
A Experimental settings

In all experiments, a grid-search was used to find the value of the regularization parameter λ from
(3). In most cases, the grid of values used was 0.05, 0.1, 0.5 and 1.. For the sleep stage classification
experiment of Section 5.2, stronger values were explored: 1, 5, 10, 50. An analysis for the CIFAR10
experiment of Section 5.1 can be found in Section B.2.

A.1 Mario-Iggy experiment – Section 4.1

The data was generated as described in Figure A.1 and Section 4.1. We used 10000 training examples
and 5000 test examples, and sampled batches of 128 images, as in [19]. The trunk model used for
both Augerino and Augnet are described in Table A.1. The official code from [19] was used for this
experiment. As in the original experiments, all models were trained for 20 epochs using Adam [37],
with β1 = 0.9 and β2 = 0.999. The learning rate for Augerino was set to 10−2 and weight decay
was set to 0. The regularization parameter was set to λ = 0.05 (medium according to [19]). For
AugNet, we used a learning rate of 5 × 10−4 and a regularization parameter of 0.5, together with
weight decay of 1. Augmentations were all initialized with magnitudes equivalent to π/8 for AugNet
and Augerino. Augmentations were also initialized with uniform weights for AugNet.

Originals Label 0 Label 1

Label 2 Label 3

Upright Upside-down

Figure A.1: Illustration of the data generation process for the Mario-Iggy experiment.
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Figure A.2: Magnitudes learned by Augerino are not sparse.

A.2 Sinusoids experiment – Section 4.2

The data was generated as described in Figure A.4 and Section 4.2. We used 400 training examples
and 200 test examples, and sampled batches of 32 waves. The trunk model used for Augnet is
described in Table A.2. All models were trained for 50 epochs using Adam [37]. We used a
learning rate of 10−2 and a regularization parameter of 0.2, together with weight decay of 10−4.
Augmentations were all initialized with magnitudes µ = 0 and uniform weights. For the experiment
of Section 4.3, we set the number of copies to C = 10 at inference, while it was set to C = 4 for all
other experiments. Moreover, λ was set to 0.8 and initial magnitudes set to 0.05 in Section 4.3.
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Figure A.3: (a) Original picture, (b) picture transformed with a sequence of flip, rotate, crop,
(c) picture transformed with a convex sum of them.

layer # filters size stride batch norm
1 Conv2D 32 3 1 yes

ReLU
2 Conv2D 64 3 1 yes

ReLU
MaxPool 2

3 Conv2D 128 3 1 yes
ReLU

MaxPool 2
4 Conv2D 256 3 1 yes

ReLU
MaxPool 2

5 MaxPool 4 1
FC

Softmax

Table A.1: Convolutional neural network architecture used in experiments of Section 4.1.

A.3 CIFAR10 experiment – Section 5.1

The official code from [19] was used for this experiment. It is worth noting that Augerino’s official
code used a smaller trunk model with 13 layers, which led to poor performances. We hence replaced
it by a Pre-activate ResNet18, which significantly improved performances. The official code also did
not implement any cosine annealing despite what was reported in the paper [19]. We added it in our
experiments but were still not able to reproduce their results exactly despite these efforts.

Following [19], we used batches of 128 images. All models were trained for 300 epochs using
Adam [37] with decoupled weight-decay [38]. Also, as described in [19], we used a cosine annealing
scheduler with period T = 300 epochs. For AugNet, Augerino and the baseline with fixed augmen-
tations, the following normalization was used as a preprocessing on augmented data for the whole
dataset: centering by (0.485, 0.456, 0.406) and scaling by (0.229, 0.224, 0.225). All models were
trained with a learning rate set to 10−3. Weight-decay was globally set to 2×10−2 for the trunk model
and 0 for the augmentation modules of both Augerino and AugNet. The regularization parameter
was set to λ = 0.05 for Augerino as in [19], while AugNet’s regularization was set to 0.5 for the first
40 epochs and scaled down to 0.05 for the rest of the training. Augmentations were all initialized
with magnitudes set to 0.5 for both Augerino and AugNet, with uniform weights for the latter. In this
experiments, differentiable augmentations were implemented using the KORNIA package [39], as
well as the official code of Faster AutoAugment [12]. All trainings were carried on single Tesla V100
GPUs. Contrary to what is done in the official AutoAugment [6] and RandAugment [30] papers,
we did not add augmentation policies on top of baseline augmentations, which explains why our
performances are lower than those reported. We do this because we want to learn augmentations
completely from scratch, without relying on prior knowledge of which baseline augmentations work
well for a given dataset.
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layer # filters size stride batch norm
1 Conv2D 2 3 1 yes

ReLU
2 Conv2D 2 3 1 yes

ReLU
MaxPool 2

3 GlobalPool
FC

Softmax

Table A.2: Convolutional neural network architecture used in experiments of Section 4.2
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Figure A.4: Illustration (cropped to 1 second) of waves composing each class of the simulated dataset
used in the sinusoids and model capacity experiments.

A.4 MASS experiment – Section 5.2

Dataset The public dataset MASS - Session 3 [34] was used for this purpose (more details in
Section A.4). It corresponds to 62 nights, each one coming from a different subject. Out of the 20
available EEG channels, referenced with respect to the A2 electrode, we used 6 (C3, C4, F3, F4, O1,
O2). As done by [14], both the training and validation sets consisted of 24 nights each, and the test
set contained 12 nights.

Architecture For all EEG experiments, learning was carried using the convolutional network
proposed in [4], whose architecture is described on Table A.3. The initial number of channels C was
set to 8. The first layers (1-4) implements a spatial filter, computing virtual channels through a linear
combination of the original input channels. Then, layers 5 to 9 correspond to a standard convolutional
feature extractor and last layers implement a simple classifier.
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layer # filters # params size stride output dim. activation
1 Input (C, T)
2 Reshape (C, T, 1)
3 Conv2D C C * C (C, 1) (1, 1) (1, T, C) Linear
4 Permute (C, T, 1)
5 Conv2D 8 8 * 64 + 8 (1, 64) (1, 1) (C, T, 8) Relu
6 Maxpool2D (1, 16) (1, 16) (C, T // 16, 8)
7 Conv2D 8 8 * 8 * 64 + 8 (1, 64) (1, 1) (C, T // 16, 8) Relu
8 Maxpool2D (1, 16) (1, 16) (C, T // 256, 8)
9 Flatten (C * (T // 256) * 8)
10 Dropout (50%) (C * (T // 256) * 8)
11 Dense 5 * (C * T // 256 * 8) 5 Softmax

Table A.3: Detailed architecture from [4], where C is the number of EEG channels and T the time
series length.

Training hyperparameters The optimizer used for all models was Adam with a learning rate of
10−3, β1 = 0. and β2 = 0.999. At most 300 epochs were used for training, with a batch size of
16. Early stopping was implemented with a patience of 30 epochs. For ADDA, the policy learning
rate was set to 5 × 104 based on a grid-search carried using the validation set. For AugNet, the
regularization parameter was set to λ = 10. Balanced accuracy was used as performance metric
using the inverse of original class frequencies as balancing weights. The MNE-PYTHON [35] and
BRAINDECODE software [36] were used to preprocess and learn on the EEG data. Training was
carried on single Tesla V100 GPUs.

Augmentations considered The 13 operations considered are listed in Table A.4. A detailed
explanation of their implementation can be found in the appendix of [14]. While all this augmentations
were used by gradient-free algorithms, bandstop filter was not included in the differentiable
strategies (Faster AA, DADA, ADDA, AugNet) because we did not implement a differentiable
relaxation of it. All augmentations used came from the BRAINDECODE package [36]. AutoAugment
was implemented replacing the PPO searcher with a TPE searcher (as in Fast AutoAugment). The
OPTUNA package was used for that matter [40].

type transformation range
Time time reverse

time masking 0-200 samples
Gaussian noise 0-0.2 std

Frequency FT-surrogate 0-2π
frequency shift 0-5 Hz
bandstop filter 0-2 Hz

Sensors sign flip
channels symmetry
channels shuffle 0-1
channels dropout 0-1
rotations x-y-z 0-30 degrees

Table A.4: Augmentations considered in experiment 5.2. The range column corresponds to the values
to which are mapped the magnitudes µ = 0 and µ = 1.

B Complementary results

B.1 Sinusoids experiments – Section 4.2 and 4.3

Hereafter we provide further results and extensions to the experiment of Sections 4.2 and 4.3.

One may find the evolution of the augmentation module weights w during training in the top-frame
of Figure B.1a. We see that the correct FrequencyShift invariance is selected after only one epoch,
its magnitude being correctly tuned as already shown on Figure 3b.
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Sensitivity to number of layers Since the number of augmentation layers is a hyperparameter,
we may wonder whether Augnet is robust to its value. Namely, we want to know what would
happen if we trained an Augnet model with more augmentation layers than there are invariances
in the data. Hence, we repeated the experiment from Section 4.2 with 2 and 4 layers and plotted
results on Figures B.2 and B.3 respectively. The same training data and hyperparameters were used
(cf. Section A.2). We see in both cases that all layers select the correct transformation and only one
gets a positive magnitude µi > 0, all other layers converging to the identity. These results suggest that
Augnet is indeed robust to the number of layers chosen and can correctly learn underlying invariances
even when we decide to use “too many” of them.
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Figure B.1: (a) Evolution of learned weights and magnitudes in the sinusoids experiment Section 4.2.
AugNet quickly learns to maximize the frequency shift invariance and drop the others. (b) Loss and
accuracy during AugNet training in the sinusoids experiment Section 4.2.
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Figure B.2: Weights and magnitudes learned by a model with 2 augmentation layers.

Sensitivity to C Another important hyperparameter to study in the context of this experiment is the
number of copies C. Indeed, this parameter intuitively defines how well AugNet approximates the
expectation in proposition 3.1, and hence how invariant it is to the learned transformations. Figure B.4
is an extended version of Figure 5, where we have tested three different values C at inference: 1, 4
and 10. It confirms the intuition that the greater C, the more invariant is AugNet, and demonstrates
that this has hence an important impact on performance. The case C = 1 works as a “sanity check”
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Figure B.3: Weights and magnitudes learned by a model with 4 augmentation layers.

showing that we cannot do much better than the baseline with no augmentation if we don’t average
the model’s predictions.
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Figure B.4: Top: Model invariance (4) to the true frequency shift in the data across different
architectures. We report the median values across the test set, with a 75% confidence interval. The
greater C, the more invariant is AugNet. Bottom: By controlling the invariance, C also controls
AugNet’s accuracy. AugNet has a performance close to the baseline with no augmentation if we
don’t average the model’s predictions (C = 1).

B.2 CIFAR10 experiment – Section 5.1

Sensitivity analysis to C and λ AugNet introduces two new hyperparameters: the penalty weight
λ and the number of copies C. Figure B.5 shows a sensitivity analysis of the final performance on
CIFAR10 (Section 5.1) for both these hyperparameters. We see on Figure B.5b here again that larger
values of C yield better performances, as seen for the sinusoids simulated experiment in Figure B.4.
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However, increasing the number of copies C at inference also comes with a computation time that
increases linearly, as shown on Figure B.6.
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Figure B.5: (a) Test accuracy on CIFAR10 for different penalty weights λ. C is set to 20 in this
experiment and all other details are given in Section A.3. (b) Test accuracy on CIFAR10 for different
number of copies C at inference. All points correspond to the same model trained with C = 1 at
training and evaluated with different values of C at inference.

0 10 20 30 40
Number of copies at inference C

0

5

10

15

20

25

Re
la

tiv
e 

in
fe

re
nc

e 
tim

e

AugNet
Baseline

Figure B.6: Average forward-pass time for different values of C at inference. Error shades of 75%
confidence over batches are depicted, but very small. Results are normalized by the forward-pass
time of the trunk model alone f , represented by the black dashed line.

Learned augmentations and model invariance Figures B.7 and B.8 show which invariances were
learned for two of the five runs of the CIFAR10 experiment from Section 5.1. We see on the first
case that layer 1 learned the HorizontalFlip, which is one of the two augmentations used in the
experiment baseline leading to the state-of-the-art results. We indeed got the best test accuracies
(93.4% and 94.0%) for the two runs which led to the selection depicted on Figure B.7 compared
to 92.7 - 93.0% for the other three runs with selections similar to Figure B.8. We can also see that
all runs selected the translate-y invariance (and three of them selected translate-x), which is
equivalent to the random-crop also used by the baseline with fixed augmentation.

Regarding the fact that for some layers, the magnitude of the selected transformation drops to
0 at a certain point in training, note that this only means that the augmentation is not required
anymore to ensure the necessary level of invariance. Indeed, it is known since Population-based
augmentations [10] and RandAugment [30] that the best augmentation depends on the stage of
training. As shown on Figure B.9, AugNet remains invariant to these augmentations after those
moments, which means that the weights of the trunk model f have learned the invariance and that
there is hence no more need to sample it.
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Figure B.7: Learned invariances for one run of the CIFAR10 experiment. Very similar results were
obtained for another run, an both led to the best performances.

B.3 MASS experiment – Section 5.2

As explained in Section 5.2, the plots from Figure 6b were obtained by computing median scores over
5 runs using different splits of the MASS dataset with a cross-validation scheme. In each run, the
training, validation and test sets all contained data from different subjects. The same plot is presented
in Figure B.10a with 75% confidence error bars. Because of the well-known large inter-subject
variability inherent to EEG recordings, we see that the between-splits variance is sometimes larger
than the median performance gaps between methods, making it difficult to draw strong conclusions.
In an effort to circumvent the inter-subject variability issue, relative scores were computed with regard
to the ADDA method after a budget of 2 hours of training and plotted in Figure B.10b. Because
we are computing performance gaps independently for each split, the latter are not hidden by the
between-split variance in this case. This plot shows that in the context of a small training budget,
AugNet delivers better performances in sleep stage classification compared to ADDA in four out of
five runs.
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Figure B.8: Learned invariances for another run of the CIFAR10 experiment. Very similar results
were obtained for three other runs.
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Figure B.9: (a) Invariance (4) of AugNet and fixed augmentation baseline to augmentations selected
by AugNet during the run from Figure B.7. AugNet remains invariant to translate-y even after its
magnitude drops to 0. (b) Invariance (4) of AugNet and fixed augmentation baseline to augmentations
selected by AugNet during the run from Figure B.8. AugNet remains invariant to brightness even
after its magnitude drops to 0.
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Figure B.10: (a) Error bars correspond to 75% confidence intervals over folds. (b) Fold-wise test
balanced accuracy improvements with relation to ADDA after 2h of training. Performances at 2h of
training were linearly interpolated from figure (a).
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