
A Additional experiments

In this section, we present extended evaluation of all models introduced in the main work. Fol-
lowing [17], we show the assessment of generations quality in terms of additional metrics namely
Inception Score [20] and spatial Fréchet Inception Distance [16] – a version of standard FID score
but based on spatial image features.

Table 3: Extended evaluation results for CIFAR10 dataset.

Model CIFAR-10

Loss T IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑
DDGM VLB 1000 7.6 26.1 10.5 54 55
DAED β1 = 0.1 VLB 900 8.2 20.4 16.1 59 46
DAED β1 = 0.025 VLB 979 7.7 22.4 15.8 57 53
DAED linear VLB 999 8.1 14.5 9.8 60 59

DDGM Simple 1000 9.5 7.2 8.6 65 61
DAED β1 = 0.2 Simple 891 7.8 29.4 24.7 53 40
DAED β1 = 0.1 Simple 900 8.0 19.0 14.9 62 50
DAED β1 = 0.025 Simple 979 8.6 14.2 14.6 60 53
DAED β1 = 0.001 Simple 999 9.1 14.9 10.1 66 54

Table 4: Extended evaluation results for CelebA dataset. Additionally to standard models, we also
include evaluation for DAED setup where DAE model is trained only on ImageNet dataset.

Model CelebA

Loss T IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑
DDGM VLB 1000 2.4 23.1 37.3 51 21
DAED β1 = 0.1 VLB 900 2.9 18.2 23.9 63 31
DAED β1 = 0.025 VLB 979 2.7 25.4 35.8 64 17
DAED linear VLB 1000 2.6 16.8 23.6 70 27

DDGM Simple 1000 3.0 6.1 14.7 66 56
DAED β1 = 0.2 Simple 890 2.7 21.0 31.2 63 22
DAED β1 = 0.1 Simple 900 3.0 17.0 23.3 66 31
DAED β1 = 0.025 Simple 979 2.7 15.1 17.6 64 38
DAED β1 = 0.001 Simple 999 2.8 6.2 11.0 69 55

DAED (IN) β1 = 0.1 Simple 900 2.9 25.6 30.5 44 29

Table 5: Extended evaluation results for Fashion MNIST dataset.

Fashion Mnist

Loss T IS ↑ FID ↓ sFID ↓ Prec ↑ Rec ↑
DDGM vlb 500 4.1 8.9 11 68 53
DAED β1 = 0.1 vlb 468 4.06 9.1 13 71 60
DAED β1 = 0.025 vlb 489 4.02 9.7 11 70 62
DAED linear vlb 499 4.1 7.5 11.3 70.5 64

DDGM Simple 500 4.3 7.8 9.03 71.5 65.3
DAED β1 = 0.3 Simple 426 3.78 18 24 73.8 41
DAED β1 = 0.2 Simple 445 3.87 14 20 74.8 47
DAED β1 = 0.1 Simple 468 3.95 9.6 11.2 73.2 58.4
DAED β1 = 0.025 Simple 489 4.05 7.36 13 73 61
DAED β1 = 0.001 Simple 499 4.3 5.7 11.3 69.3 64.2

13



A.1 Signal-to-noise ratio detailed plots

In this section we present detailed signal-to-noise ratio (SNR) plots that are used for analysis in Sec.
3 for all evaluated datasets. Independently on the original dataset, SNR changes in the similar manner
– with the most drastic loss in the first 10% steps.

0.0 0.5 1.0

t/T

−10

0

10

lo
g

S
N

R

linear

cosine

0.0 0.5 1.0

t/T

−2

−1

0

∆
lo

g
S

N
R

linear

cosine

(a) FashionMNIST

0.0 0.5 1.0

t/T

−10

0

10

lo
g

S
N

R

linear

cosine

0.0 0.5 1.0

t/T

−2

−1

0

∆
lo

g
S

N
R

linear

cosine

(b) CIFAR10

0.0 0.5 1.0

t/T

−10

0

10

lo
g

S
N

R

linear

cosine

0.0 0.5 1.0

t/T

−2

−1

0

∆
lo

g
S

N
R

linear

cosine

(c) CelebA

Figure 8: Signal-to-noise ratio and its discrete derivative for each of the three datasets: (a) Fashion-
MNIST, (b) CIFAR10 and (c) CelebA).

14



A.2 Examples of generations

In this section we present generations for all datasets with different models we compare in this work.

(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 9: Generations from different models trained on FashionMNIST dataset. All models were
trained with Simple loss function.

(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 10: Generations from different models trained on CIFAR10 dataset. All models were trained
with Simple loss function.

(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 11: Generations from different models trained on CelebA dataset. All models were trained
with Simple loss function.

15



(a) DDGM (b) DAED β1 = 0.1 (c) DAED β1 = 0.001

Figure 12: Generations from different models trained on CelebA dataset with original VLB loss
function.

(a) DAED β1 = 0.1

Figure 13: Generations from DAED model where DDGM part was trained on CelebA dataset while
DAE on ImageNet.

A.3 Training Dynamics

How does the objective of a diffusion model change in time? In the standard DDGM setup, a
single model is optimized with a joint loss from all of the diffusion steps. However, as depicted
in Fig 15a, different parts of the diffusion contribute to the sum differently. In fact, the first step
of the diffusion is already responsible for 75% of the whole training loss, while first 1% of steps
contributes to over the 90% of the training objective. This observation implies that a single neural
network applied to all diffusion steps is mostly optimized to denoise the initial steps. In Fig. 14 we
present how this loss contribution changes over time. Surprisingly, only 2% of the training time is
needed to align latter 90% of training steps to the loss value below 0.01. These observations led to
the emergence of cosine scheduler [17] where authors change the noise scheduler to increase the
number of steps with higher loss values.

In this work, we propose to tackle this problem from a different perspective and to analyze what
happens if we detach the loss from initial diffusion steps from the total sum. In Figure 15b, we
compare how such a detachment of the first step of 1000-stepped DDGM with DAED influence the
loss value on the remaining 999 steps. As depicted in DAED, the loss converges to lower values that
explains the improvement of the performance of DAED when training with the VLB loss.

16



0.0 0.2 0.4 0.6 0.8 1.0

t/T

10−4

10−1

N
L
L

NLL start

NLL 2% of training

NLL final

Figure 14: Dynamics of the negative log likelihood for different steps of standard DDGM trained
on CIFAR10 with VLB objective. Already after 2% of training time, pθ converges to very low loss
values (below 0.001) for all of the training steps above 0.1T.

0.0 0.5 1.0

t/T

3.5

4.0

4.5

cu
m
su
m

(L
t)

(a) NLL Cumsum

0.0 0.5 1.0

t/T

0.5

1.0

cu
m
su
m

(L
t)

DDGM

DAED

(b) NLL Cumsum without t1

Figure 15: The cumulative sum of the negative log likelihood for different steps of a standard DDGM
trained on CIFAR10 with the VLB objective (left), and the same cumulative sum without the first
diffusion step in comparison to DAED with exactly the same β scheduler.

A.4 Training Hyperparameters

In all of our experiments, we follow [17]. We train all models with U-Net architecture, with three or
four depth levels (depending on a dataset), with three residual blocks each, with a given number of
filters depending on the dataset – as presented in 6. In all of our models, we use time embeddings and
attention-based layers with three attention heads in each model.

We optimize our models on the basis of randomly selected diffusion steps. For the standard DDGM,
for simplicity, we use a uniform sampler, while for DAED, we propose a weighted uniform sampler,
where the probability of sampling from a given step t is proportional to the given βt. This also applies
to the Denoising Autoencoder as a part of DAED that is updated accordingly to the new sampler. We
update models parameters with AdamW [15] optimizer for a given number of batches as presented
in 6. To prevent our model from overfitting, we use dropout [7] with probability p = 0.3. Detailed
implementation choices, examples of training runs and models can be found in the attached code
repository.

Table 6: DDGM and DAED hyperparameters for different datasets

Dataset train-steps depth channels

FashionMNIST 100k 3 64, 128, 128
CIFAR10 500k 3 128, 256, 256, 256
CelebA 200k 4 128, 256, 384, 512

17



A.5 Computational details

Diffusion-based deep generative models are known for being computationally expensive. For our
training, we used Nvidia Titan RTX GPUs for complex datasets (CIFAR, CelebA, ImageNet) and
Nvidia GeForce 1080Ti for FashionMNIST. Full training of our model on FashionMNIST for 100k
steps on a single GPU took approximately 35 hours. For CIFAR and CelebA we used parallel
computation based with four GPUs. Full training with this setup took approximately 48 hours. Those
estimates are valid for training of both DDGM and DAED.

A.6 A comparison between DAED and DDGMs with more parameters

The DAED model uses two separate UNet models for the generative and denoising parts. As a result,
it has twice as many parameters as a DDGM. In Table 7 we compare DEAD with DDGMs that have
a comparable number of parameters. We double the size of the UNet model for vanilla DDGM in
two setups. In the first one we increase the number of convolution channels, while in the second one,
we double the number of residual blocks.

Table 7: A comparison of DAED with DDGMs of different sizes on the FashionMNIST dataset.

Total Params Inference Time FID ↓ Prec ↑ Rec ↑(mln.) (sec. per sample)

DDGM 8.8 0.65 7.8 72 65
DDGM 1.5× channels 19.8 0.84 8 74 65
DDGM 2× blocks 15.1 1.19 7.5 66 66
DAED 17.6 0.66 5.7 69 64

The results in Table 7 suggest that the performance of DAED over DDGMs cannot be attributed
purely to the larger number of parameters. As we increase the number of layers of the UNet used by
the DDGM, we see only a slight improvement of the performance. Furthermore, a larger UNet leads
to a significant increase in the inference time compared to the smaller DDGM and DAED.

18


	Introduction
	Background
	Diffusion-Based Deep Generative Models (DDGMs)
	Denoising Auto-Encoders

	An analysis of DDGMs 
	DAED: Denoising Auto-Encoder with Diffusion
	Related work
	Experiments
	Is there a transition in functionality of the backward diffusion process that switches from generating to denoising?
	How does splitting DDGMs into generative and denoising parts affect the performance?
	Does the noise removal in DDGMs generalize to other data distributions?

	Conclusion
	Acknowledgements
	Additional experiments
	Signal-to-noise ratio detailed plots
	Examples of generations
	Training Dynamics
	Training Hyperparameters
	Computational details
	A comparison between DAED and DDGMs with more parameters


