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Abstract

Recurrent Neural Network (RNN) is a fundamental structure in deep learning.
Recently, some works study the training process of over-parameterized neural
networks, and show that over-parameterized networks can learn functions in some
notable concept classes with a provable generalization error bound. In this paper,
we analyze the training and generalization for RNNs with random initialization,
and provide the following improvements over recent works:

(1) For a RNN with input sequence x = (X1, X2, ..., XL), previous works study
to learn functions that are summation of f(βT

l Xl) and require normalized
conditions that ||Xl|| ≤ ϵwith some very small ϵ depending on the complexity
of f . In this paper, using detailed analysis about the neural tangent kernel
matrix, we prove a generalization error bound to learn such functions without
normalized conditions and show that some notable concept classes are learn-
able with the numbers of iterations and samples scaling almost-polynomially
in the input length L.

(2) Moreover, we prove a novel result to learn N-variables functions of input
sequence with the form f(βT [Xl1 , ..., XlN ]), which do not belong to the
“additive” concept class, i,e., the summation of function f(Xl). And we
show that when either N or l0 = max(l1, .., lN ) − min(l1, .., lN ) is small,
f(βT [Xl1 , ..., XlN ]) will be learnable with the number iterations and samples
scaling almost-polynomially in the input length L.

1 Introduction

In Deep Learning, the recurrent neural network (RNN) is well-known as one of the most popular
models to model sequential data and is widely used in practice for tasks in natural language processing
(NLP). One of the characters of RNN is that it performs the same operation for all the input of the
sequence.

Consider a input sequence x = (X1, X2, ..., XL). A RNN with the form

hl(x) = ϕ(Whl−1 +AXl), (1)
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is trying to learn functions fl(X1, X2, ...Xl) as

h1(x) = f1(X1)

h2(x) = f2(X1, X2)

...
hL(x) = fL(X1, X2, ...XL)

(2)

Due to the complex nonlinearity, the loss is generally non-convex, and it is very difficult to give a
theoretical guarantee. Recently, there are some works Allen-Zhu et al. (2019b); Cao and Gu (2019);
Allen-Zhu et al. (2019a); Du et al. (2019); Arora et al. (2019); Allen-Zhu et al. (2019c) trying to give
a theoretical explanation that why gradient descent can allow an overparametrized network to attain
arbitrarily low training error and ample generalization ability. These papers show that, under some
assumptions, we have:

• Multi-layer feed-forward networks Allen-Zhu et al. (2019b); Du et al. (2019) and recurrent
neural networks Allen-Zhu et al. (2019c) with large hidden size can attain zero training
error, regardless of whether the data is properly labeled or randomly labeled.

• For multi-layer feed-forward networks, functions with the form F ∗(x) =∑C
r=1 ϕr(β

T
r X), X ∈ Rd, βr ∈ Rd, ||βr|| = 1 are learnable i.e. fitting the train-

ing data with a provably small generalization error, if ϕ is analytic and the “complexity” is
low enough Allen-Zhu et al. (2019a); Arora et al. (2019); Cao and Gu (2019).

• The “complexity” of function ϕ can be measured by a matrix derived from the NTK (Neural
Tangent Kernel) of the network Arora et al. (2019); Cao and Gu (2019).

• For recurrent neural networks Allen-Zhu and Li (2019a), if the input sequence is normalized,
i.e., x = (X1, X2, ..., XL), ||X1|| = 1, ||Xl|| = ϵ with ϵ very small, functions with the form
F ∗(x) =

∑L
l=1

∑Cl

r=1 ϕl,r(β
T
l,rXl) are learnable, where m is the size of matrix W , and

C =
∑∞

i=0 aiR
i is a series representing the complexity of learnable functions.

These works show the provable learning ability of deep learning. But there are still some important
issues that were not addressed.

• Firstly, for RNNs, the method in Allen-Zhu and Li (2019a) requires a normalized condition
for A andXl in (1) that ||AXl|| ≤ ϵx for all l ≤ L and shows that for a function F ∗(x) with
the complexity C , it is learnable with error O(ϵ

1/3
x C ). Thus ||Xl|| (or equally, ||A||) should

be very small and the scale is dependent on the complexity of functions. The dependence of
||AXl|| on C makes the results unrealistic in practice since generally the norm of input will
not be so small.

• Secondly, the result in Allen-Zhu and Li (2019a) shows that RNNs can learn functions which
are the summation of functions like ψ(βT

l Xl). But this is only a linear combination of the
functions of the input at different positions and does not consider the nonlinear interaction
of the inputs. One may ask, since hL(x) is a function of {X1, X2, ...XL}, is it possible to
go beyond and learn more complex functions?

In order to study these problems, we consider the binary classification problem: for every input xi,
the label (+1 or −1) of xi can be expressed by the sign of a target function F ∗(xi). We consider
Elman recurrent neural networks with ReLU activation

hl(x) = ϕ(Whl−1 +AXl)

f(W , x) = BThL(x) ∈ R.
x = (X1, X2, ..., XL), Xl ∈ Rd,W ∈ Rm×m,

A ∈ Rm×d,B ∈ Rm, ϕ(x) = max(x, 0)

(3)

to learn two types of target functions:
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• Additive Concept Class:

F ∗(x) =

L∑
l=1

∑
r=1

ψl,r(β
T
l,rXl/||Xl||),

ψl,r(x) =

∞∑
i=0

cix
i,

(4)

• N-variables Concept Class:

F ∗(x) =
∑
r

ψr(⟨βr, [Xl1 , ..., XlN ]⟩),

ψr(x) =

∞∑
i=0

cix
i.

(5)

For these two types of function, we study the following questions:

• Can RNN learn additive concept class functions (4) without the normalized condition with
reasonable complexity on the sequence size L?

• Can RNN learn functions in N-variables Concept Class (5) which can not be written as the
summation of f(Xl) with reasonable complexity on N and L?

Our Result. We answer the two questions and give a provable generalization error bound. Our
results are stated as follows:

Theorem 1 (Informal) For a function F ∗(X1, X2, ..., XL) with the form as in (4) or (5), there is
a power series named the complexity C (F ∗) dependent on the Taylor expansion coefficient in (4)
and (5). For (4), C (F ∗) is almost-polynomial in L. For (5), when N or l0 = max(l1, .., lN ) −
min(l1, .., lN ) is small, C (F ∗) is almost-polynomial in L. Under this definition of complexity C (F ∗),
F ∗ is learnable using RNN with m hidden nodes and ReLU activation in (3) in O(C (F ∗)2) steps
with O(C (F ∗)2) samples if m ≥ poly(L,C (F ∗)).

Contribution. We summarize the contributions as follows:

• In this paper, we prove that RNN without normalized condition can efficiently learn some no-
table concept classes with both time and sample complexity scaling almost polynomially
in the input length L.

• Our results go beyond the “additive” concept class. We prove a novel result that RNN
can learn more complex function of the input such as N-variables concept class functions.
And “long range correlation functions” with small N (e.g. N = 2, f(βT [Xl, Xl+l0 ]) )
are learnable with complexity scaling almost polynomially in the input length L and
correlation distance l0.

• Technically, we study the “backward correlation” of RNN network. In RNN case, using a
crucial observation on the degeneracy of deep network, we show that the “backward corre-
lation” 1

m ⟨Backl(xi),Backl(xj)⟩ will decay polynomially rather than exponentially in
input length L. This shows the complexity of learning RNN with ReLU activation function
is polynomial in the size of input sequence L.

Notions. For two matrices A,B ∈ Rm×n, we define ⟨A,B⟩ = Tr(ATB). We define the
asymptotic notations O(·),Ω(·), poly(·) as follows. an, bn are two sequences. an = O(bn) if
lim supn→∞ |an/bn| < ∞, an = Ω(bn) if lim infn→∞ |an/bn| > 0, an = poly(bn) if there is
k ∈ N that an = O((bn)

k). Õ(·), Ω̃(·), p̃oly(·) are notions which hide the logarithmic factors in
O(·),Ω(·), poly(·). || · || and || · ||2 denote the 2-norm of matrices. || · ||1 denote the 1-norm. || · ||F
is the Frobenius-norm. || · ||0 is the number of non-zero entries.

For elements Ai.j , Bi,j of symmetric matrix A,B. We abuse the notion Ai.j ⪰ Bi.j to denote
A ⪰ B, i.e. A−B is a positive semidefinite matrix.
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2 Preliminaries

2.1 Function Complexity

For a analytic function ψ(z), we can write it as ψ(z) = c0 +
∑∞

i=1 ciz
i. We define the following

notion to measure the complexity to learn such functions.

C (ψ,R) = 1 +

∞∑
i=1

i · |ci|Ri. (6)

CN (ψ,R) = 1 +

∞∑
i=1

L1.5NCN
1 ·

√
CN,i · (i/N)N · |ci|Ri (7)

where C1 > 100 is an large absolute constant and CN,i is the largest combination number i!
n1!n2!...nN !

for n1, n2...nN > 0, n1 + n2 + ...nN = i,

Example 2.1 Arora et al. (2019) Consider ψ(z) = arctan(z/2). Then

ψ(z) =
∑
i=1

(−1)i−121−2i

2i− 1
z2i−1 (8)

In this case,

C (ψ, 1) = 1 +

∞∑
i=1

i · |ci| ≤ 1 +

∞∑
i=1

21−2i ≤ O(1).

Example 2.2 In the case N = 2, C2,i = i, (i/2)2 ≤ i2. ψ(z) = exp(z)

C2(ψ, 1) ≤ 1 +

∞∑
i=1

L3C2
1πi

2.5/i! ≤ O(1)

2.2 Concept Class

For the input sequence {Xl}, we assume Cmin ≤ ||Xl|| ≤ Cmax, for all 1 ≤ l ≤ L and
Cmax/Cmin ∼ C0. Under this condition, we consider two types of target functions with the
following form:
Additive Concept Class.

F ∗(x) =

L∑
l=1

Cl∑
r=1

ψl,r(β
T
l,rXl/||Xl||). (9)

Here for all l, r, ψl,r is analytic and ||βl,r||2 ≤ 1.

We define

C (F ∗) = L3.5
L∑

l=1

Cl∑
r=1

C (ψl,r, C0

√
L), (10)

to be the complexity of the target function.

Remark 2.1 If we consider function ψ(βTXl) and ||Xl|| = 1 for all l, the above complexity will
become C (ψ,O(

√
L)). This is similar with that in Allen-Zhu and Li (2019a) but this complexity

requirement is much weaker than that in Allen-Zhu and Li (2019a). For example, the complexity of
arctan(z/2) in Allen-Zhu and Li (2019a) is not finite, as shown in Arora et al. (2019).

N-variables Concept Class.

F ∗(x) =
∑
r

ψr(⟨βr, [Xl1 , ..., XlN ]⟩/
√
N max ||Xln ||). (11)

For all r, ψl,a,r(x, y) is an analytic function ψr(x) = c0 +
∑∞

i=1 cix
i. βr ∈ RdN , ||βr||2 ≤ 1. Let

l0 = max(l1, .., lN )−min(l1, .., lN ). We define

C (F ∗) = min(L2CN (ψr, C0

√
L), L3.5C (ψr, 2

l0C0

√
L)). (12)

4



Remark 2.2 The complexity
∑

r CN (ψr, C0

√
L) and

∑
r C (ψr, 2

l0C0

√
L) are exponential in N

and l0 respectively. And C (F ∗) is less or equal than both. Thus if either l0 or N is small, C (F ∗)
will be polynomial in L. Especially when N is small(e.g. N=2), even if l0 = L− 1, functions with
the form f(βT [Xl, Xl+l0 ]) are still learnable with a low complexity.

2.3 Results on Positive Definite Matrices and Functions

We say a function ϕ(·, ·) : Rd × Rd → R is positive definite if for all n ∈ N, any {x1, ..., xn} ⊆
Rd, {c1, ..., cn} ⊆ R, ∑

i,j

cicjϕ(xi, xj) ≥ 0. (13)

The following basic properties in chapter 3 of BergJens et al. (1984) are very useful in our proof.

Proposition 2.1 If ϕ(·, ·) is positive definite function, let matrix M ∈ Rn×n, {x1, ..., xn} ⊆ Rd,
and Mi,j = ϕ(xi, xj). Then M is a semi-positive definite matrix.

Proposition 2.2 If ϕ1(·, ·) and ϕ1(·, ·) are positive definite, ϕ(xi, xj) = ϕ1(xi, xj) · ϕ2(xi, xj) is
also a positive definite function.

Proposition 2.3 Let ϕ(·, ·) be a positive definite function, and ψ(x) =
∑∞

i=0 cix
i, ci ≥ 0. Then

ψ(ϕ(·, ·)) is also a positive definite function.

For a positive definite matrix M ∈ Rn×n, there is a result in Arora et al. (2019),

Proposition 2.4 (Section E of Arora et al. (2019).) Let X = (x1, ...xn) ∈ Rd×n and Kp ∈ Rn×n

is a matrix with (Kp)i,j = (xTi xj)
p. Suppose there is α > 0, such that M ⪰ α2Kp. Let

y = ((βTx1)
p, ..., (βTxn)

p) ∈ Rn. We have
√
yT (M)−1y ≤ ||β||p2/α.

3 Main Results

Assume there is an unknown data set D = {x, y}. The inputs have the form x = (X1, X2, ...XL) ∈
(Rd)L. ||Xl|| ≤ O(1) for all 1 ≤ l ≤ L. For every input xi, there is a label yi = ±1.

The neural network with input x is

h0(x) = ϕ(M0),

hl(x) = ϕ(Whl−1 +AXl),

f(W , x) = BThL(x).

(14)

Here W ∈ Rm×m,A ∈ Rm×d,B,M0 ∈ Rm. The entries of M0, W and A are respectively
i.i.d. generated from N(0, 2

m ), N(0, 2
m ) and N(0, 2

L3·m ). The entries of B are i.i.d. generated from
N(0, 1

m ).

The goal of learning RNN is to minimize the population loss:

LD(W ) = E(x,y)∼Dℓ(y · f(W , x)), (15)

by optimizing the empirical loss

LS(W ) =
1

n

n∑
i=1

ℓ(yi · f(W , xi)), (16)

using SGD. Here ℓ(x) = log(1 + exp(−x)) is the cross-entropy loss. Consider the SGD algorithm
on this RNN. Let the complexity C ∗ of F ∗(·) be defined in (10) and (12). The 0-1 error for D is
L0−1
D (W ) = E(x,y)∼D1{y · f(W , x) < 0}. We have:

Theorem 2 Assume there is δ ∈ (0, e−1]. Supposing for D = {xi, yi}, there is a function F ∗

belonging to the concept class (9) or (11) such that yi ·F ∗(xi) ≥ 1 for all i. Let W k be the output of
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Algorithm 1: Training RNN with SGD
Input: Data set D, learning rate η.
The entries of W 0,A are i.i.d. generated from N(0, 2

m ). The entries of B are i.i.d. generated
from N(0, 1

m ).
for t = 1, 2, 3...n do

Randomly sample (xt, yt) from the data set D.
W t = W t−1 − η∇W t−1ℓ(yt · f(W t−1, xt)).

end

Algorithm 1. There is a parameterm∗(n, δ, L,C ∗) = poly(n, δ−1, L,C ∗) such that, with probability
at least 1− δ, if m > m∗(n, δ, L), there exits parameter η = O(1/m) that satisfies

1

n

n∑
k=1

L0−1
D (W k) ≤ Õ[

(C ∗)2

n
] +O(

log(1/δ)

n
). (17)

Remark 3.1 This theorem induces that, to achieve population 0− 1 error(rather than empirical
loss) being less than ϵ, it is enough to train the network using Algorithm 1 with Ω̃((L · C ∗)2/ϵ)
steps. As defined in section 2.1 and 2.2, when N is small, for the two types of concept class, (C ∗)2 is
almost-polynomial in input length L. Thus they can be learned effectively.

Remark 3.2 This theorem can also be generalized to “sequence labeling” loss such as
1
n

∑n
i=1

∑L
l=1 ℓ(yi · fl(W , xi)) with fl(W , x) = BThl(x). This is because the matrix

H l
i,j =

1

m
⟨∇fl(W , xi),∇fl(W , xj)⟩

with different l are almost “orthogonal” by a similar argument to (26) in Theorem 6. Then RNN can
learn a function fl = sign(F ∗

l (x)) with F ∗
l (x) belonging to functions in section 2.2. See Remark

G.1 in the supplementary materials.

4 Sketch Proof of the Main Theorem

The first step to prove the main theorem 2 is the following generalization of Corollary 3.10 in Cao
and Gu (2019).

Theorem 3 Under the condition of Theorem 2, let n samples in the training set be {xi, yi}ni=1. ỹ =

[F ∗(x1), F
∗(x2), ...F

∗(xn)]
T . Let H be a matrix with Hi,j = 1

m ⟨∇
W̃
f(W̃ , xi),∇W̃

f(W̃ , xj)⟩.
The entries of W̃ are i.i.d. generated from N(0, 2

m ). If there is a matrix H∞ ∈ Rn×n satisfying

H + ϵT ϵ ⪰ H∞ with ||ϵ||F ≤ 0.01/O(C ∗), (18)

and
√
ỹT (H∞)−1ỹ ≤ O(C ∗), there exits m∗(n, δ−1, L,C ∗) = poly(n, δ−1, L,C ∗) such that,

with probability at least 1− δ, if m > m∗,

1

n

n∑
k=1

L0−1
D (W k) ≤ Õ[

ỹT (H∞)−1ỹ

n
] +O(

log(1/δ)

n
). (19)

Remark 4.1 In order to show Theorem 2 using this theorem, we need to carefully pick out the
exponential parts of L. Using the methods in Allen-Zhu et al. (2019c) and Cao and Gu (2019), we can
show that m∗(L, n,

√
ỹT (H∞)−1ỹ) ≥ poly(n,L,

√
ỹT (H∞)−1ỹ) is enough.

√
ỹT (H∞)−1ỹ is

dealt with by calculating the forward and backward correlation in section 4.1.1 and 4.1.2.

The proof of theorem 3 is in fact a combination of the results in Cao and Gu (2019) and Allen-Zhu
et al. (2019c). The really matter thing is how large can

√
ỹT (H∞)−1ỹ be. We can show that:

Theorem 4 Under the condition of Theorem 3, with probability at least 1 − δ, there exits matrix
H∞ satisfying (18) and √

ỹT (H∞)−1ỹ ≤ O(C ∗). (20)
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Theorem 2 is a direct corollary of the above two theorems.

4.1 Calculation on Kernel Matrix

The proof of (20) relies on a direct calculation to construct a kernel matrix H∞. We consider two
input xi and xj . LetXi,l andXj,l be the l−th input of xi and xj . LetDl ∈ Rm×m andD′

l ∈ Rm×m

be diagonal matrices that,

(Dl)k,k = 1{Whl−1(xi) +AXi,l > 0}
(D′

l)k,k = 1{Whl−1(xj) +AXj,l > 0}
(21)

Backl = BDLW · · ·Dl+1W,Back′l = BD′
LW · · ·D′

l+1W (22)

Then

1

m
⟨∇

W̃
f(W̃ , xi),∇W̃

f(W̃ , xj)⟩ =
1

m

∑
l,l′

⟨Backl(xi) ·Dl,Backl′(xj) ·D′
l′⟩ · ⟨hl(xi), hl′(xj)⟩

(23)
Generally Hi,j =

1
m ⟨∇

W̃
f(W̃ , xi),∇W̃

f(W̃ , xj)⟩ is hard to deal with. However, in the m→ ∞
limit, we can use some techniques to do the calculation.

4.1.1 Forward Correlation

Theorem 5 For fixed i, j, under the condition in Theorem 3, with probability at least 1 −
exp(−Ω(log2m)),

|⟨hl(xi), hl(xj)⟩ −Kl
i,j | ≤ O(l16 · log2m/

√
m) (24)

And let Ql =
√
(1 + 1

L3

∑l
k=1 ||Xi,k||2) · (1 + 1

L3

∑l
k=1 ||Xj,k||2),

K1
i,j = Q1 ·

∞∑
r=0

µ2
r[(1 +

1

L3
XT

i,1Xj,1)/Q1]
r

Kl
i,j = Ql ·

∞∑
r=0

µ2
r({

1

L3
XT

i,lXj,l +Kl−1
i,j }/Ql)

r

(25)

In the above equations, µr = 1√
2π

∫∞
0

√
2xhr(x)e

− x2

2 dx, hr(x) = 1√
r!
(−1)re

x2

2
dr

dxr e
− x2

2 .

4.1.2 Backward Correlation

Theorem 6 For l ̸= l′, with probability at least 1− exp(−Ω(log2m)),

| 1
m
⟨Backl(xi) ·Dl,Backl′(xj) ·D′

l′⟩| ≤ O(
L4 log4m

m1/4
). (26)

For l = l′, there is F l
i,j that, with probability at least 1− exp(−Ω(log2m)),

| 1
m
⟨Backl(xi) ·Dl,Backl(xj) ·D′

l′⟩ − F l
i,j | ≤ O(

L4 log4m

m1/4
). (27)

where

Σ(x) =
1

2
+
arcsin(x)

π
, (28)

F l
i,j ⪰

1

K
Σ({ 1

L3
⟨Xi,l, Xj,l⟩+Kl−1

i,j }/Ql). (29)

and 0 < K ≤ O(1/L4).
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Remark 4.2 We should note that this theorem is one of the key differences between this work and
the methods in Allen-Zhu and Li (2019a). In fact, we must show that there is a constant K > 0
such that 1

m ⟨Backl(xi),Backl(xj)⟩ −K is still positive definite. However, is K large enough thus
1/K ≥ poly(L) rather than 1/K ≤ exp(−Ω(L)) ? This is not a trivial question. One can only get
K ≥ 1

2L
using naive estimation. In Allen-Zhu and Li (2019a), ||AXl|| ≤ ϵx is required to make

sure Back′l = Backl(xi) − Backl(xj) samll. However after k steps of training, we can show the
approximation error is roughly O(||Back′||·||W k−W 0||) and ||W k−W 0||F ∼

√
ỹT (H∞)−1ỹ ∼

C (F ∗). Thus the dependence of ϵx on C (F ∗) is hard to be dealt with using this method. In this
paper, we do not need the normalized condition. Our methods rely on a crucial observation that the
function liml→∞ hl(xi)

Thl(xj)/(||hl(xi)|| · ||hl(xj ||) will degenerate to a constant function.

4.1.3 Sketch Proof of Theorem 4

In order to estimate the complexity, we use the results in the last subsection and Proposition 2.4,2.2
and 2.3.

Proposition 2.4 shows that, in order to estimate
√
ỹT (H∞)−1ỹ, we need to show

H∞ ⪰ ξp · (XT
l Xl)

◦p (30)

with ξp > 0 for all p ∈ N, 1 ≤ l ≤ L. Here Xl ∈ Rn×d = [X1,l, X2,l...Xn,l] and

[(XT
l Xl)

◦p]i,j = {XT
i,lXj,l}p. (31)

We will show that, there is a matrix H∞. With probability at least 1− δ, Hij = H∞
ij ±O(L

4 log4 m
m1/4 )

for all i, j ∈ [n], and,

H∞
i,j ⪰

1

O(L4)
·QlΣ({

1

L3
⟨Xi,l, Xj,l⟩+Kl−1

i,j }/Ql). (32)

for all l.

Based on (32), we can show the following results:

For all 1 ≤ l ≤ L and all k

H∞
i,j ⪰

1

O(L4)
Σ({Kl

i,j+
1

L3
XT

i,lXj,l}/Ql) ⪰ Ω(
1

L7
)·( 1

O(L)
)k · 1

k2
(XT

i,lXj,l)
k/(||Xi,l||·Xj,l||)k.

(33)
This deduces the complexity for the Additive Concept Class in section 2.1,√

ỹT (H∞)−1ỹ ≤ O(C ∗). (34)

As for N-Variables Concept Class,

H∞
i,j ⪰

1

CN
1 L

4 · L2N · CN,p · (p/N)N

· (XT
i,r1Xj,r1 +XT

i,r2Xj,r2 ...+XT
i,rNXj,rN )p/(N ·max

n
(||Xi,rn ||) ·max

n
(||Xj,rn ||))p

(35)
with some large constant C1 > 0. Meanwhile, for any l ≤ L, a < l, let Zi,l,a =
[Xi,l, Xi,l−1, ...Xi,l−a]. We have:

H∞
i,j ⪰ Ω(

1

L7
) · ( 1

O(L)
)k · 1

k2
(ZT

i,l,aZj,l,a)
k/(||Zi,l,a|| · Zj,l,a|| · 2a)k (36)

Then from definition of complexity in section 2.2 and Proposition 2.4, we can prove√
ỹT (H∞)−1ỹ ≤ O(C ∗). (37)

Therefore (20) follows.
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5 Dissicusion

In this paper, we use a new method to avoid the normalized conditions. The main idea is to provide
an esitmation for

√
ỹT (H∞)−1ỹ in the RNN case directly. However, the value of

√
ỹT (H∞)−1ỹ

is only explicitly calculated for the two-layer case in Arora et al. (2019). In the RNN cases, the neural
tangent kernel matrix involves the depth and the weight sharing in the network and difficult to deal
with.

In Allen-Zhu and Li (2019a), their method is to reduce the RNN case to

fL ≈
∑
l

Back(0) · 1⟨W,hl−1⟩+AXl≥0W
∗ · hl−1,

which is similar to a summation of L two-layer networks. And this reduction requires the following
operations in Allen-Zhu and Li (2019a):

1) Introduce new randomness to keep the independence of rows in the random initialization matrices
W and A at different depths. Then estimate the perturbation.

2) Show the "off-target" Backward Correlation is zero.

3) Estimate the "on target" Backward Correlation by introducing a normalized input sequence x(0).
4) Explicitly construct the approximation.

These steps strongly rely on the normalized condition ||Xl|| ≪ 1 and this is apparently unrealistic.
Instead, we calculate the kernel matrix and we introduce many new estimation to avoid this condition.

We should note that this expression

fL ≈
∑
l

Back(0) · 1⟨W,hl−1⟩+AXl≥0W
∗ · hl−1

is additive in itself. Thus the nonlinear interaction between different positions considered in this
paper, especially N-variable target functions, cannot be deduced using the from this method. In
the previous proof, Allen-Zhu and Li (2019a) is to use these steps to reduce the RNN function
to a summation of two-layer networks and ignore the correlation between inputs from different
locations and this heavily relies on the normalized condition. In our method, we need to consider
the information in Back to show the non-linear correlation between the inputs at different positions
and prove N-variable target functions are learnable, while Allen-Zhu and Li (2019a). requires the
normalized condition to make sure Back ≈ Back(0) to be roughly a constant. This is one of the most
different parts between this work and Allen-Zhu and Li (2019a).

In our case, since we do no use the normalized condition, we must show the polynomial decay of the
constant part in Back. As mentioned in Remark 4.2, in our case, it is generally non-trivial to show√
ỹT (H∞)−1ỹ ≤ O(C ∗) with C ∗ polynomial in L. Our methods rely on a detailed estimation on

the degeneracy of long RNN based on Theorem 5.

6 Related Work

Overparameterized neural network. In Tian (2017) and Du et al. (2018), it is shown that, for a
single-hidden-node ReLU network, under mild assumptions, the loss function is one point convex
in a very large area. However, in Safran and Shamir (2018), the authors pointed out that such good
properties are rare for networks with multi-hidden nodes, and indicated that an over-parameterization
assumption is necessary. Similarly, Hardt et al. (2016) showed that over-parameterization can help
in the training process of a linear dynamic system i.e., linear RNN. A different way to show over-
parameterization is important as in Freeman and Bruna (2016), this work proved that in the two-layer
case if the number of the hidden nodes is large enough, the sub-level sets of the loss will be nearly
connected. Their method can also be applied to deep networks with a skip connection in Wang et al.
(2020) to study the properties of loss surfaces.

Recent breakthroughs were made in understanding the neural tangent kernel(NTK) Jacot et al. (2018);
Alemohammad et al. (2021) of the neural network near the area of the random initialization. In Li
and Liang (2018), Du et al. (2019), Allen-Zhu et al. (2019b) and Allen-Zhu et al. (2019c), it is shown
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that deep networks with a large hidden size can attain zero training error, under some assumptions
of input non-degeneracy. This explains the empirical results Zhang et al. (2017) that DNN can fit
training data with even random labels.

There are also some provable convergence results with over-parameterization going beyond NTK.
The loss surface of the two-layer over-parameterized network with quadratic activation function was
studied in Du and Lee (2018) and Mahdi et al. (2018). They showed that all the bad local minima are
eliminated by over-parameterization. For ReLU activation function, in Allen-Zhu and Li (2019b),
it is shown that there exits some functions can not be learned by any kernel functions but learnable
with less error by a network with a skip connection. Li et al. (2020) provided a convergence result
for learning a specific two-layer neural network which can not be learned by any kernel method,
including Neural Tangent Kernel.

Generalization Ability of Deep Learning

Classical VC theory cannot explain the generalization ability of deep learning because the VC-
dimension of neural networks is at least linear in the number of parameters Bartlett et al. (2019).
Recently, Allen-Zhu et al. (2019a) showed that overparameterized neural networks can learn some
notable concept classes of target functions with rich types. Moreover, their work goes beyond the
NTK linearization and provides new results on the non-convex interactions of the three-layer network.
Meanwhile, Arora et al. (2019) provided a fine-grained analysis on the generalization error and
showed the connections to the matrix of the neural tangent kernel. The results were generalized to the
multi-layer case in Cao and Gu (2019). Similar results were also studied in Ji and Telgarsky (2020)
and Chen et al. (2020b).

Ref. Allen-Zhu et al. (2019a) also considered the generalization error bounds beyond the first-order
NTK. It has been shown in Allen-Zhu et al. (2019a) that a three-layer ReLU network can provable
learn some notable composite functions and dropout can help to reduce the Rademacher Complexity
of the network thus reduce the generalization error bounds. The proof is based on the second-order
NTK expansion and saddle points escaping arguments. Higher-order NTK are also studied in Bai
and Lee (2020) with provable generalization error bounds. Moreover, it is shown in Chen et al.
(2020a) that comparing with the general NTK, deep networks with neural representation can achieve
improved sample complexities, while for the first-order NTK, depth may not provide benefits for the
learning ability Bietti and Bach (2021).

7 Conclusion and Future Work

In this paper, we studied the problem of what type of function can be learned by RNN. In this work,
we showed that RNNs can provably learn the two types of functions, the additive concept class and
the N-variables concept class in almost-polynomial in input length many iterations and samples
starting from random initialization. For the additive concept class, we proved the result without
the normalized condition and showed the almost-polynomial complexity in input length L. For the
N-variable concept class, we showed that RNN with ReLU activation function can provably learn
functions like ψ(⟨β, [Xl1 , ..., XlN ]⟩). The complexity of learning such functions grows exponentially
with either N or l0 = max(l1, ...lN )−min(l1, ...lN ), but when one of them is small, the complexity
is almost-polynomial in the input length L.

One of the limitations is that this work relies on the NTK linearization of RNN. One probably
direction is to consider the non-convex interactions in RNN and learn more complex functions using
the method in Allen-Zhu et al. (2019a). Meanwhile, this work studied RNN with ReLU activation
function. This did not consider the “gate” structure in RNN. We believe that a study on GRU, LSTM,
and MGU may lead to learning more complex functions with long-term memory.
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Figure 1: Flowchart of the Proof.

The Flowchart of the proof is shown in Figure 1. There are two parts. The first part is to prove
Theorem 3. This is easy by using techniques in Allen-Zhu et al. (2019c) and Cao and Gu (2019).
The more important part is to prove Theorem 4. We study the forward and backward correlation in
Theorem 5 and 6. In Theorem 19, we show the polynomial degeneration of backward correlation
which is crucial to show the complexity is polynomial in L.

B Some Probability Theory Lemmas

Definition 1 A random variable X is said to be sub-Gaussian with variance proxy σ2 if E[X] = 0
and for all s ∈ R,

E[esX ] ≤ e
σ2s2

σ2 . (38)
A random variable X is said to be λ-sub-exponential if E[X] = 0, and for all s that |s| ≤ 1

λ ,

E[esX ] ≤ e
s2λ2

2 (39)

For λ-sub-exponential random variable, we have the following standard concentration inequality
from Chernoff bound estimation(c.f. Boucheron et al. (2013)):

Theorem 7 Let X1, X2, ...Xm be i.i.d λ-sub-exponential random variable with λ < O(1). Let
0 < ϵ ≤ 1. With probability at least 1− exp[Ω(mϵ2)],

| 1
m

m∑
i=1

Xi| ≤ ϵ (40)
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Let ϕ be a function with either |ϕ(x)| ≤ |Bx| or |ϕ(x)| ≤ B for some B > 0. Assuming w
is a Gaussian random vector, we can show ϕ(wTX1)ϕ(w

TX2) − Eϕ(wTX1)ϕ(w
TX2) is λ-sub-

exponential for some λ by estimating the moments. For Eϕ(wTX1)ϕ(w
TX2), there is an equation

which is a direct corollary of Claim 4.3 in Ge et al. (2017):

Theorem 8 ConsiderM ∈ Rd, all the entries ofM are i.i.d. generated fromN(0, 1d ), andX1, X2 ∈
Rd with ||X1|| = ||X2|| = 1. Let µi(ϕ) denote the i−th Hermite coefficient of function ϕ, i.e.

µr(ϕ) =
1√
2π

∫∞
0
ϕ(x)hr(x)e

− x2

2 dx, hr(x) = 1√
r!
(−1)re

x2

2
dr

dxr e
− x2

2 .

We have
E
M
ϕ1(M

TX2)ϕ2(M
TX1) =

∑
r

µr(ϕ1)µr(ϕ2)(X
T
1 X2)

r. (41)

E
M
ϕ(MTX2)ϕ(M

TX1) =
∑
r

µ2
r(ϕ)(X

T
1 X2)

r. (42)

Combine the above two theorems and set ϵ = logm√
m

. We have:

Theorem 9 Let W ∈ Rm×d. All the entries of M are i.i.d. generated from N(0, 2
m ), and X1, X2 ∈

Rd with ||X1|| = ||X2|| = 1. ϕ(x) = max(0, x) denotes the ReLU activation function. µi(ϕ)
denotes the i−th Hermite coefficient of function ϕ. Wi denotes the i-th row of W . With probability
at least 1− exp(−Ω(log2m)),

ϕT (WX1)ϕ(WX2) =
∑
i

ϕT (WiX1)ϕ(WiX2)

= Ew∼N(0,Id)ϕ(w
TX1)ϕ(w

TX2)±O(
logm√
m

)

=
∑
r

µr(ϕ)µr(ϕ)(X
T
1 X2)

r ±O(
logm√
m

).

(43)

This theorem is a direct corollary of the concentration inequality for the sub-exponential random
variable ϕ(wTX1)ϕ(w

TX2).

In the case of ReLU function and its derivative, we can obtain analytical expressions which have been
proved in Daniely et al. (2016); Huang et al. (2020):

Theorem 10 Consider functions ϕ1(x) =
√
2max(0, x) and ϕ2(x) =

√
21{x > 0}. Let X1, X2 ∈

Rd, ||X1|| = ||X2|| = 1, z = XT
1 X2.

Ew∼N(0,Id)ϕ1(w
TX1)ϕ1(w

TX2) =

√
1− z2 + (π − arccos(z))z

π
, (44)

and

Ew∼N(0,Id)ϕ2(w
TX1)ϕ2(w

TX2) =
π − arccos(z)

π
. (45)

For such functions f(z) = Ew∼N(0,Id)ϕ(w
TX1)ϕ(w

TX2), we can see f(0) = µ2
0(ϕ) and f ′(0) =

µ2
1(ϕ).

C Technical Lemmas for RNN

Consider equations
hl(W , x) = ϕ(Whl−1 +AXl),

f(W ), x) = BThL(x),

∇f(W , xi) =

L∑
l=1

BackTl Dl · hTl (xi),

Backl(W , xi) = BTDLW · · ·Dl+1W .

(46)
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The properties of ∇f(W , xi) and hl have been already appeared in Allen-Zhu et al. (2019c). We list
the results we used in this section.

Let W0 be the point of Randomly Initialization and B(W0, ω) = {W | ||W −W0||F ≤ ω}. We
have:

Lemma 11 For fixed vector x ∈ Rd, y, z ∈ Rm. With probability at least 1− exp(−Ω(m/L2))

||1W0y+Ax>0 ·W0z||2 ≤ ||z||2(1 + 1/100L). (47)

For fixed x ∈ Rd and all y, z:
||1W0y+Ax>0 ·W0z||2 ≤ ||z||2(1 + 1/50L). (48)

The first equation is from Claim B.13 in Allen-Zhu et al. (2019c). The second one can be easily
deduced from a ϵ-net argument.

Lemma 12 (Section B and Section C in Allen-Zhu et al. (2019c)) Let τ0 ≤ poly(n,L), ω ≤ τ0 ·
m−1/2 , m ≥ poly(L, n, δ−1). With probability at least 1 − δ, for all i ∈ [n], all l, and W ∈
B(W0, ω)

(a) ||hl(W , xi)|| ≤ O(l),

(b) ||Backl(W , xi)Dl(W , xi)||2 ≤ O(L7
√
m),

(c) ||WDl1−1...W (Dl+1)|| ≤ O(L7),

(d) For any vector v with ||v||0 ≤ O(L10/3τ
2/3
0 m2/3), ||BT (D0

L)W
0...W 0v|| ≤

√
mL5/3τ

1/3
0 logm ·m−1/6,

(e) ||D′
l||0 ≤ O(L10/3τ

2/3
0 m2/3).

The (a) is from the proof of Lemma B.3 and Lemma C.2a in Allen-Zhu et al. (2019c), and the (b) is
from Lemma C.9 and Lemma B.11 in Allen-Zhu et al. (2019c). (c) is from Lemma C.7 in Allen-Zhu
et al. (2019c). From Corollary B.18, Lemma C.11 and Claim G.2 in Allen-Zhu et al. (2019c) we have
(d) and (e).

In our case, ||AXl|| ≤ 1
L3/2 , rather than ||AXl|| ≤ O(1). These bounds can be improved, but since

we mainly care about the exponential dependence on L, we do not use it.

These equations deduce the following linearization theorem which is an analogue of Lemma 4.1 in
Cao and Gu (2019):

Theorem 13 With probability at least 1 −O(n) · exp(−Ω(logm)), for all i ∈ [n] and W ,W ′ ∈
B(W0, ω),

|f(W ′, xi)−f(W , xi)−⟨∇f(W , xi),W
′−W ⟩| ≤ O(ω1/3L10 logm

√
m)||W ′−W ||2. (49)

Proof: Let
hL(x) = hL(W , x), hL(W

′, x) = hL(x) + h′L(x),

Dl = Dl(W , x), D′
l = Dl(W

′, x), D0
l = Dl(W0, x).

(50)

By Claim G.2 in Allen-Zhu et al. (2019c), there exits diagonal matrices D′′
l , {D′′

l }ii ̸= 0 if and only
if {D′

l}ii ̸= 0, ||D′′
l ||0 ≤ ||D′

l||0 ≤ O(L10/3τ
2/3
0 m2/3), and

BT (hL(x) + h′L(x))−BThL(x) =

L−1∑
l=1

BT (DL +D′′
L)W

′...(Dl+1 +D′′
l+1)

· (W ′ −W )hl(x).

(51)

Then,
f(W ′, xi)− f(W , xi)− ⟨∇f(W , xi),W

′ −W ⟩

=

L−1∑
l=1

BT (DL +D′′
L)W

′...(Dl+1 +D′′
l+1) · (W ′ −W )hl(x)

−BTDLW ...WDl+1 · (W ′ −W )hl(x).

(52)
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To prove the theorem, same as Lemma 5.7 in Allen-Zhu et al. (2019b), we have the following
result: Let D0/1

l be diagonal matrix and (D
0/1
l )ii = 0 if (Dl +D′′

l −D0
l )ii = 0, (D0/1

l )ii = 1 if
(Dl +D′′

l −D0
l )ii ̸= 0. With probability at least 1− δ,

||BT (DL +D′′
L)W

′...(Dl+1 +D′′
l+1) ·W ′)−BTDLW ...WDl+1 ·W ||

≤ O(

L∑
l1=l+1

||BT (D0
L)W

0...W 0(D
0/1
l1

)||︸ ︷︷ ︸
T1

·||D′′
l1 || · ||(D

0/1
l1

)W ′D′
l1−1...W

′(D′
l+1)||︸ ︷︷ ︸

T2

)

(a)

≤ O(
√
mL5/3+8τ

1/3
0 logm ·m−1/6) ≤ O(

√
mL10ω1/3 logm).

(53)

In (a), T2 ≤ O(L7) is from (c) in Lemma 12. From (d) in Lemma 12 and ||D′′
l ||0 ≤

O(L10/3τ
2/3
0 m2/3), T1 ≤

√
mL5/3τ

1/3
0 logm ·m−1/6. ■

Remark C.1 In this theorem,
|f(W ′, xi)−f(W , xi)−⟨∇f(W , xi),W

′−W ⟩| ≤ O(ω1/3L10 logm
√
m)||W ′−W ||2. (54)

And in Cao and Gu (2019), there is a similar result that

|f(W ′, xi)−f(W , xi)−⟨∇f(W , xi),W
′−W ⟩| ≤ O(ω1/3L2

√
logm

√
m)||W ′−W ||2. (55)

The differences on logm are from that Lemma 4.4 in Allen-Zhu et al. (2019b) says if ||u||0 ≤ s,
|BT (DL + D′′

L)W
′
L...(Dl+1 + D′′

l+1) ·W ′
l+1u| ≤ O(

√
s logm and Corollary B.18 in Allen-Zhu

et al. (2019c) says |BT (DL +D′′
L)W

′...(Dl+1 +D′′
l+1) ·W ′u| ≤ O(

√
s logm) for RNN case.

D Generalization properties: Proof of Theorem 3

Lemma 14 Denote Li(W ) = ℓ(yi · f(W , xi)). Suppose there exits W ∗ ∈ B(W0, R/
√
m) with

R ≤ poly(n,L), Li(W
∗) ≤ 1+R2

n . For any δ, there exists

m∗(n, δ,R, L) = poly(n,R,L, δ−1) (56)
such that if m > m∗, with probability at least 1− δ, SGD with η = 1/m for some small enough ν
will output:

1

n

n∑
i=1

L0−1
D (W i) ≤ O(

1

n
) +O(

R2

n
) +O(

log(1/δ)

n
). (57)

Proof of Lemma 14:

Firstly, for all i, W ∈ B(W0, ω), ω ≤ R/m1/2, from Lemma 12, ||∇f(W , xi)||F ≤ O(L8
√
m).

||W i+1 −W 0||F ≤
i∑

k=1

||W k+1 −W k||F ≤ O(nηL8
√
m) ≤ L8R√

m
≤ O(τ0/m

1/2) (58)

with τ0 ≤ poly(n,L). Thus we can use Theorem 13. We have,

Li(W
i)− Li(W

∗) ≤ ⟨∇WLi(W
i),W i −W ∗⟩

+ |ℓ′(yif(W , xi)) · yi| · O(ω1/3L10 logm
√
m)||W i −W ∗||2

=
⟨W i −W i+1,W i −W ∗⟩

η
+O(ω1/3L10 logm

√
m)||W i −W ∗||2

(59)
Therefore,

n∑
i=1

Li(W
i) ≤

n∑
i=1

{Li(W
∗) +

R2

2ηm
+O(ω1/3L10 logm

√
m)

n∑
i=1

||W i −W ∗||2},

≤
n∑

i=1

{Li(W
∗) +

R2

2ηm
+O(L10 logm · n ·R4/3 ·m−1/6)},

(a)

≤
n∑

i=1

Li(W
∗) +R2.

(60)
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In (a), we use m > m∗ ∼ poly(n,L).

Therefore,
1

n

n∑
i=1

Li(W
i) ≤ 1 +R2

n
+
R2

n
. (61)

The cross-entropy function ℓ(x) satisfies that L′
i(W

i) ≤ Li(W
i) and L0−1

i (W i) ≤ L′
i(W

i), where

L′
i(W

i) = −ℓ′(yif(W , xi)). (62)

And −ℓ′(x) is bounded. Using the boundedness and a martingale Bernstein bound argument as
Lemma 4.3 in Ji and Telgarsky (2020), we have

1

n

n∑
i=1

L0−1
D (W i) ≤ O(

1

n
) +O(

R2

n
) +O(

log(1/δ)

n
). (63)

■

Remark D.1 The result of generalization error 1/n is this better than that in Cao and Gu (2019)
1/

√
n, which shows

1

n

n∑
i=1

L0−1
D (W i) ≤ 4

n

n∑
i=1

Li(W
∗) +O(

R√
n
) +O(

√
log(1/δ)

n
). (64)

This is because Lemma 4.3 in Ji and Telgarsky (2020) makes use of the boundedness of Li(W ). Thus
it is applicable in this theorem. There is also a similar argument in Lemma 5.6 of Chen et al. (2020b).

Lemma 15 Under the condition of Theorem 3, with probability at least 1 − δ, there exits W ∗ ∈
B(W0, R/

√
m), such that Li(W

∗) ≤ 1+R2

n , R ≤ Õ(L
√
ỹT (H∞)−1ỹ).

Proof of Lemma 15:
Let ϵ be the matrix in (18),

G = m−1/2 · (vec[∇f(W 0, x1)], vec[∇f(W 0, x2)], ...vec[∇f(W 0, xn)]) ∈ Rm2×n.

G+ ϵ = PΛQT . (65)

is the singular value decomposition. Note that m2 ≫ n. We can set ϵTG = 0 without changing ϵT ϵ.

With probability at least 1 − δ, for all i ∈ [n], |f(W 0, xi)| ≤ O(L log(n/δ)). We assume w∗ =
PΛ−1QT (B · ỹ), with 0 < |f(W 0, xi)|+ log{1/[exp(n−1)− 1]}+ 0.01 < B ≤ O(L log(n/δ))
for all i ∈ [n], then ||w∗||22 ≤ B2ỹT (H + ϵT ϵ)−1ỹ. and GTw∗ = B · ỹ − ϵTw∗. Meanwhile,
reshape w∗ as W ∗ ∈ Rm×m, then we have

⟨∇f(W 0, xi),W
∗ −W 0⟩ = B · ỹi ± ||ϵ||F ·

√
ỹT (H + ϵ)−1ỹ = B · ỹi ± 0.01. (66)

Therefore W ∗ ∈ B(W0, Õ(LC ∗/
√
m)), and

ℓ(yi · (f(W ∗, xi))) ≤ ℓ(yi · {f(W 0, xi) + ⟨∇f(W 0, xi),W
∗ −W 0⟩})

+ |ℓ′(yif(W , xi)) · yi| · O(L10 logm · n ·R4/3 ·m−1/6)

≤ ℓ(yi · {f(W 0, xi) + ⟨∇f(W 0, xi),W
∗ −W 0⟩})

+R2/n

≤ ℓ(log(1/[exp(n−1)− 1])) +R2/n,

≤ n−1 +R2/n.

(67)

Thus Li(W
∗) ≤ 1+R2

n . ■

Then Theorem 3 follows from Lemma 14 and 15.
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E Forward Correlation: Proof of Theorem 5

Theorem 16 Consider equation h′l(x1) = ϕ(Wlh
′
l−1(xl) +AlXl), where the entries of W l and

Al are i.i.d. generated from N(0, 2
m ) and N(0, 2

L3m ). W l, Al and W l′ , Al′ are independent when
l ̸= l′. With probability at lesat 1− L2exp(−Ω(log2m)). For all 1 < l ≤ L, we have

|hTl (x)hl(x′)− h′l
T
(x)h′l(x

′)| ≤ O(L2 log2m/
√
m) (68)

for x, x′ = x1, x2.

In order to prove the theorem, firstly we claim that

Lemma 17 Let hl(x) = ϕ(Whl−1(x) + AXl). h̃l(x) = ϕ(W̃ h̃l−1(x) + ÃXl) is defined by
W̃ , Ã. W̃ , Ã and W ,A are i.i.d. Then for any 0 < l, l′ < L, with probability at least 1 −
L2exp(−Ω(log2m)),

|hTl (x)hl′(x′)− hl
T
(x)hl′(x

′)| ≤ O(l2 log2m/
√
m) (69)

where
hl(x) = ϕ(W h̃l−1(x) +AXl)

hl′(x
′) = ϕ(W h̃l′−1(x

′) +AX ′
l)

Proof of Theorem 16:
In the case l = 1, h1(x) = ϕ(Wh0 +AX1).

From Theorem 9 we have, with probability at least 1− exp(−Ω(log2m))

hT1 (x)h1(x
′) = EhT1 (x)h1(x′)±O(log2m/m) = h′1

T
(x)h′1(x

′)±O(log2m/
√
m) (70)

The theorem is true.

Supposing the theorem is true for l, for l + 1, using Lemma 17

hTl+1(x)h1+1(x
′) = Eϕ(W h̃l(x

′) +AX ′
l+1)ϕ(W h̃l(x) +AXl+1)±O(l2 log2m/

√
m) (71)

W h̃l(x) +AXl+1 =
[
W L3/2A

]
·
[

h̃l(x)
1

L3/2Xl+1

]
= M · z (72)

Thus
Eϕ(W h̃l(x

′) +AX ′
l+1)ϕ(W h̃l(x) +AXl+1)

= Ew∼N(0,
√
2Im+d)

ϕ(wT z)ϕ(wT z′)

= h′l+1
T
(x)h′l+1(x

′)±O(l2 log2m/
√
m)

(73)

hTl+1(x)h1+1(x
′) = h′1+1

T
(x)h′1+1(x

′)±O((l + 1)16 log2m/
√
m).

■

Proof of Lemma 17:
In the case l = 1, this is true from Theorem 9.

For l > 1, let Ul ∈ Rm×2l denote column orthonormal matrix using Gram-Schmidt as

Ul = GS(h1(x1), h1(x2), ...hl(x1), hl(x2)). (74)

We can write
Whl =WUl−1U

T
l−1hl−1 +W (I − Ul−1U

T
l−1)hl, (75)

and
hl+1(x) = ϕ(WUl−1U

T
l−1hl +W (I − Ul−1U

T
l−1)hl +AXl+1) (76)
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Consider

hl+1(x2)
Thl+1(x1) =ϕ(WUl−1U

T
l−1hl(x2) +W (I − Ul−1U

T
l−2)hl(x2) +Ax2,l+1)

T

· ϕ(WUl−1U
T
l−1hl(x1) +W (I − Ul−1U

T
l−1)hl(x1) +Ax1,l+1)

(77)

We write z1 = (I − Ul−1U
T
l−1)hl(x1), z2 = (I − Ul−1U

T
l−1)hl(x2). q1 = UT

l−1hl(x1), q2 =

UT
l−1hl(x2).

z2 =
⟨z1, z2⟩z1
||z1||2

+ (I − z1z
T
1 /||z1||2)z2 (78)

Then

hl+1(x2)
Thl+1(x1) =ϕ(WUl−1q2 +W

⟨z1, z2⟩z1
||z1||2

+W (I − z1z
T
1 /||z1||2)z2 +Ax2,l+1)

T

· ϕ(WUl−1q1 +Wz1 +Ax1,l+1)

(79)

Thus

hl+1(x2)
Thl+1(x1) =ϕ([M1 M2 M3 M4] ·


q2

⟨z1,z2⟩
||z1||

||(I − z1z
T
1 /||z1||2)z2||
x2,l+1

)T

· ϕ([M1 M2 M3 M4] ·

 q1
||z1||
0

x1,l+1

)
(80)

where

[M1 M2 M3 M4] =
[
WUl−1 Wz1/||z1|| W (I − z1z

T
1 /||z1||2)z2/||(I − z1z

T
1 /||z1||2)z2|| A

]
(81)

Let

E2 =


q2

⟨z1,z2⟩
||z1||

||(I − z1z
T
1 /||z1||2)z2||
x2,l+1

)

E1 =

 q1
||z1||
0

x1,l+1

)
(82)

We haveET
2 E1 = hl(x2)

Thl(x1) + xT2,l+1x1,l+1.

In order to study hl+1(x2)
Thl+1(x1), we can follow the method in the proof of Claim B.4 and Claim

B.4 in Allen-Zhu et al. (2019c). Firstly fix E1, E2, with probability at least 1− exp(−Ω(log2m)),

ϕ([M1 M2 M3 M4] · E2)
T · ϕ([M1 M2 M3 M4] · E1)

= EM∼N (0,I)ϕ(ME2)ϕ(ME1)±O(l + 1)2
log2m√

m
)

(83)

Then use ϵ− net. We also have for any E1, E2,

ϕ([M1 M2 M3 M4] · E2)
T · ϕ([M1 M2 M3 M4] · E1)

= EM∼N (0,I)ϕ(ME2)ϕ(ME1)±O(l + 1)2
log2m√

m
)

(84)

Thus
hl′+1(x

′)Thl+1(x)

=hl′+1(x
′)Thl+1(x)±O((l + 1)2 log2m/

√
m).

(85)
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The theorem follows. ■

Combing above theorems, Theorem 8,9 and 10, we have

Lemma 18 Let

Ql =

√√√√(1 +
1

L3

l∑
k=1

||Xi,k||2) · (1 +
1

L3

l∑
k=1

||Xj,k||2)

Γ(z) =

√
1− z2 + (π − arccos(z))z

π

There exits Kl
i,j such that with probability at least 1− L2exp(−Ω(log2m)),

|hTl (xi)hl(xj)−Kl
i,j | ≤ O(

l16 log2m√
m

). (86)

And
K1

i,j = Q1 · Γ([1 +
1

L3
XT

i,1Xj,1]/Q1)

Kl
i,j = Ql · Γ({

1

L3
XT

i,lXj,l +Kl−1
i,j }/Ql)

r
(87)

Thus Theorem 5 follows.

F Backward Correlation: Proof of Theorem 6

Theorem 19 For l ̸= l′, with probability at least 1− L2exp(−Ω(log2m)),

| 1
m
⟨Backl(xi) ·Dl,Backl′(xj) ·D′

l′⟩| ≤ O(
L4 log4m

m1/4
). (88)

For l = l′, with probability at least 1− L2exp(−Ω(log2m)),

1

m
⟨Backl(xi) ·Dl,Backl(xj) ·D′

l⟩ ⪰ Ω(1/L4) ·Σ({ 1

L3
⟨Xi,l, Xj,l⟩+Kl−1

i,j }/Ql)±O(
L4 log4m

m1/4
).

(89)

Proof of (88):

The proof of (88) is almost a line-by-line copy of the proof in section C of Allen-Zhu and Li (2019a),
but there are some minor differences.

Let ζ1, ..., ζm be a random orthonormal basis of Rm. Then divide all the m coordinates into
√
m

chunks N1, N2, ...Nm1/2 of the size N =
√
m.

Define
z1,0 = Dlζ1, z

′
1,0 = D′

lζ1, ... zN,0 = DlζN , z
′
N,0 = D′

lζN (90)
and

zi,a = Dl+aW · · ·Dl+1WDlzi,1

z′i,a = D′
l′+aW · · ·D′

l+1WD′
l′z

′
i,1

(91)

Zp,a = GS(h1, ..., hmax(l,l′), z1,1, ..., zN,1, z
′
1,1, ..., z

′
N,1, ..., z1,a, ..., zp,a, z

′
1,a, ..., z

′
p,a) (92)

We claim that, with probability at least 1− L2exp(−Ω(log2m)), for all a,

||ZT
p,azp,a|| ≤ O(

L3
√
N log3m√
m

). (93)

When a = 0,
ZT
p,0zp,0 = ZT

p,0Dlζ1 (94)

20



With probability at least 1− exp(−Ω(log2m)),

||ZT
p,0zp,0|| ≤ O(l logm/

√
m). (95)

For a > 1,

ZT
p,a+1zp,a+1 = ZT

p,a+1Dl+a+1(W (I − Zp,a+1Z
T
p,a+1)zp,a +WZp,a+1Z

T
p,a+1zp,a), (96)

||ZT
p,a+1Dl+a+1WZp,a+1Z

T
p,a+1zp,a)|| ≤ ||Dl+a+1WZp,a+1Z

T
p,a+1zp,a)||

≤ ||ZT
p,a+1zp,a)||(1 +

1

50L
),

(97)

The last step is from Lemma 11.

And

||ZT
p,a+1Dl+a+1W (I − Zp,a+1Z

T
p,a+1)zp,a|| ≤ O(

(l + a)3
√
N log2m√
m

). (98)

is because W (I − Zp,a+1Z
T
p,a+1)zp,a ∼ N(0, (2I/m) · ||(I − Zp,a+1Z

T
p,a+1)zp,a||2).

This claim follows that,∑
p∈[N ]

Ξp =
∑
p

BT (I − Zp,aZ
T
p,a)zp,a ·BT (I − Zp,a′ZT

p,a′)z′p,a′ ±O(m1/4L3 log4m) (99)

In the case a ̸= a′, (I − Zp,aZ
T
p,a)zp,a and (I − Zp,a′ZT

p,a′)z′p,a′ are mutually orthogonal. With
probability at least 1− exp(−Ω(log2m)),

|
∑
p

BT (I − Zp,aZ
T
p,a)zp,a ·BT (I − Zp,a′ZT

p,a′)z′p,a′ | ≤ O(log4m) (100)

Thus

| 1
m
⟨Backl(xi) ·Dl,Backl′(xj) ·D′

l′⟩| ≤ O(
L3 log4m

m1/4
). (101)

There are
√
m chunks, thus with probability at least 1 −

√
mL2exp(−Ω(log2m)) = 1 −

L2exp(−Ω(log2m)). (88) follows. ■

Proof of (89):

For any a, we have,

zp,a+1 = Dl+a+1(W (I − Zp,a+1Z
T
p,a+1)zp,a +WZp,a+1Z

T
p,a+1zp,a) (102)

Thus,

||zp,a+1 −Dl+a+1W (I − Zp,a+1Z
T
p,a+1)zp,a|| ≤ O(

L3
√
N log3m√
m

) (103)

We know that 1
m ⟨Backl(xi) ·Dl,Backl(xj) ·D′

l⟩ =
∑m1/2

i=1 Θi, where

Θi =
∑

p∈[Ni]

Ξp =
∑
p

BT (I − Zp,aZ
T
p,a)Dl+aW (I − Zp,aZ

T
p,a)...Dl+1W (I − Zp,1Z

T
p,1)zp,0

·BT (I − Zp,aZ
T
p,a)D

′
l+aW (I − Zp,aZ

T
p,a)...D

′
l+1W (I − Zp,1Z

T
p,1)z

′
p,0

±O(m1/4L3 log4m)
(104)

Combine the facts :

• With probability at least 1− exp(−Ω(log2m)),∑
p

BT zp,a ·BT z′p,a = ⟨zp,a, z′p,a⟩ ± O(

√
NL2 log2m√

m
). (105)
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• Let
Dl = ϕ(Whl−1(xl) +AXl)

D̃l = ϕ(W h̃l−1(xl) +AXl)
(106)

where h̃ is hl define by re-randomization in Lemma 17. Then |⟨D′
l, Dl⟩ − ⟨D̃′

l, D̃l⟩| ≤
O(L

2 log2 m
m )

•

||ZT
p,azp,a|| ≤ O(

L3
√
N log3m√
m

). (107)

and Claim F.1. Let Ql =
√
(1 + 1

L3

∑l
k=1 ||Xk||2) · (1 + 1

L3

∑l
k=1 ||X ′

k||2). With probability at

least 1− exp(−Ω(log2m)), we have

⟨zp,a, z′p,a⟩ =⟨(I − Zp,a−1Z
T
p,a−1)zp,a−1, (I − Zp,a−1Z

T
p,a−1)z

′
p,a−1⟩

· Σ({hTl+a−1h
′
l+a−1 +

1

L3
XT

l+aXl+a}/Ql+a)±O(
L3

√
N log3m√
m

),

=⟨(zp,a−1, z
′
p,a−1⟩ · Σ(⟨hl+a−1, h

′
l+a−1⟩/Ql+a

+
1

L3
⟨Xl+a, X

′
l+a⟩/Ql+a)±O(

L3
√
N log3m√
m

),

(108)

where

Σ(x) =
1

2
+
arcsin(x)

π
=
π − arccos(x)

π
. (109)

In order to study the constant term in

Σ(⟨hl+a−1, h
′
l+a−1⟩/Ql+a +

1

L3
⟨Xl+a, X

′
l+a⟩/Ql+a),

we need to study⟨hl+a−1, h
′
l+a−1⟩.

The constant term in ⟨hl+a−1, h
′
l+a−1⟩/Ql+a is the sequence (Lemma 18):

Kl = Γ(Kl−1 ·Ql−1/Ql),

Γ(x) = x+

√
1− x2 − arccos(x)x

π
.

(110)

Note that Kl > 0 is convergent. Meanwhile, the sequence K ′
l ,

0 < K ′
1 < 1,

K ′
l = Γ(K ′

l−1),
(111)

is also convergent Huang et al. (2020). We have liml→∞K ′
l = liml→∞Kl = 1. The aim of us is to

show
∑L

l=1

√
(1−Kl) ≤ O(logL).

Let el = 1−Kl. Claim F.3 and F.2 below show that el ∼ 1
l2 and

The constant term in {
L∏

l=1

Σ(⟨hl−1, h
′
l−1⟩/Ql +

1

L3
⟨Xl, X

′
l⟩/Ql)} ≥ Ω(1/Lb). (112)

and in this case, b = 3 + log2 L
L ≤ 4. Then (89) follows. ■

Claim F.1 Let D and D′ be diagonal matrix satisfying
(D)k,k = 1{WY +AX > 0},
(D′)k,k = 1{WY ′ +AX ′ > 0}.

(113)

If ⟨Y, Z⟩, ⟨Y,Z ′⟩ = 0,

EW ,A⟨DWZ,D′WZ ′⟩ =ZTZ ′ · Ew∼N(0,Im),a∼N(0, 1
L3 Id)

⟨ϕ′([w, a]T [Y,X]), ϕ′([w, a]T [Y ′, X ′])

=ZTZ ′ · Σ({Y TY ′ +XTX ′}/(||Y || · ||Y ′||+ ||X|| · ||X ′||))
(114)

with ϕ′(x) =
√
21{x > 0}.
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Proof of Claim F.1:
In fact,

EW ,A⟨DWZ,D′WZ ′⟩ =⟨Z ′,∇Y ′⟨Z,∇Y Ew∼N(0,Im),a∼N(0, 1
L3 Id)

⟨ϕ([w, a]T [Y,X]), ϕ([w, a]T [Y ′, X ′])⟩⟩.
(115)

with ϕ(x) =
√
2max(0, x). Then (114) is clearly a corollary of (115) and ⟨Y,Z⟩, ⟨Y,Z ′⟩ = 0.

Claim F.2 Supposing Kl ∼ cos[π(1− ( l
l+1 )

b)] + ξl,
∑L

l=l1

√
ξl ≤ O(1), b > 0,

L∏
l=1

π − arccos(Kl)

π
≥ Ω(exp(−b logL)) ≥ Ω(L−b) (116)

Proof:We use the inequality,

L∏
l=1

(1− b

l
− Ω(

√
ξl)) ≥ Ω(exp(−

L∑
l=1

b

l
− Ω(

√
ξl))). (117)

Meanwhile, for harmonic series,

L∑
l=1

b

l
= b logL+ bγ +O(1/L2) (118)

where γ ≈ 0.57721 is the Euler- Mascheroni constant. Thus the claim follows. ■

Claim F.3 Let el satisfy

el =
Ql−1

Ql
el−1 +

Ql −Ql−1

Ql

−

√
1− (1− Ql−1

Ql
el−1 − Ql−Ql−1

Ql
)2 − arccos(Ql−1

Ql
el−1 +

Ql−Ql−1

Ql
)(1− Ql−1

Ql
el−1 − Ql−Ql−1

Ql
)

π
.

(119)
For l, L large enough , we have el ≤ 1− cos[π(1− ( l

l+1 )
3+ log2 L

L )] + ξl and
∑L

l=l1

√
ξl ≤ O(1).

Before proving this claim, we cite the following lemma in the proof of Lemma 15 in Huang et al.
(2020):

Lemma 20 Let

zl = 1− cos[π(1− (
l

l + 1
)3+

log2 L
L )]. (120)

zl ≥ zl−1 −
√
1− (1− zl−1)2 − arccos(zl−1)(1− zl−1)

π
+

3π2 log2 L

l3L
+

20π2

2l4
(121)

Proof of Claim F.3: Firstly, note that from the assumption of ||Xl||, we have

Ql −Ql−1

Ql
≤ O(

1

L3
).

We will show there exits ql = zl + ξl such that

ql ≥
Ql−1

Ql
ql−1 +

Ql −Ql−1

Ql

−

√
1− (1− Ql−1

Ql
ql−1 − Ql−Ql−1

Ql
)2 − arccos(Ql−1

Ql
ql−1 +

Ql−Ql−1

Ql
)(1− Ql−1

Ql
ql−1 − Ql−Ql−1

Ql
)

π
.

(122)
Then el ≤ ql. The theorem follows.
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Let
Ql −Ql−1

Ql
= ϵlzl−1,

ql−1 = (1 + θl)zl−1,

(1 + θl+1) =
Ql −Ql−1

Ql
(1 + θl) + ϵl,

θl0+1 = 0.

(123)

Since zl < 1, θl > 0. And
Ql−1

Ql
ql−1 +

Ql −Ql−1

Ql
= (

Ql −Ql−1

Ql
(1 + θl) + ϵl)zl−1 = (1 + θl+1)zl−1.

Using Lemma 20, since
√
1−z2−arccos(z)(1−z)

π ∼ O(z3/2), we claim that

(1 + θl+1)zl ≥(1 + θl+1)zl−1

−
√

1− (1− (1 + θl)zl−1)2 − arccos((1 + θl)zl−1)(1− (1 + θl)zl−1)

π

(124)

This is because θl > 0, (1 + θl)
3/2 ≥ (1 + θl+1). Then we have

−

√
1− (1− Ql−1

Ql
ql−1 − Ql−Ql−1

Ql
)2 − arccos(Ql−1

Ql
ql−1 +

Ql−Ql−1

Ql
)(1− Ql−1

Ql
ql−1 − Ql−Ql−1

Ql
)

π
≤ (1 + θl+1)(zl − zl−1).

(125)
Therefore,
Ql−1

Ql
ql−1 +

Ql −Ql−1

Ql
−√

1− (1− Ql−1

Ql
ql−1 − Ql−Ql−1

Ql
)2 − arccos(Ql−1

Ql
ql−1 +

Ql−Ql−1

Ql
)(1− Ql−1

Ql
ql−1 − Ql−Ql−1

Ql
)

π

≤ [
Ql −Ql−1

Ql
](1 + θl)zl−1 + ϵlzl−1 + (1 + θl+1)zl − (1 + θl+1)zl−1

= [
Ql −Ql−1

Ql
(1 + θl) + ϵl − (1 + θl+1)]zl−1 + [1 + θl+1]zl

= [1 + θl+1]zl
= ql.

(126)
Since

(1 + θl+1) =
Ql −Ql−1

Ql
(1 + θl) + ϵl, (127)

we can write

(1 + θl+1) = 1 +

l∑
l′=l0

l∏
j=l′

Qj −Qj−1

Qj
ϵl′ . (128)

Then

(1 + θl+1) ≤ 1 +O(

l∑
l′=l0

ϵl′) (129)

ql = (1 + θl+1)zl ≤ zl +O(

l∑
l′=l0

ϵl′zl)

≤ zl +O(

l∑
l′=l0

Ql′ −Ql′−1

Ql′

(l′)2

l2
)

≤ zl +O(
l

L3
)

(130)
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Since
L∑

l=1

√
l

L3
≤ O(1), (131)

the theorem follows. ■

G Complexity of Functions: Proof of Theorem 4.

In this section, we give the detailed proof of Theorem 4.

Lemma 21 Let

Σ(x) =
1

2
+
arcsin(x)

π
. (132)

If ||Zi||, ||Zj || ≤ O(1), µ > 1,

Σ({µ+
1

L3
ZT
i Zj}/Ql) ⪰ Ω(

1

L3
) · ( 1

O(L)
)k · 1

k2
(ZT

i Zj)
k/(||Zi|| · Zj ||)k (133)

Proof: From the Taylor formula, for all p ∈ N,

Σ(ZT
i Zj) ⪰

∞∑
p=1

(ZT
i Zj)

2p−1

2π(2p− 1)2
. (134)

And

Σ([µ+
1

L3
ZT
i Zj ]/Ql) ⪰

∞∑
p=1

(µ+ 1
L3Z

T
i Zj)

2p−1

2π(2p− 1)2 ·Q2p−1
l

. (135)

For any k ∈ N, the coefficient of [ZT
i Zj/L

3]k/ in Σ([µ0 +
1
L3Z

T
i Zj ]/Ql) will be larger than ak

Qk
l

with

ak =

∞∑
2p−1>k

1

2π(2p− 1)2
· ( µ
Ql

)2p−1−k · 2p− 1 · (2p− 2) · ... · (2p− k)

k!
(136)

Consider

bk =

∞∑
2p−1>k

(
µ

Ql
)(2p−1−k−2) · 2p− 1 · (2p− 2) · ... · (2p− k + 2))

k!
(137)

bk = Ω(( µ
Ql

)2) · ak. Let

f(x) =
1

1− x2
. (138)

Then
bk ≥ Ω(|f (k−2)(

µ

Ql
)| · 1

k!

=
(k − 2)!

2 · k!
[

1

(1− µ
Ql

)k−1
+

(−1)k−2

(1 + µ
Ql

)k−1

≥ Ω(
1

(k − 2) · (k − 3)
·

Qk−1
l

(Ql − µ)k−1
)

(139)

Thus the coefficient of (ZT
i Zj/L

3)k in Σ([µ0 + ZT
i Zj ]/Ql) will be larger than

Ω(
1

(k − 2) · (k − 3)
·

Q−1
l

(Ql − µ)k−1

Q2
l

µ2
) ≥ Ω(Ql − µ) · 1

(Ql − µ)k · k2
.

Since
0 < C1 ≤ ||Xl,i||2, ||Xl,j ||2 ≤ C2,

||Zi||2/
L∑

l=1

||Xi,l||2 ∼ 1

L
,

||Zj ||2/
L∑

l=1

||Xj,l||2 ∼ 1

L

(140)
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and

Ql =

√√√√(1 +
1

L3

l∑
k=1

||Xi,k||2) · (1 +
1

L3

l∑
k=1

||Xj,k||2). (141)

We have

Σ({µ+
1

L3
ZT
i Zj}/Ql) ⪰ Ω(

1

L3
) · ( 1

O(L)
)k · 1

k2
(ZT

i Zj)
k/(||Zi|| · ||Zj ||)k. (142)

The claim follows. ■

Using this lemma, note that we can write [Kl−1
i,j + 1

L3X
T
i,lXj,l]/Ql =

µ+ 1
L3 XT

i,lXj,l+Ti,j

Ql
with

Ti,j ⪰ 0 where µ = 1 is the constant term in Kl−1
i,j and

[Kl−1
i,j +

1

L3
XT

i,lXj,l + Ti,j ]/Ql ⪰
µ+ 1

L3X
T
i,lXj,l

Ql
.

We have the following lemma:

Lemma 22 Under the condition of Lemma 18, for any k ∈ N,

Σ({Kl
i,j +

1

L3
XT

i,lXj,l}/Ql) ⪰ Ω(
1

L3
) · ( 1

O(L)
)k · 1

k2
(XT

i,lXj,l)
k/(||Xi,l|| ·Xj,l||)k. (143)

Now we can prove Theorem 4.

Theorem 23 Assume there is δ ∈ [0, e−1]. Let n samples in D be {xi, yi}ni=1. ỹ =
[F ∗(x1), F

∗(x2), ...F
∗(xn)]

T . F ∗ is a function belonging to the concept class (9) or (11) such
that yi · F ∗(xi) ≥ 1 for all i. There exits matrix H∞ satisfying:

H + ϵT ϵ ⪰ H∞ with ||ϵ||F ≤ 0.01/O(C ∗) (144)

and √
ỹT (H∞)−1ỹ ≤ O(C ∗). (145)

Proof:

Firstly, using the forward and backward correlation Theorem 5 and Theorem 6,

1

m
⟨Backl(xi) ·Dl,Backl(xj) ·D′

l⟩ ⪰
1

O(L4)
Σ({ 1

L3
⟨Xi,l, Xj,l⟩+Kl−1

i,j }/Ql)±O(
L4 log4m

m1/4
)

(146)
and

| 1
m
⟨Backl(xi) ·Dl,Backl′(xj) ·D′

l′⟩| ≤ O(
L4 log4m

m1/4
). (147)

for l ̸= l′.

Thus

Hi,j =
1

m
⟨∇f(W , xi),∇f(W , xj)⟩ =

L∑
l=1

1

m
⟨,BackTl Dl · hTl (xi),BackTl Dl · hTl (xj)⟩

± O(
L6 log4m

m1/4
)

(148)

The closure of multiplication Proposition 2.2 for positive definite function concludes there exits
semi-positive define matrix M

Hi,j +Mi,j ⪰
1

O(L4)
Σ({ 1

L3
⟨Xi,l, Xj,l⟩+Kl−1

i,j }/Ql). (149)
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with Mi,j ≤ O(L
6 log2 m
m1/4 ). Then ||M ||F ≤ n2 L6 log2 m

m1/4 . M is semi-positive define, therefore there
exits ϵT ϵ = M , ||ϵ||F ≤ 0.01/C ∗ by SVD and reshaping since m > poly(n,C ∗). Meanwhile let

G = m−1/2 · (vec[∇f(W 0, x1)], vec[∇f(W 0, x2)], ...vec[∇f(W 0, xn)]) ∈ Rm2×n.

Since m2 ≫ n, we can set ϵ satisfying ϵTG = 0 without changing ϵT ϵ.

For a function ψ(βT
l,rXl/||Xl||) =

∑∞
p=1 cp(β

T
l,rXl/||Xl||)p with ||βl,r|| ≤ 1, let

yp = [cp(β
T
l,rX1,l/||X1,l|)p, ...cp(βT

l,rXn,l/||Xn,l||)p] ∈ Rn. (150)

Using Proposition 2.4, if H∞
i,j ⪰ ξp(X

T
l,iXl,j/(||Xl,i|| · ||Xl,j ||))p,

yTp (H
∞)−1yp ≤

c2p||βT
l,r||2p

ξp
.

In our case, from Lemma 22,

ξp = Ω(
1

L4
) · Ω( 1

L3
) · ( 1

O(L)
)p · 1

p2
(151)

Note that

y
def
=

∞∑
p=1

yp = [ψ(βT
l,rX1,l/||X1,l||), ...ψ(βT

l,rXn,l/||Xn,l||)] ∈ Rn.

We have √
yT (H∞)−1y ≤

∑
p

√
yTp (H

∞)−1yp ≤
∞∑
p=1

cp||βT
l,r||p

ξp
. (152)

In our case ,
1√
ξp

≤ O(L3.5) · (O(
√
L))p · p. (153)

We have √
ỹT (H∞)−1ỹ ≤ O(C ∗) (154)

for Additive Concept Class (9).

For N-variables Concept Class (11)

F ∗(x) =
∑
r

ψr(⟨βr, [Xl1 , ..., XlN ]⟩/
√
N max ||Xln ||).

We rewrite it as
F ∗(x) =

∑
r

ψr(⟨βr, [Xlmax
, ..., Xlmax−N ′ ]⟩/

√
N max ||Xln ||

lmax = max(l1, .., lN ), N ′ = max(l1, .., lN )−min(l1, .., lN ).

Finally we prove that
√
ỹT (H∞)−1ỹ ≤ O(L4

∑
r CN (ψr,O(

√
L)).

Based on the structure of H∞, we have

H∞
i,j ⪰

1

O(L4)
· Σ({Kl1

i,j +
1

L3
XT

i,l1Xj,l1}/Ql1) · ... · Σ({K
lN
i,j +

1

L3
XT

i,lNXj,lN }/QlN ).

Then we have the follow claim

Claim G.1 For any N terms XT
i,r1

Xj,r1 , X
T
i,r2

Xj,r2 ..., X
T
i,rN

Xj,rN , rmax = max(r1, ...rN ), we
have

H∞
i,j ⪰

1

CN
1 L

4 · L2N · CN,p · (p/N)2N

· (XT
i,r1Xj,r1/||Xi,r1 || · ||Xj,r1 ||+XT

i,r2Xj,r2/||Xi,r2 || · ||Xj,r2 ||...
+XT

i,rNXj,rN /||Xi,rN || · ||Xj,rN ||)p

⪰ 1

CN
1 L

4 · L2N · CN,p · (p/N)2N

· (XT
i,r1Xj,r1 +XT

i,r2Xj,r2 ...+XT
i,rNXj,rN )p/(N ·max

n
(||Xi,rn ||) ·max

n
(||Xj,rn ||))p

(155)
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where C1 is a large constant.

which can be deduced from the following facts:

(a) For k ∈ N, Σ({Kl
i,j +

1
L3X

T
i,lXj,l}/Ql) ⪰ Ω( 1

L3 ) · ( 1
O(L) )

k · 1
k2 (X

T
i,lXj,l)

k/(||Xi,l|| ·Xj,l||)k.

(b) For any n integers n1, n2, ...nN , with n1 + n2 + .. + nN = p, CN,p ≥ p!
n1!n2!...nN ! and the

largest coefficient of monomial in (x1 + x2+, ..+ xN )2p−1 is less than CN,p.

(c) For any n integers n1, n2, ...nN , with n1 + n2 + ..+ nN = p, (p/N)2N ≥ n21 · ... · n2N ).

(b) and (c) are trivial. (a) is from Lemma 22.

Combing these results, polynomial theorem and using a similar argument as (154), we have√
ỹT (H∞)−1ỹ ≤ L2O(1 +

∞∑
p=1

L1.5NCN
1 ·

√
CN,p · (p/N)N (O(

√
L))p · |cp|.

Thus
√
ỹT (H∞)−1ỹ ≤ O(L2

∑
r CN (ψr, 1)).

Finally we prove √
ỹT (H∞)−1ỹ ≤ O(L3

∑
r

C (ψr, 2
l0O(

√
L))).

Consider

K1
i,j = Ql ·

∞∑
r=0

µ2
r(1 +

1

L3
XT

i,1Xj,1/Ql)
r,

Kl
i,j = Ql

∞∑
r=0

µ2
r({

1

L3
XT

i,lXj,l +Kl−1
i,j }/Ql)

r.

(156)

with µr = 1√
2π

∫∞
0

√
2xhr(x)e

− x2

2 dx, hr(x) = 1√
r!
(−1)re

x2

2
dr

dxr e
− x2

2 . We can rewrite this equa-
tion as:

K1 =

∞∑
r=0

µ2
r(1 +

1

L3
XT

i,1Xj,1/Q1)
r = Γ([1 +

1

L3
XT

i,1Xj,1]/Q1),

Kl = Γ(Kl−1 ·Ql−1/Ql),

Γ(x) = x+

√
1− x2 − arccos(x)x

π
.

(157)

and
Kl

i,j =Kl ·Ql

=Ql · Γ
Ql−1

Ql
◦ ... ◦ Γ{ 1

Q1
· (1 + 1

L3
XT

i,1Xj,1)}︸ ︷︷ ︸
l times

. (158)

Using the fact

Ql ·
l∏

k=k0

Ql−1

Ql
= Qk0−1, (159)

and
∇xfl ◦ fl−1... ◦ f1(x) = f ′l ◦ f ′l−1... ◦ f ′1(x),

The linear part in Kl
i,j is

∑l−1
r=0 µ

2l−2r
1

1
L3X

T
i,rXj,r. Thus

Kl
i,j +

1

L3
XT

i,lXj,l

⪰ 1

L3
XT

i,lXj,l +

l−1∑
r=0

µ2l−2r
1

1

L3
XT

i,rXj,r

⪰ µ2l
1

l∑
r=1

1

L3
XT

i,rXj,r

(160)
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with µ2
1 = 1

2 .

||µ2l
1

∑l
r=1X

T
i,rXj,r|| ≤ µ2l

1 · l ≤ O(1). Then from Lemma 21, we have

H∞
i,j ⪰ Ω(

1

L7
) · ( 1

O(L)
)k · 1

k2
(ZT

i Zj)
k/(||Zi|| · ||Zj || · 2l)k (161)

with ZT
i Zj =

∑l
r=1 µ

2r
1 X

T
i,rXj,r and ||Zi||2 =

∑
r µ

2r
1 ||Xi,r||2

Therefore √
ỹT (H∞)−1ỹ ≤ O(L3.5

∑
r

C (ψr, 2
l0O(

√
L)))

The theorem follows. ■

Remark G.1 Based on the previous results, we can generalize the results to the loss with the form:

1

n

n∑
i=1

L∑
l=1

ℓ(yi · fl(W , xi))

with fl(W , x) = BThl(x) to show for H l
i,j = ⟨∇fl(W , xi),∇fl(W , xj)⟩, there exits

H l + ϵT ϵ ⪰ (H l)∞ with ||ϵ||F ≤ 0.01/
√
ỹT ((H l)∞)−1ỹ (162)

In fact we have following two generalization results of previous results which are in fact already
contained in the proof.

Generalization of Lemma 17:

Let gl = ϕ1(W gl−1), hl(x1) = ϕ2(Whl−1(xl) + AXl). g̃l = ϕ1(W̃ g̃l−1) and h̃l(x1) =

ϕ1(W̃ h̃l−1(xl)+ÃXl) are defined by W̃ , Ã. W̃ , Ã and W ,A are i.i.d. Then for any 0 < l, l′ < L,
with probability at least 1− L2exp(−Ω(log2m)),

|gTl hl′(x′)− gl
Thl′(x

′)| ≤ O(L2 log2m/m) (163)
where

gl = ϕ1(W g̃l−1)

hl′(x1) = ϕ2(W h̃l′−1(xl) +AXl)

Let ϕ1(x) = x, ϕ2(x) = max(x, 0). One corollary of this result is that from (4.2) in Allen-Zhu et al.
(2019c), there exits gl, such that ⟨gl, hl′⟩ ≥ 1/poly(L) when l = l′. Else ⟨gl, hl′⟩ = 0.

Generalization of Theorem 19:

With probabiluty at least 1− L2exp(−Ω(log2m)),

| 1
m
⟨BDl1W · · ·Dl+1WDl, BD

′
l2W · · ·D′

l+1WD′
l⟩| ≤ O(

L4 log4m

m1/4
). (164)

if l1 ̸= l2.

Then we can show there exits w∗
a with ||w∗

a|| ≤ C (F ∗
a ). for a = 1, 2...L with

1√
m
⟨∇

W̃
fa(W̃ , xi), w

∗
a⟩ =

1

m

∑
l

⟨BDaW · · ·Dl+1WDl, w
∗
a,back⟩ · ⟨hl(xi), ga⟩ = F ∗

a (xi) + ϵ

(165)
and

| 1√
m
⟨∇

W̃
fa′(W̃ , xi), w

∗
a⟩ = | 1

m

∑
l

⟨BDa′W · · ·Dl+1WDl, w
∗
a,back⟩ · ⟨hl(xi), ga⟩| ≤ ϵ (166)

when a ̸= a′.

Here w∗
a,back is from the SVD of matrix

1

m
⟨BDl1W · · ·Dl+1WDl, BD

′
l2W · · ·D′

l+1WD′
l⟩.

as (65) in the proof of Lemma 15.
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