
Supplementary Materials
Adv3D: Generating Safety-Critical 3D Objects

through Closed-Loop Simulation

Anonymous Author(s)
Affiliation
Address
email

Abstract: In this supplementary material, we provide additional details on our1

method, implementation and experimental setups, and then show additional quan-2

titative / qualitative results. We first detail how we implement ADV3D including3

how to build digital twins for realistic LiDAR simulation (Sec A.1), how to create a4

low-dimensional representation space (Sec A.2) for adversarial shapes, the details5

of two modern autonomy models (Sec A.3), the adversarial optimization procedure6

(Sec A.4) and more experimental details. Finally then provide additional results7

and analysis in Sec B including full closed-loop and open-loop results for major8

tables in the main paper and additional experiments and additional qualitative ex-9

amples. Additionally, we include a supplementary video, supplementary 56.mp4,10

providing an overview of our methodology, as well as video results on gener-11

ated adversarial shapes and how it affect the autonomy performance in different12

scenarios.13

A ADV3D Implementation Details14

A.1 Realistic LiDAR Simulation15

Following [1, 2], we leverage real-world LiDAR data and object annotations to build surfel meshes16

(textured by per-point intensity value) for the virtual world. For complete background coverage,17

we drove through the same scene to collect multiple sets of driving data and then unify multiple18

LiDAR sweeps to a standard map coordinate system. We then aggregate LiDAR points from all19

frames and apply a dynamic point removal algorithm [3] to keep only static points and reconstruct the20

background B. For dynamic actors, we aggregate the LiDAR points within object-centric coordinate21

bounding boxes for each labeled driving snippet. We then symmetrize the aggregated points along22

the vehicle’s heading axis for a more complete shape. Given the aggregated points, we then estimate23

per-point normals from 200 nearest neighbors with a radius of 20cm and orient the normals upwards24

for flat ground reconstruction, outwards for more complete dynamic actors. We downsample the25

LiDAR points into 4cm3 voxels and create per-point triangle faces (radius 5cm) according to the26

estimated normals. Due to sparse observations for most aggregated surfel meshes, we manually27

curated a set of actor meshes that have complete and clean geometry, together with CAD assets28

purchased from TurboSquid [4] for a larger asset variety.29

A.2 Adversarial Shape Representation30

To ensure realism and watertight manifolds, we use all the CAD cars (sedan, sports car, SUV, Van,31

and pickup trucks) to build the low-dimensional representation. We first rescale all actors to be in32

a unit cube with a pre-computed scaling factor (1.1× largest dimension for all actors). Then we33

convert the input meshes to volumetric signed distance fields (SDF) with a resolution of 100 (i.e.,34

|L| = 1003) using a open-source library1. Then we apply principal component analysis [5] on the35

flattened SDF values Φ ∈ R|L|×1 to obtain the latent representation. Specifically, we use K = 336

1https://github.com/wang-ps/mesh2sdf

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

https://github.com/wang-ps/mesh2sdf

principle components for constructing the latent space. In practice, we find the larger number we use37

K, the high-frequency details can be captured but the interpolated shapes can be less realistic. This is38

because the non-major components usually capture the individual details instead of shared properties39

across all vehicles.40

During optimization, we first obtain the minimum and maximum latent range zmin ∈ R3, zmax ∈ R3,41

where the minimum and maximum value for each latent dimension is recorded. Then we optimize42

a unit vector z̄ ∈ R5, where the first three dimensions are for PCA reconstruction, and the last two43

dimension indicates the scale value for width and length (range from 0.8 to 1.3). Then we normalize44

this first three dimension to [zmin, zmax]. Given the optimized latent z, we apply Equation (2) in45

the main paper to get the generated 3D SDF volumes and then extract the meshes using marching46

cubes [6] algorithm. The extracted meshes are then scaled to the real-world size and placed in the47

virtual world for simulation.48

A.3 LiDAR-Based Autonomy Details49

Both autonomy systems tested consist of two parts, where the first part uses different joint perception50

and prediction models, and the second part share the same rule-based planner [7].51

Autonomy-A (Instance-Based): We implement a variant of joint P&P model [8] to perform52

instance-based joint detection and trajectory prediction. For the 3D object detection part, we use a53

modified two-stage PIXOR [9] model following [10] which takes voxelized LiDAR point clouds as54

input and outputs the BEV bounding box parameters for each object. For the trajectory prediction55

part, we use a model that takes lane graph and detection results as input and outputs the per-timestep56

endpoint prediction for each object. The prediction time horizon is set to 6 seconds.57

Autonomy-B (Instance-Free): We also verify our method on an instance-free autonomy sys-58

tem [12] for joint detection and motion forecasting to show its generalizability. Specifically, we59

replace the P&P model used in Autonomy-A with the occupancy-based model, which performs60

non-parametric binary occupancy prediction as perception results and flow prediction as motion61

forecasting results for each query point on a query point set. The occupancy and flow prediction can62

serve as the input for the sampling-based planner to perform motion planning afterwards.63

A.4 Adversarial Optimization Details64

Adversarial Objectives: The adversarial objective is given in Eqn. (3-5) in the main paper, where65

we set λpred = 0.1 and λplan = 0.5 for Autonomy-A. The adversarial objective for Autonomy-B also66

includes three terms: `det, `pred and `plan, and we keep `plan as is since the PLT model we used is the67

same as Autonomy-A. However, the ImplicitO model in Autonomy-B does not have instance-level68

bounding box results, and the confidence score as well as IoU terms are no longer applicable. We69

thus follow [12, 13] and use the Soft-IoU metric to assess occupancy predictions. Similarly, we use70

the foreground mean end-point error (EPE) to measure the average L2 flow error at each occupied71

query point as done in [12], as the instance-based trajectory prediction is not available. Formally, the72

adversarial objective for Autonomy-B is defined as:73

Ct = `tdet + λpred`
t
pred + λplanc

t
plan, (1)

`tdet = −
∑

q∈Q o(q)ô(q)∑
q∈Q(o(q) + ô(q)− o(q)ô(q))

, (2)

`tpred =
1∑

q∈Q o(q)

∑
q∈Q

o(q)||f(q)− f̂(q)||2, ctplan = ctjerk + ctlat, (3)

where Q is the query point set, o(q) and ô(q) are ground truth and predicted binary occupancy74

value ∈ [0, 1] on the query point q, respectively. Flow vector f : R3 → R2 and the corresponding75

prediction f̂ specifies the BEV motion of any agent that occupies that location. We set λpred = 1.076

and λplan = 0.5 for Autonomy-B.77

Black-box Optimization Details: To handle different modern autonomy systems and the non-78

differentiable LiDAR simulator, we adopt the black-box optimization in ADV3D. Inspired by existing79

2

works [14, 15, 16], we adopt the Bayesian Optimization [17, 18] (BO) as the search algorithm, which80

maintains a surrogate model and select the next query candidate based on historical observations81

and acquisition function. Specifically, we use a standard Gaussian process (GP) model with Upper82

Confidence Bound [19, 20] (UCB) as the acquisition function. We set the exploration multiplier83

β = 1.0 to balance exploitation and exploration. Since the adversarial landscape is not locally smooth,84

we use the Matérn 3/2 kernel (product over each dimension with a length scale of 0.1) for the GP85

model. Unless stated otherwise, we set the total query budget as 100 and the first 11 queries are used86

for the initialization.87

We also benchmark the other popular black-box algorithms including grid search [21] (GS), random88

search [22, 23, 24] (RS) and blend search (BS) [25]. For GS, we set 3 search points per dimension89

thus in total 35 = 243 queries. For a random search, we set the query budget as 500 to achieve better90

performance. BS is an economical hyperparameter optimization algorithm that combines local search91

and global search. We adopt the official implementation2. We also compare a baseline that conducts92

brute-forcing (BF) over the curated asset library with 746 vehicles and find the worst-case actor shape.93

Our optimization pipeline is built on the Ray Tune framework [26].94

A.5 Additional Experimental Details95

Realism Evaluation for Generated Shapes: We evaluate the realism of ADV3D using96

Jensen–Shannon divergence [27] (JSD) between generated shapes by ADV3D and vertex defor-97

mation (VD). Specifically, we calculate JSD by uniformly sampling point clouds of 1000 points from98

the optimized shapes with the birds-eye-view 2D histogram of all CAD models in our asset sets99

(resolution of 100× 100).100

B Additional Results and Analysis101

Attacking Full Autonomy Stack: To take into account the full autonomy stack, we find it is102

important to use an adversarial objective that takes a combination of submodule costs. In Tab. A1,103

we provide the full results for Tab. 3 in the main paper, including missing combinationsM4 and104

M5. Moreover, we also compare with the results in closed loop using shapes generated by open-loop105

attack.106

#ID Opt. Settings Perception Prediction Planning AP ↑ Recall ↑ minADE ↓ meanADE ↓ Lat. ↓ Jerk ↓∑
t `

t
det

∑
t `

t
pred

∑
t c

t
plan (%,@0.5) (%,@0.5) L2 error L2 error (m/s2) (m/s3)

Original 88.7 89.4 2.51 4.99 0.261 0.294

M1
Open-Loop X 80.4 87.6 2.01 4.95 0.256 0.301

Closed-Loop 69.6 71.4 1.97 5.02 0.239 0.310

M2
Open-Loop X 83.5 88.5 2.52 5.39 0.223 0.341

Closed-Loop 83.1 89.1 2.92 6.34 0.254 0.412

M3
Open-Loop X 87.2 88.8 2.57 5.38 0.305 0.352

Closed-Loop 86.7 88.3 2.94 6.03 0.324 0.434

M4
Open-Loop X X 79.9 85.9 2.57 5.35 0.231 0.353

Closed-Loop 70.1 78.8 2.90 5.98 0.223 0.401

M5
Open-Loop X X 81.2 84.3 2.57 5.60 0.333 0.253

Closed-Loop 72.3 75.0 2.95 6.04 0.342 0.401

M0
Open-Loop X X X 85.5 87.7 2.73 5.99 0.262 0.372

Closed-Loop 75.4 76.4 2.82 6.21 0.411 0.410

Table A1: Full table of adversarial optimization for the full autonomy stack. Unlike existing
works that consider sub-modules, ADV3D generates actor shapes that are challenging to all down-
stream modules.

Latent Asset Representation: We repeat the experiment from Tab. 3 but now using a lower density107

100 triangle mesh which has a lower dimension thus can be optimized with BO. Results in Tab. A2108

show that large vertex deformation is required to achieve similar attack strength as Adv3D. Moreover,109

the vertex deformed actors are overly simplified and unrealistic with noticeable artifacts.110

2https://github.com/microsoft/FLAML

3

https://github.com/microsoft/FLAML

Algorithms AP ↑ Recall ↑ minADE ↓ Jerk ↓ JSD(%,@0.5) (%,@0.5) L2 error (m/s3)

Original 98.7 99.6 4.70 0.090 –
VD: 0.05m 98.7 99.6 5.04 0.090 0.057
VD: 0.1m 98.7 99.6 5.10 0.090 0.137
VD: 0.2m 98.7 99.6 5.16 0.090 0.253
VD: 0.5m 78.3 81.2 5.77 0.103 0.745
VD: 1.0m 45.5 48.5 5.79 0.155 0.758

ADV3D (ours) 50.3 55.8 7.87 0.111 0.175

Table A2: Compare with vertex deformation.

Figure A1: Qualitative comparisons with Vertex-Deformation (VD). Top and bottom show side and
top-down views respectively.

Additional Qualitative Examples: We provide more qualitative examples in Figure A2, A3 and A4111

to show that ADV3D is able to generate safety-critical actor shapes for autonomy testing with112

appearance coverage.113

Adv. Closed-LoopOriginal

Missed detections of occluded vehicle

Adv. Closed-LoopOriginal

Missed detections of occluded vehicle reactive actors)

Figure A2: Qualitative examples of adversarial shape generation (non-reactive actors vs reactive
actors). ADV3D is able to generate adversarial actors that cause detection failures due to occlusion.

4

Adv. Closed-LoopOriginal

Missed detections of occluded vehicle

Adv. Open-Loop

Figure A3: Qualitative examples of adversarial shape generation in closed loop vs open loop. ADV3D
is able to generate adversarial actors that cause detection failures due to occlusion but the open-loop
counterpart fails.

Adv. Closed-LoopOriginal

Multi-actor detection failure, planned trajectory affected

Figure A4: Qualitative examples of adversarial shape generation with multi-actor attacks. ADV3D
creates three safety-critical shapes that cause detection failures for all front actors.

5

References114

[1] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang, W.-C. Ma, and115

R. Urtasun. Lidarsim: Realistic lidar simulation by leveraging the real world. In CVPR, 2020.116

[2] Z. Yang, Y. Chai, D. Anguelov, Y. Zhou, P. Sun, D. Erhan, S. Rafferty, and H. Kretzschmar.117

Surfelgan: Synthesizing realistic sensor data for autonomous driving. CVPR, 2020.118

[3] H. Thomas, B. Agro, M. Gridseth, J. Zhang, and T. D. Barfoot. Self-supervised learning of lidar119

segmentation for autonomous indoor navigation. In 2021 IEEE International Conference on120

Robotics and Automation (ICRA), pages 14047–14053. IEEE, 2021.121

[4] TurboSquid. https://www.turbosquid.com, Access date: 2023-05-17.122

[5] K. Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,123

Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.124

[6] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction125

algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.126

[7] A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer, and R. Urtasun. Jointly learnable behavior127

and trajectory planning for self-driving vehicles. IROS, 2019.128

[8] M. Liang, B. Yang, W. Zeng, Y. Chen, R. Hu, S. Casas, and R. Urtasun. Pnpnet: End-to-end129

perception and prediction with tracking in the loop. In Proceedings of the IEEE/CVF Conference130

on Computer Vision and Pattern Recognition, pages 11553–11562, 2020.131

[9] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection from point clouds.132

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages133

7652–7660, 2018.134

[10] Y. Xiong, W.-C. Ma, J. Wang, and R. Urtasun. Learning compact representations for lidar135

completion and generation. In Proceedings of the IEEE/CVF Conference on Computer Vision136

and Pattern Recognition, pages 1074–1083, 2023.137

[11] A. Cui, S. Casas, K. Wong, S. Suo, and R. Urtasun. Gorela: Go relative for viewpoint-invariant138

motion forecasting. arXiv preprint arXiv:2211.02545, 2022.139

[12] B. Agro, Q. Sykora, S. Casas, and R. Urtasun. Implicit occupancy flow fields for perception140

and prediction in self-driving. In CVPR, 2023.141

[13] J. Kim, R. Mahjourian, S. Ettinger, M. Bansal, B. White, B. Sapp, and D. Anguelov. Stop-142

net: Scalable trajectory and occupancy prediction for urban autonomous driving. In 2022143

International Conference on Robotics and Automation (ICRA), pages 8957–8963. IEEE, 2022.144

[14] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek. Generating adversarial driving scenarios145

in high-fidelity simulators. In ICRA, 2019.146

[15] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. Advsim:147

Generating safety-critical scenarios for self-driving vehicles. In CVPR, 2021.148

[16] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang. Attacking vision-based149

perception in end-to-end autonomous driving models. Journal of Systems Architecture, 110:150

101766, 2020.151

[17] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning152

algorithms. Advances in neural information processing systems, 25, 2012.153

[18] B. Ru, A. Cobb, A. Blaas, and Y. Gal. Bayesopt adversarial attack. In International conference154

on learning representations, 2020.155

[19] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine156

Learning Research, 3(Nov):397–422, 2002.157

[20] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the158

bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.159

6

[21] P. Liashchynskyi and P. Liashchynskyi. Grid search, random search, genetic algorithm: a big160

comparison for nas. arXiv preprint arXiv:1912.06059, 2019.161

[22] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Weinberger. Simple black-box adversarial162

attacks. In International Conference on Machine Learning, pages 2484–2493. PMLR, 2019.163

[23] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. Square attack: a query-efficient164

black-box adversarial attack via random search. In Computer Vision–ECCV 2020: 16th165

European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII, pages166

484–501. Springer, 2020.167

[24] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of machine168

learning research, 13(2), 2012.169

[25] C. Wang, Q. Wu, S. Huang, and A. Saied. Economic hyperparameter optimization with blended170

search strategy. In International Conference on Learning Representations, 2021.171

[26] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A research172

platform for distributed model selection and training. arXiv preprint arXiv:1807.05118, 2018.173

[27] V. Zyrianov, X. Zhu, and S. Wang. Learning to generate realistic lidar point clouds. In174

Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,175

2022, Proceedings, Part XXIII, pages 17–35. Springer, 2022.176

7

	Adv3D Implementation Details
	Realistic LiDAR Simulation
	Adversarial Shape Representation
	LiDAR-Based Autonomy Details
	Adversarial Optimization Details
	Additional Experimental Details

	Additional Results and Analysis

