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A APPENDIX

A.1 CODE AVAILABILITY

Code is provided at the following link: https://github.com/SimonSegert/specreg.

A.2 FURTHER COMPARISON WITH HOCKING ET. AL.

The paper, similarly to us in spirit, introduces a class of biased linear estimators defined by a family
of constrained optimization problems, and derive in this way the forms of Ridge, Stein Shrinkage,
and PCR regressors. However, a closer inspection reveals that their setup is considerably different
from ours.

For simplicity, we will make the assumption that G = X
T
X is diagonal, as this is sufficient to

illustrate the differences. The form of estimators considered in Hocking et. al. is

�̂ = v � ⌃ (14)
where as before, ⌃ is the vector of eigenvalues of G and � is Hadamard (element-wise) product.
Immediately we see a difference that their setup has only d free variables, from the vector p, whereas
we have N ⇥ p free variables in the matrix L.

By a bit of algebra,

�̂ = ⌃ � v = (⌃ � v ↵X
T
Y ) �XT

Y (15)
= diag(⌃)diag(v)diag(XT

Y )�1
X

T
Y (16)

:= DX
T
Y (17)

where ↵ is element-wise division, and D is a diagonal matrix. Thus they effectively assume from
the outset that �̂ = DX

T
Y for some diagonal matrix D, whereas we a priori allow �̂ = LY for

L 2 RN⇥d and derive that L is necessarily of this form.

They then show that each of the aforementioned estimators can be derived as the solution to an
optimization of the form minv2C L(v), where L is a loss function and C is a constraint set, that
depends on the estimator. The forms of the constraint sets are rather ad-hoc and the authors do not
appear justify the form from more basic principles, or to relate them to each other in a meaningful
way. By contrast, the forms of our constraints arise naturally from a standard family of matrix
norms.

Finally, they do not precisely characterize the bias of each of the estimators, whereas our results
characterize the estimators as being optimal for a fixed level of bias.

A.3 RULE OF THUMB FOR DEPTH VS. CURVATURE

In order to get insight into the tradeoff between curvature and depth, we consider a highly simplified
setup which nonetheless captures some key features of selecting ↵ through cross-validation. Let
us assume that the function of average test error vs regularization strength is a parabola f(x) =

2
x
2
/2 + µ, for ��  x  �. Thus  controls the curvature and µ controls the depth of the

minimum. In real situations, f will likely have a more complex functional form, but we may imagine
replacing it with its second-order Taylor expansion for the purpose of this analysis, which is likely
to be a good approximation for sufficiently small �.

We will model cross-validation as taking n iid samples Xi ⇠ Unif(��, �) and then estimating the
minimum of f as µ̂ = mini(f(Xi)). Note that in a real cross-validation setup there is the additional
complication that we cannot perfectly observe the value f(x) due to finite-sample variability; we do
not model this effect here.

What is the distribution of µ̂? Well, for µ < y < �
2

2
/2 + µ = fmax, we have

P(f(Xi) > y) = P(|Xi| >
p
2(y � µ)/ =

1

2�
(2� � 2

p
2(y � µ)/) (18)

So,
P(µ̂ > y) = P(f(Xi) > y)n = (1� �

�1
p
2(y � µ)/)n (19)

13

https://github.com/SimonSegert/specreg


Published as a conference paper at ICLR 2024

The expected value is

Eµ̂ =

Z 1

0
P(µ > y)dy = µ+

Z
�
2

2
/2+µ

µ

(1�
p
(2(y � µ)�2��2)ndy (20)

Letting u =
p
2(y � µ)/(2�2),the integral becomes

µ+ 
2
�
2

Z 1

0
(1� u)nudu = µ+ 

2
�
2
Beta(2, n+ 1) = µ+

(�)2

(n+ 1)(n+ 2)
(21)

In the large sample limit, the contribution of the curvature vanishes, and we can exactly find the
minimum. However, for finite samples this is not the case, and it could be that for two different
parabolas the true minima satisfy µ1 < µ2 while the estimated minima satisfy Eµ̂1 > Eµ̂2.

A.4 PROOF OF MAIN THEOREM

Let us first make the simple but important observation that a minimizer in Equation 3 actually exists
(since the constraint set is non-compact this is not completely immediate). One way to see this is
to note that the problem is of the form minx2D |x|2 for some closed set D, and problems of this
form always have a minimizer (even if D is non-compact). Combined with the observation that the
objective function is strictly convex, we conclude that the problem in Equation 3 has exactly one

minimizer.

The basic strategy of the proof is now to derive certain properties of the minimizer, and add these
properties as further constraints until we get something tractable.
Lemma 3. The minimizer Lopt of the bias-constrained problem (Equation 3) takes the form QX

T

for some d⇥ d matrix Q

Proof. Let X? be any N⇥(N�d) matrix whose columns for a basis for the orthogonal complement
of Colspace(X). We may assume that the columns are orthonormal; XT

?X? = IN�d. Note that
the concatenated matrix [X,X?] is invertible. Therefore, we can express the optimum as L =

M

✓
X

T

X
T

?

◆
for some d⇥N matrix M . Writing M in block form M = [Q,Q?] where Q 2 Rd⇥d

and Q? 2 Rd⇥(N�d), we have L = QX
T +Q?X

T

? . Note that XT
X? = 0; therefore

kLLT k2
F

= kQX
T k2

F
+ kQ?X

T

?k2F (22)
= kQX

T k2
F
+ Tr(Q?X

T

?X?Q
T

?) (23)
= kQX

T k2
F
+ Tr(Q?Q

T

?) (24)
= kQX

T k2
F
+ kQ?k2F (25)

where k · kF is the Frobenius norm. Similarly, the bias LX � I = QX
T
X � I does not depend

on Q?. Thus, any non-zero value of Q? will strictly increase the value of the objective relative to
setting Q? = 0, without having any effect on the constraint.

Corollary 3.1. The optimal solution to Equation 3 takes the form L = (I +Q)G�1
X

T
where

Q = argminQ02Rd⇥dTr(Q0
G

�1
Q

0T )/2 + Tr(Q0
G

�1) + ↵
�1kQ0kp (26)

and ↵ � 0 is determined by C.

Proof. By the Lemma, it is no loss of generality to assume that L has the indicated form. Now
plug in to Equation 3 and simplify. The ↵ term is just converting the constraint to a Lagrange
multiplier.

By the discussion above, we conclude that there is exactly one minimum of Equation 26.
Proposition 3.1. If Q is the solution to the equation 26, then Q is symmetric and commutes with G

Before giving the proof, we first present a more technical matrix lemma.
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Lemma 4. For any square matrix M and p � 1, kMdkp  kMkp, where Md is the diagonal part

(i.e., the matrix with all non-diagonal entries set to zero).

Proof. Evidently the singular values of Md coincide with the absolute values of the diagonal entries.
By an inequality of Ky Fan (Fan, 1951),

X

ik

�i(Md) 
X

ik

�i(M) (27)

for any 1  k  d, where �i denotes the singular values, ordered from largest to smallest. The
lemma now follows from Schur convexity of the Euclidean p-norm.

Proof. (of proposition 3.1) Let G�1 = UDU
T be the diagonalization, where U is an orthogonal

matrix and D is diagonal. The objective is

Q = argminQTr(Q
0
UDU

T
Q

0T )/2 + Tr(Q0
UDU

T ) + ↵
�1kQ0kp (28)

= argminQTr(U
T
Q

0
UDU

T
Q

0T
U)/2 + Tr(UT

Q
0
UD) + ↵

�1kUT
Q

0
Ukp (29)

UQU
T = argminPTr(PDP

T )/2 + Tr(PD) + ↵
�1kPkp (30)

(31)

where we reparametrized as P := U
T
Q

0
U . Evidently, the proposition will follow if we can show

that the minimal P is diagonal. Let P = Pd + Pod be the decomposition into diagonal and off-
diagonal parts6. Plugging into the objective

Obj(P ) = Tr((Pd + Pod)D(Pd + P
T

od
))/2 + Tr(PdD) + Tr(PodD) + ↵

�1kPkp (32)
= Tr(PdDPd)/2 + Tr(PdD) + Tr(PodDP

T

od
)/2 + Tr(PodD) + ↵

�1kPkp (33)
+ Tr(PdDP

T

od
) (34)

Now, we note that in general if A is diagonal, and B is off-diagonal,then Tr(AB) = 0. So the
expression simplifies to

Tr(PdDPd)/2 + Tr(PdD) + Tr(PodDP
T

od
)/2 + ↵

�1kPkp (35)

Now, the third term is non-negative because it is the trace of a PSD matrix; thus Obj(P ) �
Tr(PdDPd)/2 + Tr(PdD) + ↵

�1kPkp. By Lemma 4, kPkp � kPdkp, and therefore

Obj(P ) � Obj(Pd) (36)

However, P was assumed to be the minimum, which implies by strict convexity that P = Pd

By the above, we now know that the optimal Q must satisfy Q = Udiag(q)UT , where q denotes the
vector of eigenvalues and U is the matrix of eigenvectors of G�1. Since Ĝ

�1 = (1 +Q)G�1 in the
notation of the theorem statement, we have shown the first two claims, namely that Ĝ is symmetric
and commutes with G.

By plugging into the objective in 26 and simplifying, we see that

q = argminx2Rd

1

2

X

i

x
2
i
/�

2
i
+
X

i

xi/�
2
i
+ ↵

�1|x|p (37)

where �
2
i

are the eigenvalues of G, and | · |p denotes the Euclidean p norm of a vector.

To show the last claim that Ĝ � G is non-negative definite, it is enough to show that 0 � qi �
�1,since �i(Ĝ) = �i(G)/(1 + qi).It is easy to see that the eigenvectors of Q must be non-positive
(since if any eigenvector is positive, then switching the sign will leave the first and third terms alone,
while strictly decreasing the second term). To see the second inequality, we first add a suitable
constant to the objective and rewrite it as 1

2

P
i
(xi + 1)2/�2

i
+ ↵

�1|x|p. Supposing that qi < �1
for some i, let us replace it with q

0
i
= �2 � qi. Doing so does not change the first term (i.e.

6By definition an off-diagonal matrix is one with all zeros along the diagonal.

15



Published as a conference paper at ICLR 2024

(qi+1)2 = (q0
i
+1)2), however it strictly decreases the second term, since |qi|0 < |qi| 7, contradicting

the minimality of q8

Until now, we have not made any assumption about p except that p � 1. At this point, we separately
analyze each of the three special cases p = 1, 2,1.

Before doing so, however, we first present the following well-known and elementary calculation,
which we will employ several times in what follows:
Proposition 4.1. Let y, ⌧ > 0 then

argminx2R
1

2
(x+ y)2 + ⌧ |x| = min(⌧ � y, 0) (38)

Proof. It is clear that the optimal x cannot be positive, so we want to compute

argminx0
1

2
(x+ y)2 � ⌧x = argminx0

1

2
(x+ y � ⌧)2 +

y
2 � (y � ⌧)2

2
(39)

where we completed the square. The second term does not depend on x and therefore has no effect
on the argmin. Now the formula is immediate. If ⌧ � y < 0, then the minimum is plainly attained at
x = ⌧�y < 0. If ⌧�y > 0, then the parabola is monotonically decreasing on the interval (�1, 0),
so the minimum is attained at x = 0.

Nuclear case (p=1)
The objective 37 splits into a sum of separable one-dimensional problems:

argminx2R
1

2
x
2
/�

2
i
+ x/�

2
i
+ ↵

�1|x| (40)

argminx2R
1

2
(x+ 1)2 + �

2
i
↵
�1|x| (41)

By Proposition4.1,
qi = min(�2

i
/↵� 1, 0) (42)

The eigenvalues of Ĝ are thus given by

�i(Ĝ) =
�
2
i

1 + qi
=

�
2
i

min(�2
i
/↵, 1)

= max(�2
i
,↵) (43)

as claimed.

Frobenius case (p=2)
This is a simple calculus exercise and omitted.

Spectral case (p=1)
W know that there exists exactly one minimizer qopt 2 Rd of 37. Fix some C >

max(|qopt|1,maxi(1 + �
2
i
/↵)) and consider the problem

min
q:|q|1C

1

2

X

i

q
2
i
/�

2
i
+
X

i

qi/�
2
i
+ ↵

�1|q|1 (44)

This clearly has the same minimum as the original unconstrained problem.

Note the following identity:
↵
�1|q|1 = maxy:|y|1↵�1hq, yi (45)

7e.g., square both sides
8This argument doesn’t quite go through if p = 1, since in that case decreasing the magnitude of a

component of q might not decrease the norm. But that’s fine because we will derive the exact solution for
p = 1 shortly.
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By Von Neumann’s minimax theorem, we can interchange the min and the max. So the optimal
value of the objective is:

maxy:|y|1↵�1minq:|q|1C

1

2

X

i

q
2
i
/�

2
i
+

X

i

qi/�
2
i
+ hq, yi (46)

Now, the set {q : |q|1  C} is geometrically a product of intervals [�C,C]d. Thus, we see that the
inner objective splits into a sum of uncoupled 1-dimensional problems:

qi = argminqi2[�C,C]
1

2
q
2
i
/�

2
i
+qi/�

2
i
+qiyi = argminqi2[�C,C]

1

2�2
i

(qi+1+�
2
i
yi)

2� 1

2�2
i

(1+�
2
i
yi)

2

(47)

By assumption on C, 1 + �
2
i
yi  C, and therefore for any fixed yi, the minimum of the inner

problem is attained at
qi = �1� �

2
i
yi (48)

, with minimal value equal to � 1
2�2

i
(1 + �

2
i
yi)2 = ��

2
i
2 (��2

i
+ yi)2. Plugging back in to 46, we

need to solve

miny:|y|1↵�1

1

2

X

i

�
2
i
(��2

i
+ yi)

2 (49)

For this, we introduce a Lagrange multiplier �, upon which the objective splits again into a sum of
uncoupled 1d problems: yi = argminy2R 1

2�
2
i
(��2

i
+ y)2 + �|y|.

Using Proposition 4.1, we derive the solution

yi = �
�2
i

min(�� 1, 0) = �
�2
i

(min(�, 1)� 1) (50)

where � is chosen to satisfy the original constraint
P

i
|yi|  ↵

�1. Using the relation 48 between qi

and yi

qi = �1� (min(�, 1)� 1) = �min(�, 1) (51)

for the solution to the problem 44. Since we took C to be large enough to contain the solution to the
unconstrained problem, we conclude that this is also the solution to the unconstrained problem (i.e.
C = 1). Since xi are the eigenvalues of Q, we conclude that the eigenvalues of Ĝ are

�i(Ĝ) =
�
2
i

1 + qi
=

�
2
i

1�min(�, 1)
(52)

Clearly the denominator lies in [0, 1], therefore we recover the claimed form in which all eigenval-
ues of Ĝ are obtained by scalar multiplication with some factor > 1. Note that the case � > 1
corresponds to multiplication by infinity, i.e. setting Ĝ

�1 (and thus �̂) to zero.

A.5 PROOF OF 2.3

We first give the definition of the Appel hypergeometric function F1 for reference.

The function is typically defined as

F1(↵,�,�
0
, �, x, y) =

1X

m=0

1X

n=0

(↵)m+n(�)m(�0)n
m!n!(�)m+n

x
m
y
n (53)

Here (·)m is the Pochammer symbol. The series is absolutely convergent for |x|, |y| < 1, and
arbitrary ↵,�,�

0
, �. In 2.3 we may possibly need to evaluate it at some x outside of this range; we

do this by appropriate analytic continuation, discussed further below.

To prove the formula, we note that the extremal cases follow straightforwardly from the integral
formula. So in what follows we will assume that ↵ 2 [��,�+].
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We rewrite the integral

Err

�
� �

2 =

Z
�+

��

�
2
x
2
f↵(x)

�2 � 2�2
xf

�1
↵

(x) + �
2
xf

�2
↵

(x)dµ (54)

=

Z
↵

��

�
2
↵
�2

x
2 � 2�2

↵
�1

x+ �
2
↵
�2

xdµ (55)

+

Z
�+

↵

�
2 � 2�2 + �

2
x
�1

dµ (56)

= �
2
↵
�2

Z
↵

��

x
2
dµ+ (�2

↵
�2 � 2�2

↵
�1)

Z
↵

��

xdµ (57)

� �
2(1� F�(↵)) + �

2(
1

1� �
�
Z

↵

��

x
�1

dµ) (58)

= c+
�
2

↵2
I(2,↵) + (�2

↵
�2 � 2�2

↵
�1)I(1,↵) + �

2
F�(↵)� �

2
I(�1,↵) (59)

where we defined I(r,↵) =
R
↵

��
x
r
dµ.

So we have reduced the theorem to just evaluating I(r,↵) for r 2 {�1, 1, 2}. Now, we plug in the
form of the MP density, and make the variable substitution u = x���

↵���
. Clearly then u(↵ � ��) +

�� = x.

2⇡I(r,↵) =

Z
↵

��

x
r�1

p
(�+ � x)(x� ��)dx

=

Z 1

0
(u(↵� ��) + ��)

r�1
p
�+ � �� � u(↵� ��)

p
u(↵� ��)(↵� ��)du

= (↵� ��)
3/2

�
r�1
�

p
�+ � ��

Z 1

0

p
u(1 + u

↵� ��
��

)r�1

s

1� u
↵� ��
�+ � ��

du

We can now express this in the form given in the proposition by means of the following formula
(Bailey, 1934):

F1(↵,�,�
0
, �, x, y) =

�(�)

�(↵)�(� � ↵)

Z 1

0
u
↵�1(1� u)��↵�1(1� ux)��(1� uy)��

0
du (60)

if ↵, � � ↵ > 0. We use this formula to define the analytic continuation in case |x| > 1 as can
happen in formula 2.3.

A.6 PROOF OF GENERALIZATION FORMULAS 2.1 AND 2.4

We first consider 2.4. Given the setup in the main text, consider computing the test error for a fixed
training/testing pair:

|Xtest(Ĝ
�1

X
T

tr
)(Xtr�0 + ✏)�Xtest�0|2 = |Xtest(Ĝ

�1
G� I)�0 +XtestĜ

�1
X

T

tr
✏|2 (61)

= |X2DSB�0 +X2DSĜ
�1

X
T

tr
✏|2 (62)

where S is the diagonal matrix containing the noise values
p
si, and D is the diagonal matrix con-

taining
p
�i. By rotational symmetry of the Frobenius norm, when we marginalize X2 we get

|DSB�0 +DSĜ
�1

X
T

tr
✏|2 (63)

And marginalizing over ✏ further yields

|DSB�0|2 + �
2
Tr(DSĜ

�1
GĜ

�1
SD) (64)
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where the cross term vanishes because E✏ = 0. Remembering all matrices are actually diagonal, we
obtain

n ⇤ err =
dX

i=1

si�i(�0)
2
i
(�i/f↵(�i)� 1)2 + �

2
X

i

si�i(�i/f↵(�i)
2) (65)

Since si are independent of �i and have expectation 1, we can easily marginalize out, obtaining:

dX

i=1

�i(�0)
2
i
(�i/f↵(�i)� 1)2 + �

2
X

i

�i(�i/f↵(�i)
2) (66)

At this point, the only variable that remains to marginalize over is �. The result is:

d
�1|�0|2

X

i

E�1,...,�n�i ((�i/f↵(�i)� 1))2 + �
2E�1,...,�n

X

i

�
2
i
/f↵(�i)

2 (67)

where we used exchangeability of �i to bring out the factor of |�0|2. Now the proposition follows
by taking the limit n ! 1 and applying the law of large numbers.

The proof of 2.1 is very similar - as above, the idea is to use rotational symmetry to reduce the
squared-error to a sum of the form E�1,...,�d

P
i
g(�i). The main difference is that in this case the

eigenvalues of G are no longer independent, but they are at least still exchangeable, so we can bring
out the factor of |�0|2 in front of the sum like above. And since G now has a Wishart distribution,
we can use the Marchenko-Pastur theorem (Bai & Silverstein, 2010) instead of the Law of large
numbers to reduce the sum to the indicated integral form.

A.7 ESTIMATION OF MINIMA AND CURVATURES

To estimate the minimum and curvature of an error curve Err(↵), we evaluate Err(↵i), i =
1, . . . , n, where where n = 500 and ↵i are equally logarithmically spaced between 10�3 and
105. The minimum is simply estimated as mini Err(↵i). To estimate the curvature at the min-
imum, we took the closest few points to the minimum and fit a quadratic function. That is, if
i0 = argminiErr(↵i) then we fit a two-parameter linear model of the form

Err(↵i)� Err(↵i0) ⇠ a(↵i � ↵i0) + b(↵i � ↵i0)
2
, i0 � 5  i  i0 + 5 (68)

with the estimated Hessian being 2b.

A.8 RELATION BETWEEN ↵ AND C IN THEOREM 2

To express the relation between ↵ and C, we consider two cases, corresponding to whether or not
the constraint set contains the global minimizer of the objective L 7! Tr(LLT ). The first case is
when C � kIdkp = d

1/p. In this case, the optimum is evidently L = 0d⇥N , corresponding to
↵ = 1.

In the case where C < d
1/p, 0d⇥N does not lie in the constraint set. Therefore, the optimum L lies

on the boundary of the constraint set, i.e. kLX � Ikp = C. By plugging in the functional forms
from Theorem 2, we obtain the following relations:

X

�i<↵

1� �i

↵
= C (p = 1) (69)

sX

i

↵2

(�i + ↵)2
= C (p = 2) (70)

↵/(1 + ↵) = C (p = 1) (71)
(72)

where �i are the eigenvalues of XT
X .
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A.9 GENERALIZATION ERROR FORMULAS FOR POWER-LAW SPECTRUM

Here we derive analytic expressions for the generalization error in the Diagonal matrix ensemble
with power-law spectral density d⌫(x)/dx = �x

��1
, 0 < x < 1.

We begin with the Nuclear case. In this case f↵(x) = max(x,↵), therefore x

f↵(x) is either x/↵ or 1
depending on whether x < ↵ or x > ↵. Plugging in to Equation 12, we get

�
�1

�
�1

Err1(↵) =

Z
↵

0

�
�
2
x(1� ↵

�1
x)2 + �

2
↵
�2

x
2
�
x
��1

dx (73)

+

Z 1

↵

�
2
x
��1

dx (74)

=

Z
↵

0
�
2(x� � 2↵�1

x
�+1 + ↵

�2
x
�+2) + �

2
↵
�2

x
�+1

dx (75)

+

Z 1

↵

�
2
x
��1

dx (76)

= ↵
�+1 �

2

� + 1
+ ↵

�+2�
2
↵
�2 � 2↵�1

�
2

� + 2
+ ↵

�+3↵
�2

�
2

� + 3
(77)

+
�
2

�
(1� ↵

�) (78)

=
�
2

�
+ ↵

�
�
2

✓
1

� + 2
� 1

�

◆
+ ↵

�+1
�
2

✓
1

� + 1
� 2

� + 2
+

1

� + 3

◆
(79)

=
�
2

�
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(80)

The above holds for ↵ < 1. If ↵ > 1, then the formula becomes

�
�1

�
�1

Err1(↵) =

Z 1

0
�
2(x� � 2↵�1

x
�+1 + ↵

�2
x
�+2) + �
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↵
�2
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dx (81)
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+ ↵

�2
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�
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� + 3
+

�
2

� + 2

◆
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(83)

Now consider the Ridge case. Here equation 12 becomes

�
�1

�
�1

Err2(↵) =

Z 1

0
�
2
x
�

✓
1� x

x+ ↵

◆2

+ �
2 x

2

(x+ ↵)2
dx (84)

=

Z 1

0
�
2 x

�

(↵�1x+ 1)2
+ �

2
↵
�2 x

2

(↵�1x+ 1)2
dx (85)

(86)

Now, we make use of the standard formula for the Gauss hypergeometric function F :

Beta(b, c� b)F (a, b, c, z) =

Z 1

0
x
b�1(1� x)c�b�1(1� zx)�a

dx (87)

which holds assuming that c > b and the integral converges. In particular,
Z 1

0

x
�

(↵�1x+ 1)2
dx = Beta(�+1, 1)F (2, �+1, �+2,�↵

�1) = F (2, �+1, �+2,�↵
�1)/(�+1)

(88)
and Z 1

0

x
2

(↵�1x+ 1)2
dx = Beta(3, 1)F (2, 3, 4,�↵

�1) = F (2, 3, 4,�↵
�1)/3 (89)
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Therefore we get the formula

�
�1

�
�1

Err2(↵) =
�
2

� + 1
F (2, � + 1, � + 2,�↵

�1) +
�
2

3
↵
�2

F (2, 3, 4,�↵
�1) (90)

Finally, in the Spectral case, we have x/f↵(x) = 1/(1 + ↵), so the expression becomes

�
�1

�
�1

Err1(↵) =

Z 1

0
�
2
x
�(1� 1

1 + ↵
)2 + �

2
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��1 1
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��1 1

(1 + ↵)2
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=
�
2
↵
2

(� + 1)(1 + ↵)2
+

�
2

�(1 + ↵)2

A.10 EFFECT OF NUMBER OF ↵ VALUES

As pointed out in the main text, the performance of the cross-validated models can depend on the
number n of ↵ values used for cross-validation. To do so, we follow the methodology used in
3.2.1, with the only difference being we use a smaller hyperparameter range � 2 [.5, 2, 3.5],� =
.5, ⇢ 2 [0, .5, .9], and also vary the total number n of ↵ values used in the cross validation n 2
[9, 15, 20, 30, 50]. We keep the limits of the range of ↵ values as before, and also maintain the equal
logarithmic spacing.

We show the average error and win probability in Figure 7 and Figure 8 respectively. As per the
discussion in Sections 2.2.3 and 5, we see that the Ridge often benefits drastically from increased
number of ↵s, and can overtake the Nuclear for large number of ↵ in cases when the Nuclear
performs better for small number of ↵.

A.11 SPARSELY STRUCTURED DATA AND COMPARISON TO LASSO

We consider a variant of the setup in Section 3.2.1, in which the data is constructed to have sparse
structure. In this case, when generating the ground truth coefficient vector �0, we select a set of
indices I ⇢ {1, . . . , 10}, |I| = 3 at random, and generate �0 as

(�0)i = N(0, 1), i 2 I (91)
(�0)i = N(0, 1)/10, i 62 I; (92)

We also use the smaller hyperparameter ranges ⇢ = 0,� = .5,� 2 [.5, 1, 1.5, 2, 2.5, 3]. Otherwise
we follow the methodology of Section 3.2.1.

We also include Lasso in the set of considered models, since it is designed to deal with sparse
coefficient vectors. Note, however, that Lasso is not a Linear Estimator in the sense defined in
Section 2.19.

We show the average error and win probability in Figure 9 and Figure 10 respectively.

A.12 REAL DATA EXPERIMENTS

We evaluate the models on real (i.e., non-synthetic) data. We consider the well-known Diabetes
dataset (N=442, d=10) and California housing dataset (N=20640,d=8), both available from the
sklearn.datasets library.

To analyze the performance of the models on each dataset, we create random train-test splits in
which the size of the training set is always set to 300, and the test set comprises the remaining
observations. Each model is fit on the training set (including the regularization strength ↵, using the
same cross-validation procedure as in Section 3.2.1), and the mean-square-error is evaluated on the

9To see this, one can note that in the case of d = 1, the Lasso estimator has the well-known closed form
�Lasso = Sign(hX,Y i)max( hX,Y i

|X|2 � ↵, 0), which is clearly not a linear function of Y
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Figure 7: Average test error for varied number of regularization strength values ↵ used in cross-
validation. Each point represents an aggregate over 100 datasets.

test set. We use the same set of 9 ↵ values as in Section 3.2.1 for all models. We constructed a total
of 200 splits in this way , and evaluated each model on each split as before (so that we can evaluate
each model’s probability of winning on a given split, as well as the average error over splits).

We show the average error and win probability in Figure 11 and Figure 12 respectively. We see a
similar pattern as in Figure 5, with the Nuclear having a clear advantage over the other models in
terms of win probability. The Nuclear also attains the lowest average MSE in the diabetes data, and
is essentially tied with Ridge for lowest average MSE in the housing data.
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Figure 8: Same as Figure 7, except showing the probability that each model attains the lowest test
error on a given dataset. Each point represents an aggregate over 100 datasets.
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Figure 9: Average test error, with 95 percent confidence intervals, on Gaussian data with sparse
ground truth coefficient vector. Each bar is an aggregate over 100 datasets.

Figure 10: Same as Figure 9, except showing the probability that each model attains the lowest test
error on a given dataset. Each bar is an agggregate over 100 datasets.
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Figure 11: Average test error, with 95 percent confidence intervals, on a random train-test split, for
the diabetes and California housing datasets. Each bar is an aggregate over 200 splits.

Figure 12: Same as Figure 11, except showing the probability that each model attains the lowest test
error on a given split. Each bar is an aggregate over 200 splits.
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