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LLM USAGE DISCLOSURE

In accordance with ICLR guidelines on the responsible use of large language models (LLMs), we
note that LLMs were used exclusively for refining language and improving formatting. They were not
used to generate research ideas, mathematical content, theoretical results, or experimental findings.
The authors are solely responsible for the accuracy and integrity of all scientific contributions in this
work.

A ADDITIONAL RELATED WORK.

Foundations and efficiency in DMD. For broad surveys of dynamic mechanism design (DMD), see
Bergemann & Välimäki (2019) and Pavan (2017). A large efficiency-oriented thread establishes dy-
namic analogues of Groves/VCG and studies institutional constraints. The dynamic pivot mechanism
implements efficient allocations under evolving private information (Bergemann & Välimäki, 2010).
Related work formulates allocation and pricing with stochastic arrivals/departures and timing via
MDP/online models and sequential auctions (e.g., Greenwald et al., 2012; Said, 2011; Vulcano et al.,
2002). Beyond dominant-strategy templates, Athey & Segal (2013) characterize efficient dynamic
mechanisms in environments with intertemporal private information, and Pavan et al. (2014) provide
a general revelation and envelope approach for dynamic screening. Dynamic revenue maximization in
models with time-varying/evolving types (Pai & Vohra, 2013; Mirrokni et al., 2018). Complementary
strands analyze dynamic pricing/screening and institutional constraints—including durable-goods
monopoly with varying demand over time (Board, 2008), sequential screening (Courty & Hao, 2000),
and a revelation principle for multistage games that clarifies the implementability of extensive-form
mechanisms (Sugaya & Wolitzky, 2021). Continuous-time dynamic contracting addresses persistent
private information and commitment (Williams, 2011). Fairness and design constraints have also
been embedded into dynamic settings (Fallah et al., 2024).

Information design in dynamic environments. A complementary literature studies what the
designer/principal should reveal over time. Canonical treatments of (static) information design
include Bergemann & Morris (2019). Dynamic counterparts analyze sequential persuasion and
optimal disclosure when actions and beliefs evolve, e.g., Wu et al. (2022); Eso & Szentes (2007).
These tools interact with DMD through belief dynamics, experimentation, and commitment to
disclosure policies.

Automated Mechanism Design (AMD) Automated mechanism design originated with Conitzer
& Sandholm (2002; 2004), who cast mechanism search as a constrained optimization problem
and studied computational complexity and constraint generation. More recent approaches utilizes
deep learning to scale to larger and more general settings. Duetting et al. (2023) introduced deep
neural networks for auction design, improving representational flexibility. This approach, termed
differentiable economics, has since been extended to budget-constrained bidders (Feng et al., 2018),
payment minimization (Tacchetti et al., 2019), multi-facility location (Golowich et al., 2018), fairness-
revenue trade-offs (Kuo et al., 2020), affine maximizer auctions (Curry et al., 2022; Duan et al., 2023),
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and data markets (Ravindranath et al., 2023). Structural advancements, such as Wang et al. (2024),
achieve exact strategy-proofness rather than approximate incentive compatibility. It is also extended
to the single-bidder combinatorial auction setting (Wang et al. (2025)). For a comprehensive survey,
see Curry et al. (2025).

Dynamic automated mechanism design (DAMD). Recent work pushes the AMD viewpoint into
dynamic settings. Zhang & Conitzer (2021) introduce Automated Dynamic Mechanism Design with
linear-program formulations (and hardness for long horizons). RL-based approaches learn policies
for sequential pricing/auctions: Brero et al. (2021) learn sequential posted-price mechanisms; Brero
et al. (2023) study Stackelberg-POMDP formulations and sample-based computation of Stackelberg
equilibria relevant to dynamic market design. Parallel efforts connect equilibrium computation with
learning in auction games, e.g., Zhang et al. (2024). There is also growing interest in automated
design for structured mechanism classes such as affine maximizers in dynamic settings (Curry et al.,
2024). These works collectively demonstrate that learning-based search over mechanism spaces
(with explicit incentive constraints or ex-post compliance) can scale beyond hand-crafted analytic
templates.

Truthful bandits and incentivized exploration. A complementary line studies truthful bandit
and incentivized-exploration mechanisms in repeated/dynamic markets, clarifying when exploration
must be separated from exploitation and how to maintain (approximate) BIC while learning (Babaioff
et al., 2009; Frazier et al., 2014; Li et al., 2024). These results inform the limits and design of
learn-as-you-go dynamic platforms.

Positioning relative to this paper. Relative to these literatures, our approach searches directly over
parameterized dynamic mechanisms and enforces IC/IR as equilibrium constraints in the induced
dynamic game. This provides a complementary route to dynamic AMD that is not tied to a particular
analytic template (e.g., dynamic VCG) and is amenable to multidimensional types and unknown
dynamics, while also accommodating belief updates and exploration when relevant.

B ADDITIONAL PRELIMINARY DEFINITIONS

Notation We denote by [n] the set of integers {1, . . . , n} and [n∗] by {0} ∪ [n]. Let X be any
set, and let (X ,BX ) denote the associated measurable space, where BX is the Borel σ-algebra
on X . Unless otherwise noted, we will take BX as the default σ-algebra on X . Additionally, we
denote the orthogonal projection operator onto a set X by ΠX (x)

.
= argminy∈X ∥x− y∥22. We

define the subdifferential of a function f : X → R at a point a ∈ X by Df(a) .
= {h | f(x) ≥

f(a) + hT (x− a)}, and we denote the derivative operator of a function g : X → Z by ∂g.

Terminology. Fix any norm ∥·∥. Given A ⊂ Rd, the function f : A → R is said to be ℓf -Lipschitz-
continuous for some ℓf ∈ R+ iff ∀x1,x2 ∈ X , ∥f(x1)− f(x2)∥ ≤ ℓf ∥x1 − x2∥. If the gradient of
f is ℓ∇f -Lipschitz-continuous for some ℓ∇f ∈ R+, f is called ℓ∇f -Lipschitz-smooth. The function f
is said to be a ℓf -contraction (resp. non-expansion) if it is Lipschitz-continuous with coefficient ℓf < 1
(resp. ℓf = 1). ForX ⊆ Rd, we say f is (c, µ)–gradient dominated overX if there exist constants c >
0 and µ ≥ 0 such that minx′∈X f(x

′) ≥ f(x) + minx′∈X
[
c⟨∇f(x), x′ − x⟩ + µ/2 ∥x− x′∥22

]
,∀x ∈

X . The function is said to be gradient dominated with degree one if µ = 0 and gradient dominated
with degree two if µ > 0.

Omitted Definition for Partially Observable Markov Games Given a policy profile π ∈
P and an initial state distribution µ ∈ ∆(S0), we define the τ th-step history distribu-
tion measure νπ ,θ ,τ

µ on Hτ as: for all Hτ = (S0,O0,A0, · · · ,Sτ ,Oτ ,Aτ ) ∈ BHτ
,

νπ ,θ ,τ
µ (Hτ ) =

∫
S0

∫
O0

∫
A0
· · ·

∫
Sτ

∫
Oτ

πτ (Aτ | o0,a0, · · · ,aτ−1,oτ )Oτ (doτ | sτ )× Pτ−1(dsτ |
sτ−1,aτ−1;θ)× · · ·π0(da0 | o0)O0(do0 | s0)µ(ds0).
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B.1 MARKOV GAMES AND REDUCTION OF POMGS TO MGS

B.1.1 (PARAMETRIZED) MARKOV GAMES

A (parametrized) Markov game (MG) is a tupleMθ .
= (n, T,S,A, P, γ, µ, r,θ,Θ) parametrized by

a vector θ in the parameter space Θ ⊆ Rd:

• Horizon T : A positive integer or∞.

• State space S: S is a nonempty Borel space.

• Action space {Ai}i∈[n]: Each Ai is a nonempty Borel space, and we denote the space of
joint actions by A =×i∈[n]

Ai.

• Parameterized transition kernels P : S × s × A × Θ → [0, 1]: P is a Borel-measurable
stochastic kernel on S given S ×A×Θ.

• Discount factor γ.

• Initial state distribution µ ∈ ∆(S): A probability measure on S.

• Parameterized reward functions {ri : S×A×Θ→ R}i∈[n]: Each ri] is a Borel-measurable
function from S ×A×Θ to R.

The game initiates at time τ = 0 in some state s0 ∼ µ drawn from an initial state distribution µ. At
each time period τ = 0, 1, · · · , T − 1, each player i ∈ [n] plays an action ai,τ ∈ Ai and receives
a reward ri(sτ ,aτ ;θ). The game then transitions to a new state sτ+1 ∈ Sτ+1 with probability
P (dsτ+1 | sτ ,aτ ;θ).

A history (of play) h ∈ Hτ
.
= (S × A)τ of length τ ∈ N + 1 is a sequence of state-action tuples

hτ = (sk,ak)
τ−1
k=0, and we denote the space of histories byH =

⋃T
τ=1Hτ .

A policy for player i ∈ [n] is a sequence πi = (πi,0, πi,1, · · · , πi,T−1) such that for each τ , πi,τ is a
universally measurable stochastic kernel on Ai givenHτ × S. If, for each τ , πi,τ is parameterized
only by sτ , πi is Markov. Moreover, if for all 0 ≤ τ ≤ T − 1, s ∈ S, πi,τ (s) = πi,(s) for some
πi, : S → ∆(Ai), then πi is stationary. If, for each τ and (hτ , sτ ) ∈ Hτ × S, πi,τ (dai,τ | hτ , sτ )
assigns mass one to some point in Ai, πi is deterministic. In this case, by a slight abuse of notation,
πi can be considered as a sequence of universally measurable mappings πi,τ : Hτ × S → Ai.

We refer the space of for player i ∈ [n] as P , the space of all stationary policies as PS
i , the space

of all Markov policies as PMarkov
i , and the space of all Markov and stationary policies as PMS

i . As
usual, π .

= (π1, . . . ,πn) ∈ P
.
=×i∈[n]

Pi denotes a policy profile.

Given a policy profile π ∈ P and an initial state distribution µ ∈ ∆(S0), we define the τ th-step
history distribution measure νπ ,θ ,τ

µ onHτ as for allHτ = (S0,A0, · · · ,Sτ−1,Aτ−1) ∈ BHτ

νπ ,θ ,τ
µ (Hτ ) =

∫
S0

∫
A0

· · ·
∫
Sτ−1

πτ−1(Aτ−1 | s0,a0, · · · , sτ−1) (6)

× P (dsτ | sτ−1,aτ−1;θ)× πτ−2(daτ−2 | s0,a0, · · · , sτ−2)× · · · (7)
π0(da0 | s0)µ(ds0) (8)

Furthermore, given a policy profile π ∈ P and a initial state distribution µ ∈ ∆(S0), we define the
τ th-step discounted state occupancy measure δπ ,θ ,τ

µ on S as for all Sτ ∈ BS ,

δπ ,θ ,τ
µ (Sτ ) =

∫
hτ+1∈Hτ+1:sτ∈Sτ

νπ ,θ ,τ+1
µ (dhτ+1) (9)

and δπ ,θ
µ (Sτ ) =

∑T−1
τ=0 δ

π ,θ ,τ
µ (Sτ ).

Given a policy profile π ∈ P , for any player i ∈ [n], 0 ≤ τ ≤ τ − 1, define the action-value function
qπi : S ×A → R as:

qπi (s,a;θ) = ri(s,a;θ) + E

[
T−1∑
τ=0

γτri(sτ ,π(sτ );θ)

∣∣∣∣sτ = s,aτ = a

]
(10)
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Given a policy profile π ∈ P , for any player i ∈ [n], the utility function is defined as

Ui(π ;θ)
.
=

∫
HT

[
T−1∑
τ=0

γτri(sτ ,aτ ;θ)

]
dνπ ,θ ,T

µ (11)

= E
H∼νπ,θ ,T

µ

[
T−1∑
τ=0

γτri(Sτ , Aτ ;θ)

]
(12)

For any π ,π′ ∈ P , the cumulative regret is Ψ(π ,π′;θ) =
∑

i∈[n] Ui(π
′
i,π−i;θ) − Ui(π ;θ).

Moreover, given a policy profile π ∈ P , the exploitability of π is φ(π ;θ)
.
= maxπ′∈P Ψ(π ,π′;θ),

which represents the sum of the players’ maximal unilateral payoff deviations.

As usual, an ε-Bayesian Nash equilibrium (ε-BNE) of a Markov Game Mθ is a policy profile
π∗ ∈ P such that for all i ∈ [n], Ui(π

∗;θ) ≥ maxπi∈Pi
Ui(πi,π

∗
−i;θ)− ε; and a Bayesian Nash

equilibrium occurs when ε = 0.

B.1.2 REDUCTION FROM POMGS TO MGS

Belief state reduction is a fundamental technique for solving partially observable Markov decision
processes (POMDPs), where the belief state—a probability distribution over hidden states—encodes
all relevant information about the system’s history Kaelbling et al. (1998). By operating in the belief
space, a POMDP can be reformulated as an equivalent Markov decision process (MDP), enabling
the use of MDP solution frameworks. In this section, we extend belief state reduction techniques to
POMGs, which introduces additional complexity to belief state dynamics as multiple agents interact
and respond to each other’s actions and strategies.

We limit our discussion to finite-state POMGs, as extending belief state reductions to continuous
state spaces poses significant computational challenges. In continuous-state POMDPs, the belief state
resides in an infinite-dimensional space, requiring approximation techniques like particle filtering or
function approximation, which often lead to substantial trade-offs between precision and tractability.
These complexities significantly amplify the computational burden, making finite-state cases a more
tractable yet still illustrative focus.

Let Yθ .
= (n, T,S,A, P, γ, µ, r,O, O,θ,Θ) be a partially observable Markov game (POMG).

Assume that |S|<∞ is finite.

For any 0 ≤ τ ≤ T , i ∈ [n], let bi,τ ∈ ∆(S) be a probability distribution over S. Then, given
oi,τ+1 ∈ Oi, aτ ∈ A, we define the belief transition function BT : ∆(S)×Oi ×A → ∆(S) by

BTτ (bi,τ , oi,τ+1,aτ )(sτ+1)
.
= P(sτ+1 | oi,τ+1,aτ , bi,τ ) (13)

=
P(oi,τ+1 | sτ+1,aτ , bi,τ )P(sτ+1 | aτ , bi,τ )

P(oi,τ+1 | aτ , bi,τ )
(14)

=
Oi,τ+1(oi,τ+1 | sτ+1)

∑
s∈S P (sτ+1 | s,a;θ)bi,τ (s)∑

s′∈Sτ+1

(
Oi,τ+1(oi,τ+1 | s′)

∑
s∈S Pτ (s′ | s,a;θ)bi,τ (s)

)
(15)

Now, we can define the Belief Markov Game corresponds to Yθ :

• Horizon T : Adopted from Yθ .

• State spaces B =×i∈[n]
∆(S): B is the set of joint belief states over the POMDP states.

For each i ∈ [n], bi ∈ ∆(S) represents player i’s belief of distribution of current state.

• Action spaces {Ai}i∈[n]: Adopted from Yθ .

• Parameterized transition kernels P ′ : B × B ×A×Θ→ [0, 1] is defined as

P ′(bτ+1 | bτ ,aτ )
.
=

∏
i∈[n]

(∫
Oi

1{bi,τ+1}(BTτ (bi,τ , oi,τ+1,aτ ))P(oi,τ+1 | aτ , bi,τ )

)
where P(oi,τ+1 | aτ , bi,τ ) =

∑
s′∈Sτ+1

(
Oi,τ+1(oi,τ+1 | s′)

∑
s∈S Pτ (sτ+1 | s,a;θ)bi,τ (s)

)
.

• Discount factor γ: Adopted from Yθ .
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• Initial state distribution µ′ ∈ ∆(B) is the probability measure on B that assign point mass
to b0 = (µ, · · · , µ).

• Parameterized reward functions {r′i : B ×A×Θ→ R}i∈[n] is defined as: for each i ∈ [n],
r′i(bτ ,a;θ)

.
=

∑
s∈S ri(s,a;θ)bi,τ (s).

Remark 1. One underlying assumption of belief Markov game formulation is that at each time
step τ , the joint action profile aτ is publicly observable for all the players. This assumption is
essential for players to update their posterior beliefs about the state distribution based on their
private observations, private beliefs, and the joint action profile. However, in the Agent POMG, we
can replace the public report profile with publicly observable joint outcome, as the transition kernel
depends on the report profile only through their induced joint outcome.

Note that for any i ∈ [n], and any deterministic policy πi ∈ PPO
i in Yθ , we can define an

equivalent policy π′
i ∈ Pi in the corresponding Belief Markov Game as: for each 0 ≤ τ ≤ T − 1,

π′
i,τ (ai | b) = P(πi(ιi,τ ) = ai | Bi,τ = bi) where Bi,τ ∈ ∆(S) is the belief of player i derived

from ιi,τ .

The proof of the reduction and more details can be found in (Bertsekas & Shreve; Kaelbling et al.,
1998).

C OMITTED ASSUMPTIONS, RESULTS AND PROOFS

Theorem 3.1. Let δ∗ ∈ R be the largest real number such that

min
θ∈Θ

max
π∈PPO

f(θ,π ; δ) = |v(θ)− δ∗|+αψ(θ,π) + βh(θ) = 0,

with (θ∗,π∗) being the min-max solution, i.e., f(θ∗,π∗; δ) = minθ∈Θ maxπ∈PPO f(θ,π ; δ), then
gθ

∗
is the optimal BIC and BIR dynamic mechanism in the mechanism class GΘ, and δ∗ corresponds

to the optimal principal payoff.

Proof. Consider any δ∗ ∈ R, and assume that

min
θ∈Θ

max
π∈PPO

f(θ,π ; δ) = |v(θ)− δ∗|+αψ(θ,π) + βh(θ) = 0

That means, there exists θ∗ ∈ Θ, π∗ ∈ PPO s.t. f(θ∗,π∗) = 0.

Note that for any θ ∈ Θ,

|v(θ)− δ∗|≥ 0, h(θ) =
∑
i∈[n]

|hi(θ)|≥ 0,

and moreover,

αψ(θ,π∗) = αmax
π

ψ(θ,π)

≥ αψ(θ,π†) = α E
H∼ν

(π
†
i
,π

†
−i

),θ ,T−1

µ′

H†∼νπ†,θ ,T−1
µ

[
T−1∑
τ=0

γτ
(
ri(Sτ , Aτ ;θ)− ri(S†

τ , A
†
τ ;θ)

)]
= 0

Therefore, we can conclude that |v(θ∗)− δ∗|= 0, ψ(θ∗,π∗) = 0, hi(θ) = 0 for all i ∈ [n]. In other
words, gθ is a BIC and IR mechanism that achieves principal payoff δ∗.

Assumption 1 (Conditions on Policy Parameterization). Assume that the class of parametrized policy
PW satisfies: 1. (Convex Parameter Space) W is non-empty, compact, and convex; 2. (Closure
Under Policy Improvement) for any π ∈ PW , there exists π+ ∈ PW s.t. qπi (b,π

+
i (b),π−i(b);θ) =

maxπ′
i∈PS

i
qπ ′
i (b,π′

i(b),π−i(b);θ), for all i ∈ [n] and b ∈ B, θ ∈ Θ; 3. (Gradient-dominated
action-value) for any i ∈ [n], w 7→ qπi (b,π

w
i (b),π−i(b);θ) is (c, µ)-gradient-dominated overW

for any π ∈ PW , θ ∈ Θ; 4. (Smoothness) for any i ∈ [n], w 7→ πw
i (b) is twice continuously

differentiable for all b ∈ B.

Assumption 2 (Conditions on Mechanism Parameterization). Assume that the class of parametrized
direct dynamic mechanism GΘ satisfies: 1. (Convex Parameter Space) Θ is non-empty, compact, and
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convex; 2. (Smoothness) for all gθ ∈ GΘ, θ 7→ gθ (t̂τ ) is twice continuously differentiable for all
τ ∈ [(T − 1)∗], t̂τ ∈ T τ+1.
Assumption 3 (Condition on DMD Environment). Assume that an DMD problem satisfies:
1. (Smoothness) u0,τ , ui,τ for all i ∈ [n], F are twice continuously differentiable in xτ .
Assumption 4 (Contextual Bandit DMD). Assume that an ODMD problem satisfies that, 1. for any
i ∈ [n], Fi is independent of (Φx(x

τ−1),xτ ) for any τ ∈ [(T − 1)∗]; 2. for any i ∈ {0} ∪ [n], ui is
independent of Φx(x

τ−1) for any τ ∈ [(T−1)∗]; 3. (Affine in θ and w) for any τ ∈ [(T−1)∗], xτ 7→
u0,τ (tτ ,Φx(x

τ−1),xτ ) is affine for all tτ ∈ T , xT−1 ∈ X τ ; xτ 7→ ui,τ (ti,τ ,Φx(x
τ−1),xτ ) is

affine for all i ∈ [n], ti,τ ∈ Ti, xT−1 ∈ X τ .
Theorem 4.1. Suppose Assumption 1-3 hold. For any ε ∈ (0, 1), if Algorithm 1 is running on
fκ with inputs that satisfy ηθ , ηw ≍ poly(ε, ∥∂δπ

∗
µ /∂µ∥∞, 1

1−γ , ℓ
−1
∇fκ

, ℓ−1
fκ

), then there exists T ∈

poly
(
ε−1, (1− γ)−1, ∥∂δπ

∗
µ /∂µ∥∞, ℓ∇fκ , ℓfκ , diam(Θ×W), η−1

θ

)
and k ≤ T s.t.

(a) θ
(T)
best = θ(k) is a (ε, ε/2ℓfκ)-stationary point of Vκ, i.e., there exists θ∗ ∈ Θ s.t. ∥θ(T )

best − θ∗∥≤ ε/2ℓfκ and
minh∈DVκ(θ∗)∥h∥≤ ε.

(b) Moreover, if we further assume that Assumption 4 holds and for all gθ ∈ GΘ, θ 7→ gθ (t̂τ ) is affine for all τ ∈
[(T −1)∗], t̂τ ∈ T τ+1, θ(T )

best satisfies that maxw∈W fκ(θ
(T)
best,w)−minθ∈Θ maxw∈W fκ(θ ,w; δ) ≤ ε.

Furthermore, maxw∈W f(θ
(T)
best,w; δ)−minθ∈Θ maxw∈W f(θ ,w; δ) ≤ ε+ (n+ 1)κ.

Proof. Define Vϵ(θ) = maxw∈W fϵ(θ,w) for any θ ∈ Θ. First, note that even though fϵ is smooth
in both θ and w under our assumption, Vϵ is not guaranteed to be smooth. Therefore, we consider
the Moreau envelope of the it, i.e.,

Ṽϵ(θ)
.
= min

θ′∈Θ

{
Vϵ(θ

′) + ℓ∇fϵ ∥θ − θ′∥2
}

as common in the optimization literature (see, for instance, Davis et al. (2018)).

We invoke Theorem 2 of (Daskalakis et al., 2021). Although their result is stated for gradient-
dominated-gradient-dominated functions, their proof applies in the more general case of non-convex-
gradient-dominated functions.

First, condition 4 of Assumption 1, condition 2 of Assumption 2, and condition 2 of Assumption 3
together guarantees that the f is Lipschitz-smooth w.r.t. (θ,w).

Moreover, these conditions also implies that for any i ∈ [n], w 7→ qπi (b,π
w
i (b),π−i(b);θ) is

continuously differentiable overW for any π ∈ PW , θ ∈ Θ. Combine this with condition 2, 3 of

Assumption 1, we have that f is
(
∥∂µµ,π∗/∂µ∥∞

1−γ · c, ∥
∂µµ,π∗/∂µ∥∞

1−γ · µ
)

-gradient-dominated in w ,

for all θ ∈ Θ, by Theorems 2 and 4 of (Bhandari & Russo, 2022).

Finally, under Assumption 1-3, since the mechanism, policy, the reward function, and the transi-
tion probability function are all Lipschitz-continuous, the gradient estimator f̂ is also Lipschitz-
continuous, since S and A are compact. Their variance must therefore be bounded, i.e., there exists
ςθ , ςw ∈ R s.t. Eh,h′ [f̂θ (θ,w;h,h′) − ∇θf(θ,w;h,h′)] ≤ ςθ and Eh,h′ [f̂w (θ,w;h,h′) −
∇wf(θ,w;h,h′)] ≤ ςw .

Hence, under our assumptions, the assumptions of Theorem 2 of (Daskalakis et al., 2021) are satisfied.
Therefore, 1/T+1

∑T
τ=0∥∇Ṽϵ(θ(τ))∥≤ ε. Taking a minimum across all τ ∈ [T], we conclude∥∥∥∇Ṽϵ(θ(T)

best)
∥∥∥ ≤ ε.

Then, by the Lemma 3.7 of Lin et al. (2020), there exists some θ∗ ∈ Θ such that ∥θ(T)
best− θ∗∥≤ ε

2ℓfϵ

and θ∗ ∈ Θε
.
= {θ ∈ Θ | ∃α ∈ DVϵ(θ), ∥α∥≤ ε}. That is, θ(T)

best is a (ε, ε
2ℓfϵ

)-stationary point of
Vϵ.

Now, we further assume that Assumption 4 holds and for all gθ ∈ GΘ, θ 7→ gθ (t̂τ ) is affine for all
0 ≤ τ ≤ T − 1, t̂τ ∈ T τ+1, condition 3 of Assumption 4, we know that fϵ is affine in θ as it is

sum of multiple affine functions. That is, fϵ is
(
∥∂µµ,π∗/∂µ∥∞

1−γ , 0

)
-gradient-dominated in w . Then,
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by Theorem 2 of (Daskalakis et al., 2021) again, Vϵ(θ
(T)
best)−minθ∈Θ Vϵ(θ) ≤ ε. Moreover, note

that 0 ≤ f(θ,w) − fϵ(θ,w) ≤ (n + 1)ϵ for any (θ,w) ∈ Θ ×W , so Vϵ(θ
(T)
best) ≤ V(θ

(T)
best) ≤

Vϵ(θ
(T)
best) + (n+ 1)ϵ. Thus,

V(θ
(T)
best)−min

θ∈Θ
V(θ) ≤ Vϵ(θ(T)

best) + (n+ 1)ϵ−min
θ∈Θ

Vϵ(θ)

= ε+ (n+ 1)ϵ

D EXPERIMENT DETAILS

D.1 DETAILS ON NEURAL EMBEDDING OF PRIVATE INFORMATION

Encoder Architecture. Our architecture consists of two class of encoders:

• Public encoder. At each time step τ , the public encoder processes information that is commonly
observed by all agents, including the normalized time step and the previous joint outcome.
Formally, the public observation is opub,τ = [τ/(T − 1), vec(xτ−1)]. The public hidden state
is then updated via cτ = RNNpub(fpub(opub,τ ), cτ−1) where fpub is a linear projection and
cτ ∈ Rdpub encodes the shared information available to all agents.

• Private encoder. Each agent i additionally maintains a private encoder that processes
agent-specific observations: the normalized time step, the agent’s current type, and her
last report. Formally, oi,τ = [τ/(T − 1), ti,τ , t̂i,τ−1] The private hidden state is up-
dated by fusing the agent’s private observation with the current public embedding: zi,τ =
σ (Wpriv(fpriv(oi,τ )⊕ fpub→priv(cτ ))) and hi,τ = RNNpriv(zi,τ , hi,τ−1) where fpriv(oi,τ ) is
the private observation embedding, fpub→priv(cτ ) is the projected public embedding, Wpriv is
an additional linear layer after concatenation, σ is a ReLU activation, and hi,τ is the updated
hidden state.

Intuition and Use. Together, the embeddings (cτ , hi,τ ) serve as an implicit belief state for agent i
at time step τ : cτ captures publicly observable dynamics, while hi,τ captures each agent’s evolving
private information. These embeddings replace explicit beliefs as the input to our policy networks,
enabling end-to-end training while preserving belief-like structure.

D.2 DETAILS ON BANDIT AUCTION

A bandit auction problem can be viewed as a DMD problem where at time step τ :
• Buyer i’s type is her valuations for goods, i.e., ti,τ = vi,τ = (vi0,τ , · · · , vim,τ ) ∈ Rm, where
vij,τ is buyer i’s valuation for good j ∈ [m]. At time step τ = 0, each buyer’s valuation is
drawn independently from a distribution ωi.

• The immediate reward of buyer i given her type and outcome is ui,τ (ti,τ , xi,τ ) =∑
j∈[m] vij,τxij,τ − pi,τ . The immediate reward of the seller is u0,τ (tτ ,xτ ) =

∑
i∈[n] pi −∑

i∈[n],j∈[m] c
τ
ijxij,τ , where cτij ∈ R is the cost of allocating good j to buyer i at time step τ .

• Buyer i receives outcome xi,τ = (xi,τ = (xi0,τ , · · · , xim,τ ), pi,τ ). where each xij,τ ∈ [0, 1]
represent the probability of allocating good j to buyer i, and pi,τ ∈ R is the monetary transfer
buyer i paid to the seller.

• The buyer i’s valuation for good j then evolves according to Pij(vij,τ+1 | vij,τ , xij,τ ) =
Rij(vij,τ+1 − vij,τ |

∑τ
k=0 xij,k) · xij,τ + 1{vij,τ+1}(vij,τ ) · (1− xij,τ ). Intuitively, if buyer

i is assigned with good j, her valuation for good j evolves according to Rij ; otherwise, her
valuation for good j remain unchanged.

D.3 DETAILS ON EXPERIMENT DESCRIPTION

D.4 DETAILS ON MECHANISM AND POLICY NETWORKS

Mechanism Network The mechanism network processes four streams of information, reflecting
their relative importance: (i) the current type profile (highest importance), (ii) the current report (high
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Discrete Types Continuous Types
Valuation Space Vij = {1.0, 2.0, 3.0}, ∀i, j Vij = [0, 5], ∀i, j
Initial type distribution vij,0 ∼ Unif({1.0, 2.0, 3.0}) vij,0 ∼ N (2.5, 0.12)

Transition function

Pij(vij,τ | vij,τ−1, xij,τ )

=
exp(−α|vij,τ−vij,τ−1|)∑
v∈Vij

exp(−α|v−vij,τ−1|)

where α = 1
2

∑τ−1
k=0 xij,k.

1. sij = log
(

v∗
ij,τ

1−v∗
ij,τ

)
where v∗ij,τ =

vij,τ

5 .
2. sij,τ+1 ∼ N (sij,τ , σij,τ )

where σij,τ = (1− xij,τ )σno + xij,τ
1

1+α ,
σno = 0.01, α = 1

2

∑τ−1
k=0 xij,k.

3. vij,τ+1 = Sigmoid(sij,τ+1) · 5

Table 2: Summary of valuation space, initial distributions and transition functions in discrete vs. continuous
settings.

importance), (iii) the cumulative allocation (high importance), and (iv) the sequence of past reports
(lower importance). Each stream is first encoded by a dedicated multilayer perceptron (MLP), and the
report-history sequence is aggregated via a simple attention mechanism. The resulting features are
concatenated and passed through a shared MLP, which branches into allocation and payment heads.

Formally, we define the encodings

htype = ftype(tτ ), hreport = freport(t̂τ ), halloc = falloc(

τ−1∑
k=0

xk), hreport_hist = Attn
(
{fhist(t̂k)}τ−1

k=0

)
,

where each f· is a small MLP and Attn denotes attention-based pooling across the history sequence.

The concatenated feature vector is

hτ = fshared([h
type, hreport, halloc, hreport_hist ]),

where fshared is a two-layer MLP. From this shared representation, two task-specific heads are applied:

aτ = Softmax(Wallochτ ) , pτ =Wpayfpay(hτ ),

where aτ ∈ R(n+1)×m are the allocation probabilities for each good (including the null buyer which
denotes no allocation), and pτ ∈ Rn are the payments for each buyer.

This design ensures that high-importance features (current type, current report, allocation history) are
emphasized with larger embedding dimensions, while the report history contributes lower-dimensional
context through attention-based summarization.

Figure 3: Mechanism network. Inputs are encoded and concatenated, then pass through a shared trunk that
branches into an allocation head (buyers+null × goods; column-wise softmax per good) and a payment head
(one scalar per buyer).
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Policy Networks. We design two policy networks, one for discrete type spaces and one for con-
tinuous type spaces, both following a prototype + residual structure. This is motivated by residual
policy learning in reinforcement learning (Silver et al., 2019; Johannink et al., 2018), where a residual
network refines a strong baseline controller. In our setting, the truthful policy is a natural baseline:
it achieves zero cumulative regret, so the network should start from truthful reporting and learn
deviations only when profitable. This design stabilizes training and anchors optimization around an
interpretable solution.

DISCRETE TYPES. For buyer i with type ti ∈ Θi, let e(ti) ∈ {0, 1}|Θi| denote the one-hot truthful
report. The policy logits are given by

ℓi = k · e(ti) + ri(b),

where k ≥ 0 is a learnable prototype strength parameter (initialized large) and ri(b) ∈ R|Θi| is the
residual network, which depends on the belief state b. The residual is parameterized by

ri(b) =Wres σ(Wfuse[h(b), ri(b), e(ti), µi(b) ]) ,
where h(b) is a shared embedding of the common information in belief state (time, allocation history),
ri(b) is buyer i’s report history, µi(b) is buyer i’s belief slice, and σ is a ReLU nonlinearity. With
zero initialization of Wres, the initial policy reduces to truthful reporting.

Figure 4: Discrete policy (single buyer). Public context (time + total allocation history) drives a residual head;
the truthful type register (from beliefs×profiles) gives prototype logits scaled by k. Prototype and residual logits
are summed to produce final logits over types for the buyer.

CONTINUOUS TYPES. For bounded continuous types ti ∈ [Li, Hi]
G, we normalize each coordinate,

pij =
tij − Lij

Hij − Lij
, s0ij = logit(pij),

and add a residual in logit space,
sij = s0ij +∆ij(hi, c),

where ∆ij is computed from private and public embeddings (hi, c). The final report is obtained by
mapping back to the original type space,

t̂ij = Lij + (Hij − Lij) · σ(sij).
As in the discrete case, zero initialization ensures the initial policy is truthful, while ∆ij learns
profitable deviations during training.

Summary. Both policies share the same structure: a truthful prototype anchored in logit space,
plus a residual network that learns deviations. This mirrors residual policy learning in control, but is
specialized to mechanism design by exploiting the fact that truthful reporting provides a principled
baseline with zero regret.
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Figure 5: Continuous policy (single buyer). A public embedding summarizes time and allocations; a private
embedding uses the buyer’s time, next-type features, and current report (with a type register). After concat, a
head outputs per-good residual logits ∆, which are added to a baseline s0 from the type register; the sum is
passed through sigmoid and rescaled to the bounds to yield ri.

D.5 DETAILS ON IMPLEMENTATION

We ran four sets of experiments: discrete type–single agent, discrete type–multiple agent, continuous
type–single agent, and continuous type–multiple agent.

For each set, we ran Algorithm 1 on the objective function for 1,000 episodes for every combination of
learning rate candidates ηθ ,ηw and scaling parameters α, β, performing a grid search and measuring
performance in terms of exploitability, profit loss, and IR loss. Based on these results, we selected
the best hyperparameter combination to use in the final experiments.

In the final stage, we carried out a binary search over the profit target δ. For each value of δ, we ran
Algorithm 1 for 10,000 episodes with the selected hyperparameters (shown in Figure 2), retaining
mechanisms only when all three losses fell below 0.1. If no such mechanism was found, we decreased
δ; if one was found, we increased δ, and repeated this process until the binary search interval was at
most 0.1.

D.6 OTHER DETAILS

Programming Languages, Packages, and Licensing We ran our experiments in Python 3.7
(Van Rossum & Drake Jr, 1995), using NumPy (Harris et al., 2020), Jax (Bradbury et al., 2018),
Haiku (Hennigan et al., 2020), and JaxOPT (Blondel et al., 2021). All figures were graphed using
Matplotlib (Hunter, 2007).

Python software and documentation are licensed under the PSF License Agreement. Numpy is
distributed under a liberal BSD license. Pandas is distributed under a new BSD license. Matplotlib
only uses BSD compatible code, and its license is based on the PSF license. CVXPY is licensed
under an APACHE license.

Computational Resources The experiments were conducted using Google Colab, which provides
cloud-based computational resources. Specifically, we utilized an NVIDIA T4 GPU with the
following specifications: GPU: NVIDIA T4 (16GB GDDR6), CPU: Intel Xeon (2 vCPUs), RAM:
12GB, Storage: Colab-provided ephemeral storage.

Code Repository the full details of our experiments, including hyperparameter search, fi-
nal experiment configurations, and visualization code, can be found in our code repository
(https://anonymous.4open.science/r/Dynamic-Mechanism-Design-ICLR-2026–081E).
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