparison.
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(c) Pr → Rw

Figure C12: Dispersion control loss effect on Office-Home dataset with source domain Pr
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(c) Rw → Pr

Figure C13: Dispersion control loss effect on Office-Home dataset with source domain Rw

In Figures C15- C16, the blue, red, and yellow lines represent the accuracy on the target dataset, the
accuracy on the small evaluation set, and the SND score, respectively. The shaded regions correspond
to the results reported in the main text and the associated parameter values. For Figures C14- C16,
except for the parameter values that vary along the x-axis, all other parameters are set according to
Table B1.
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Figure C14: Sensitivity analysis of the proposed method relative to different values of hyperparame-
ters β, KPL, and τ . In the legend, “wo” is the abbreviation for “without”.

Decay Exponent β. Figure C14(a) reveals that the dispersion control term can help mitigate
the sensitivity of β in contrastive learning based SFDA algorithms. Specifically, we compare the
performance of an SFDA task (R to P on DomainNet-126 dataset) using our proposed method (UCon-
SFDA) against the basic contrastive learning approach introduced in Yang et al. (2022). Beyond
providing stable performance improvements, our method demonstrates reduced sensitivity to the
hyperparameter β, benefiting from the uncertainty-controlling regularizations.
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Figure C15: Sensitivity analysis of dispersion control loss coefficient λPL. Different colors represent
various criteria for hyperparameter selection, while the shaded area indicates the parameter values
chosen corresponding to the results reported in the main text.
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Figure C16: Sensitivity analysis of dispersion control loss coefficient λDC. Different colors represent
various criteria for hyperparameter selection, while the shaded area indicates the parameter values
chosen corresponding to the results reported in the main text.

Partial Label Number KPL and Uncertainty Threshold τ . Figure C14(b) and (c) illustrate the
sensitivity of our method to the partial label number KPL and uncertainty threshold τ . By comparing
the performance variations on VisDA-RUST, Office-31, and Office-Home (Pr to Cl task) under
different KPL and τ , we observe that the accuracy of our method is not significantly affected by
varying values of KPL and τ . Moreover, the performance improvements by the partial label loss are
both evident and stable, as shown by the comparison between the solid and dashed lines.

Partial Labeling Term Coefficient λCL and Dispersion Control Term Coefficient λDC. As shown
in Figures C15- C16, we conduct an ablation study with finer-grained variations of λCL and λDC on
three datasets to access sensitivity of the experimental results. Relative to the blue lines, the adaptation
performance remains stable and robust across different values of these two hyperparameters, with the
regions of optimal performance being well-concentrated.

Additional Insights for Advanced and Practical Hyperparameter Selection Strategies. Hyper-
parameter tuning in SFDA poses significant challenges due to the lack of target labels and substantial
distribution shifts across domains. In our experiments, we find that SND scores often fail to correlate
consistently with performance on the full target dataset. Moreover, sensitivity analysis based on the
full target data incurs high computational costs, making it less feasible for real-world applications.
To overcome these limitations, we explore a novel small evaluation set-based method. Specifically,
we randomly select a subset (300 data points) from the full unlabeled target data (typically containing
5k-50k data points), manually label it, and create a pseudo-validation set. Hyperparameters are
subsequently selected based on their performance on this small evaluation set. While this approach
requires some manual annotation, the amount of labeled data needed is minimal, making it both
practical and effective for real-world scenarios, while improving the accuracy of hyperparameter
selection.

Figures C15 and C16 demonstrate that the performance of our method on the small human-labeled
evaluation set (red lines) aligns more closely with the desired model performance (blue lines). In
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contrast, the SND score (yellow lines), which is based on feature space similarity and self-prediction
entropy, sometimes fails to identify the optimal hyperparameters.

Better Performance with Finer-Grained Hyperparameter Ranges. Refining the parameter
selection range (as shown Figure C15(a)-(b)) or adopting a different tuning order (e.g., tuning the
partial label term first, followed by the dispersion control term, as shown in Figure C16(a)-(b))
can achieve even better results, as indicated by the highest points on the blue lines. For instance,
while we initially report the UCon-SFDA performance of 79.4 on VisDA-RUST (with LPL = 0.1
and LDC = 0.5), we find that using a slightly smaller LDC = 0.1 improves its performance to
79.82. These findings demonstrate that satisfactory performance of our approach does not depend
on excessive hyperparameter tuning, and further highlights the robustness and effectiveness of our
algorithm.

C.6 DIFFERENT LOSSES FOR DISPERSION CONTROL TERM

We evaluate the performance of the dispersion control term under different similarity metrics between
an anchor data point and its augmented version, dθ (AUG (xi) , xi), in Eq. (7).

Specifically, for Eq. (7) in the main text, we define:

dθ (AUG (xi) , xi) ≜ ⟨f(xi;θ), log f (AUG (xi) ;θ)⟩.

To further validate the role of data augmentation from the perspective of negative sampling uncertainty,
we experiment with different similarity metrics, including the direct dot product and the L2 norm,
respectively given by

dθ,dot (AUG (xi) , xi) ≜ ⟨f(xi;θ), f (AUG (xi) ;θ)⟩,

and

dθ,L2 (AUG (xi) , xi) ≜ ∥f(xi;θ)− f (AUG (xi) ;θ) ∥2.

Additional experimental results, reported in Table C3, demonstrate the importance of treating data
augmentations as negative samples as well as the effectiveness of the proposed dispersion control
term. Furthermore, while the proposed dθ achieves the best performance across most datasets, other
loss formulations also present comparable results. These experimental observations provide guidance
on effectively leveraging data augmentations in SFDA and verify the generalizability of our algorithm.

Table C3: Classification accuracy (%) under different distance measurements in dispersion control
term. Bold text indicates the best results, and underlined text represents results that outperform the
baseline.

Methods Office-Home (Pr → Cl) VisDA-RUST DomainNet126 (R → P)

LCL 57.90 75.50 67.80
LCL + L -

DC with dθ 59.70 78.90 70.30
LCL + L -

DC with dθ,dot 60.21 78.02 70.08
LCL + L -

DC with dθ,L2 59.14 77.77 69.34

C.7 TRAINING TIME AND RESOURCE USAGE ANALYSIS

To further validate the practical value of our proposed methodology, we conduct the training time and
resource usage analysis here.

Compared to the baseline model, AaD (Yang et al., 2022), a widely utilized contrastive learning
and memory bank-based SFDA method, our UCon-SFDA introduces explicit data augmentation
and an additional partial label bank component. These additions increase both resource usage and
computational complexity. However, such costs are consistent with recent trends in the field (Hwang
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et al., 2024; Karim et al., 2023; Mitsuzumi et al., 2024), where enhanced resource utilization is
commonly accepted to achieve significant performance improvements.

The computational complexity of our approach remains comparable to other modern techniques that
leverage data augmentation or consistency regularization. For instance, compared to Karim et al.
(2023) and Mitsuzumi et al. (2024), which also incorporate explicit data augmentation during training,
our UCon-SFDA avoids relying on additional network structures. Moreover, the partial label bank
only incurs a small additional memory overhead that scales linearly with the size of the target domain
data, making it practical for real-world SFDA applications. Importantly, our method demonstrates
superior performance, as evidenced by the experimental results presented in main text.

Neverthless, we acknowledge that the explicit data augmentation employed in UCon-SFDA inevitably
increases the GPU memory usage, which could present challenges in resource-constrained settings.
Although our approach ensures that the additional overhead remains manageable, further algorithmic
and implementation-level optimizations could help mitigate this issue. For instance, future work
could explore more memory-efficient augmentation techniques, optimize the computational graph
during training, or incorporate mixed-precision training. These efforts hold promise for enhancing
scalability while maintaining performance.

D THEORY-MOTIVATED HYPERPARAMETER DETERMINATION AND
AUTOUCON-SFDA

In SFDA problems where neither target domain labels nor a validation set are available, minimizing
the numbers of hyperparameters is crucial to ensuring the algorithm’s practicality for new tasks. When
designing the UCon-SFDA algorithm (as presented in the main paper), we prioritize engineering
flexibility and ease of implementation, which lead us to introduce four hyperparameters: λDC, λPL,
KPL and τ . However, three of these hyperparameters have explicit expressions derived from our
theoretical results or can be determined based on dataset and source model properties.

Here, we provide a detailed explanation of how theoretical insights can guide the direct selection or
derivation of hyperparameters, thereby eliminating the need for manual tuning. Building on these
theoretical principles, we propose two enhanced variants (autoUCon-SFDA). Additional experimental
results demonstrate that directly using theoretically derived parameters not only simplifies the tuning
process but also achieves promising-and in some cases, superior-performance across all benchmarks.

D.1 THEORETICAL GUIDANCE FOR HYPERPARAMETER DETERMINATION

Based on our theoretical findings, the hyperparameters λDC in the dispersion control term and KPL, τ
in the partial label term can be directly determined. Specifically,

Inconsistency Rate λDC. As suggested by Theorem 4.1 and Remark 4.2, the dispersion control
effect can be achieved by minimizing the negative similarity between the anchor point and its
augmented prediction. If the inconsistency rate between anchor points and their associated augmented
predictions is high, it indicates greater uncertainty in negative sampling, thus requiring stronger
dispersion control. Based on this observation, we propose directly using the model prediction
inconsistency rate as the coefficient for the dispersion control term.

Parameter KPL (k0 in Theorem 4.2). By Theorem 4.2, when the uncertainty set in Eq. ( 5) is
defined using the 1-Wasserstein distance, the length of the partial label set, denoted by KPL, can be
explicitly determined as KPL = k0, where k0 is defined as follows:

• If 1
K ≥ 1

k

∑k
j=1 p

+
(j) −

1
k δ for all k ∈ [K − 1], then we take k0 = K.

• Otherwise, we take the k0 ∈ [K−1] that satisfies 1
k0

∑k0

j=1 p
+
(j)−

1
k0
δ ≥ 1

k

∑k
j=1 p

+
(j)−

1
k δ

for all k ∈ [K − 1].

In the formulas above, K represents the number of classes, and p+
(j) denotes the j-th largest predicted

probability for the considered anchor point. Hence, the length of the partial label set, which can
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be directly calculated, is determined by the model’s predictions for the anchor point as well as the
specific classification task at hand.

Uncertainty Threshold τ . We propose two approaches to distinguish between certain and uncertain
label information and determine the uncertainty threshold τ .

• Statistical Insights Approach: This approach leverages the properties of the source model
and the target data, combined with statistical insights. Specifically, we first use the source
model to compute the predicted probabilities for each target data point. Next, we calculate
the ratio of the two highest predicted probabilities for all target data points and select the
10th percentile of these ratios as the value of τ . This selection capitalizes on the information
about the data distribution and identifies the 10% most uncertain data. The 10th percentile
is chosen because it is a widely used measure in statistical research to highlight low-end
values. This uncertainty threshold determination method leads to the development of the
autoUCon-SFDA (Stat.) algorithm.

• Theoretical Criterion Approach: Alternatively, we can bypass the ratio of the two highest
predicted probabilities and directly apply the criterion outlined in Remark 4.3 to distinguish
between certain and uncertain label information. As discussed in Remark 4.3, in the special
case where p+

(1) ≥ max{ 1
K + δ, p+

(2) + δ}, we refer to it as certain label information.
Conversely, if this condition is not satisfied, the label information is deemed uncertain,
and the corresponding data point is added to the uncertain data bank. This uncertainty
threshold determination method leads to the development of the autoUCon-SFDA (Theory)
algorithm.

Building upon the preceding illustrations and different approaches to determining the uncertainty
threshold τ , we propose two automated versions of UCon-SFDA: autoUCon-SFDA (Statistics) and
autoUCon-SFDA (Theory).

D.2 EXPERIMENTAL RESULTS OF AUTOUCON-SFDA

Compared with the original UCon-SFDA, autoUCon-SFDA (Statistics) and autoUCon-SFDA (The-
ory) incorporate the following modifications in the implementation:

1. The original manually tuned hyperparameter λDC (Orig. λDC) has been replaced by new
λDC, which represents the inconsistency ratio between anchor points and their associated
augmented predictions, derived by the source model.

2. The original fixed KPL (Orig. KPL) has been replaced by the calculated k0, which is
instance- and task-dependent (class category), self-adaptive during the training process, and
computationally efficient.

3. We propose two alternatives for the fixed parameter τ (Orig. τ ):
• In the statistical insights approach, autoUCon-SFDA (Stat.), τs is computed using the

source model and fixed at the beginning of the adaptation process.
• In the theoretical criterion approach, autoUCon-SFDA (Theory), τt is dynamically

calculated based on the uncertain data selected in each epoch.

Table D4: Performance comparisons across different hyper-parameter selection (calculation) methods.
Bold text indicates the best results.

Dataset UCon-SFDA autoUCon-SFDA
(Theory)

autoUCon-SFDA
(Stat.)

SOTA Method
Performance SOTA Method

Office31 90.6 90.6 90.2 90.5 C-SFDA
OfficeHome 73.6 73.6 73.8 73.5 C-SFDA
OfficeHome (partial set) 80.3 80.8 80.7 79.7 AaD
VisDA2017 89.6 89.3 89.2 88.4 I-SFDA
VisDA-RUST 79.4 79.2 79.5 77.3 SF(DA)2
DomainNet126 71.5 71.5 71.6 69.6 GPUE
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Table D5: Hyperparameter values across different datasets. “Orig. λDC”, “Orig. KPL”, and “Orig. τ”
refer to the original values used in our paper, which are selected following the general hyper-parameter
tuning pipeline in the literature. Other hyperparameters are directly calculated with theory-motivated
hyperparameter determination approaches, where “Init.” and “Final” indicate the first and the last
training epochs, respectively.

Metric Office31 OfficeHome OfficeHome
(partial set) VisDA2017 VisDA-RUST DomainNet126

Orig. λDC 1.000 0.500 1.000 1.000 0.500 0.500
New λDC 0.390 0.520 0.476 0.494 0.461 0.553
Orig. KPL 2.000 2.000 2.000 1.000 2.000 2.000
Init. k0 (Averaged) 1.320 1.535 1.513 1.341 1.348 1.644
Final k0 (Averaged) 1.003 1.028 1.003 1.008 1.020 1.079
Orig. τ 1.300 1.100 1.100 1.100 1.100 1.100
Init. τt 1.308 1.265 1.238 1.790 1.674 1.232
Final τt 1.056 1.090 1.042 1.260 1.368 1.092
τs (10th percentile) 2.037 1.230 1.268 1.164 1.163 1.264

Table D6: Per source-target task configuration on DomainNet126. The metric notations are the same
as in Table D5.

Task Acc. of
Ucon-SFDA

Acc. of
autoUCon-SFDA

(Theory)

Acc. of
autoUCon-SFDA

(Stat.)

Orig.
λDC

New
λDC

Orig.
KPL

Init. k0
(Averaged)

Final k0
(Averaged) Orig. τ Init. τt Final τt τs

C→S 66.5 64.5 66.0 0.50 0.52 2 1.70 1.08 1.1 1.20 1.08 1.23
P→C 69.3 70.3 70.0 0.50 0.59 2 2.33 1.11 1.1 1.30 1.11 1.17
P→R 81.0 81.4 81.4 0.50 0.45 2 1.64 1.04 1.1 1.28 1.08 1.36
R→C 75.2 77.0 77.3 0.50 0.59 2 1.45 1.08 1.1 1.19 1.09 1.27
R→P 71.1 71.3 71.0 0.50 0.58 2 1.39 1.09 1.1 1.17 1.11 1.32
R→S 64.3 68.1 67.7 0.50 0.61 2 1.52 1.07 1.1 1.20 1.09 1.23
S→P 68.1 67.9 67.6 0.50 0.55 2 1.49 1.08 1.1 1.30 1.08 1.27
Avg. 71.5 71.5 71.6 0.50 0.55 2 1.64 1.08 1.1 1.23 1.09 1.26

We first conduct a comprehensive performance comparison of the original UCon-SFDA, its auto-
mated variants, and state-of-the-art (SOTA) methods across all six benchmarks, as shown in Table D4.
Notably, our findings validate that directly using theoretically derived parameters can achieve promis-
ing—and in some cases, superior—performance across all benchmarks. (For the remaining three
hyperparameters κ, β and λPL, we keep them the same as those used in UCon-SFDA.)

A detailed parameter comparison is further provided in Table D5. For k0 and τt, we report their
values at the first and the last training epochs to illustrate their changing trend, denoted as ”Init.” and
”Final” in the tables, respectively. It can be observed that the theoretically determined parameters are
largely aligned with the hyperparameters used in UCon-SFDA. However, they offer greater flexibility
in certain scenarios. For instance, based on the averaged values of k0 at the initial and final training
epochs, the instance-dependant k0 automatically adapts throughout the adaptation, unlike the fixed
KPL, thereby better capturing uncertainty. A similar self-adaptive behavior is observed for τt.

Additionally, we present the per-source-target task configuration on DomainNet126 (Table D6) to
clearly illustrate parameter variations and their impact. For instance, as shown in the sixth coloumn
of Table D6, the new λDC is task-dependent, offering greater flexibility without requiring manual
selection.

In summary, the automatic versions of UCon-SFDA demonstrate promising performance while signifi-
cantly reducing the number of hyperparameters in the algorithm, retaining only three hyperparameters
in autoUCon-SFDA, of which only one is directly related to our proposed methods. Furthermore,
additional experimental results also highlight the effectiveness of the uncertainty-guided parameter
determination process.
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