Enhancing Credit Scoring Accuracy through Ensemble Risk

Models in Emerging African Markets Praise Amonye¹ Jason Quist²

1 Deep Learning IndabaX Benin Republic WorldQuant University Ghana Data Science Summit

THE DATA SCARCITY CHALLENGE

- **Problem**: 12M+ microfinance clients in West Africa face exclusion due to:
 - Data scarcity (sparse borrower histories)
 - Economic volatility (erratic market conditions)
 - Regulatory barriers (transparency requirements)
- Our Solution: "African-aware" ML framework combining:
- Alternative data (mobile transactions, informal loans)
- Cost-sensitive thresholding
- SHAP-based interpretability

Figure 1: Key Predictive Features for Loan Default Risk in Africa

DATA & FEATURES

- •10,000-client West African dataset with simulated mobile transactions, income, and utility bills.
- Robust median imputation for continuous gaps; dedicated "missing" categories for informals.
- Financial ratios (DTI, LTT, ER) and cyclical time features (year, month, quarter).
- Behavioural proxies: P2P transfers, mobile-money usage patterns

AFRICAN-OPTIMIZED ML PIPELINE

- Figure 3: End-to-end workflow for building and evaluating ensemble risk models
 - 1. Stratified 80/20 train/test split
 - 2. SMOTE oversampling to address the <10 % default imbalance
 - 3. ANOVA feature selection ($\alpha = 0.05$) \rightarrow top 15 predictors
 - 4. Four classifiers:
 - Regularized Logistic Regression (class-weighted L2)
 - Random Forest (200 trees, balanced sampling)
 - Gradient Boosting (early stopping)
 - SVM (RBF kernel, inverse-frequency weights)

COUNTERINTUITIVE RESULTS

Model Shock:

"Logistic Regression beats black-box models in low-data settings."

Figure 4: Threshold Optimization Curve

Table 1: Comparison of Model Performance (N = 10,000)

Model	AUC-ROC	Expected Loss
		Reduction (%)
Logistic	0.603 ± 0.021	35
Regression (L2)		
Random Forest	0.588 ± 0.018	30
(200 trees)		
Gradient	0.592 ± 0.020	32
Boosting (early		
stop)		
SVM (RBF	0.579 ± 0.022	28
kernel)		

- Logistic Regression wins—AUC-ROC = 0.603 (±0.021), outperforming more complex ensembles.
- Threshold optimization (t* = 0.80) cuts expected losses by 35 % versus a 0.50 cutoff.
- Behavioural features rival traditional financial ratios in predictive power.

INTERPRETABILITY & DEPLOYMENT

Key Discovery:

Mobile money patterns rival traditional financial ratios in predictive power

- SHAP summary reveals the top drivers as: debt-to-income, mobile usage spikes, expense ratio.
- Linear model simplicity eases regulatory compliance and on-device deployment in resource-limited branches.

IMPLICATIONS

- Simpler models may avoid overfitting in low-data contexts.
- Alternative data bridges gaps where bureau records fail.
- Cost-sensitive thresholds deliver immediate balance-sheet benefits

FUTURE DIRECTIONS

- Online learning for adaptive recalibration through economic cycles.
- Graph-based features from social and transaction networks.
- Field trials with partner microfinance institutions.

CONCLUSION

This framework offers a practical, transparent, and economically impactful approach to credit scoring in emerging African markets—paving the way for broader financial inclusion.

REFERENCES (Selected)

- Mwangi et al., Journal of Financial Inclusion, 2024
- World Bank, Digital Financial Inclusion Report, 2023
- Mokheleli & Museba, J. of Info. Systems & Informatics, 2023