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APPENDIX

1 IMAGE SAMPLES

We present exemplars of images in PlantVillage [4], PlantDoc [8]
and our curated PlantWild dataset, as shown in Figure 1. PlantVil-
lage is composed of laboratory images with controlled background
and lighting conditions. PlantDoc consists of plant disease images
captured from in-the-wild environments, but it falls short in scale.
In contrast, PlantWild contains in-the-wild images and includes a
significantly broader range of classes compared to existing plant
disease datasets.

2 DETAILED STATISTICS OF PLANTWILD

PlantWild consists of 18,542 images across 89 classes. The class with
the most images includes 589 images and the class with the fewest
images includes 44 images. The detailed statistics of PlantWild are
shown in Table 2, including all class names and the number of
images in each class.

3 DESCRIPTIVE PROMPTS GENERATION

Figure 2 illustrates the process of prompt generation. To enhance
the diversity of generated descriptive prompts for the text encoder
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of CLIP [6], we design different commands as the input to GPT-3.5
[2]. The commands are presented as follows:

e Summarize visual characteristics of [CLASS] with less than
[LENGTH] words.

e How to identify [CLASS]? Answer within [LENGTH] words.

o Use less than [LENGTH] words to outline a photo of [CLASS].

[CLASS] refers to the names of corresponding classes, while
[LENGTH] stands for the maximum allowable number of words for
prompt generation. If [CLASS] is a disease class, we leverage two
additional commands to obtain descriptions of symptoms caused
by the disease in early and late stages:

e Describe the early symptoms of [CLASS] using no more than
[LENGTH] words.

e Describe the late symptoms of [CLASS] using no more than
[LENGTH] words.

GPT-3.5 usually generates excessively long prompts to describe
the characteristics of plant diseases in detail. CLIP may encounter
difficulties in extracting useful information from excessively long
sentences, leading to a decline in classification performance. There-
fore, it is necessary to limit the length of generated prompts. In
particular, we set the length limitation [LENGTH] at 25 words.
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Figure 1: Comparisons of our curated dataset PlantWild and existing PlantVillage and PlantDoc. PlantWild consists of in-the-

wild images and contains the largest number of disease classes.
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Classes

Squash Potato Citrus
Powdery mildew Late blight Canker e

'

Summarize visual features of [CLASS] with less than )

[LENGTH] words.

How to identify [CLASS]? Answer within [LENGTH]

words.

Use less than [LENGTH] words to outline a photo of

[CLASS].

Describe the early symptoms of [CLASS] using no

more than [LENGTH] words.

Describe the late symptoms of [CLASS] using no
\more than [LENGTH] words.

GPT-3.5

A photo capturing the devastation of squash powdery mildew,
with leaves covered in white powdery patches...

— —
Early symptoms of squash powdery mildew include white
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/s ™
/s ™
s ™
White, powdery patches covering the leaves and stems of squash

plants...,

Squash powdery mildew appears as white, powdery spots or
patches on the leaves and stems. ..

powdery patches on the leaves, typically starting from ...

Late symptoms of squash powdery mildew include extensive L/

\white powdery patches on the leaves, eventually leading to... )—/

Figure 2: The generation process of textual prompts for each class in PlantWild. For healthy classes, we leverage three commands
as inputs to GPT-3.5 for generation. For disease classes, we utilize two additional commands to obtain symptom descriptions at
different periods. We set a length limitation as 25 for generated prompts.

Methods PlantVillage PlantDoc PlantWild
Acc | M-P | MR | M-F1 | Acc | M-P | MR | M-F1 | Acc | M-P | MR | M-F1
AgglomerativeClustering [11] | 97.66 | 97.18 | 96.55 | 96.77 | 68.51 | 67.29 | 67.13 | 66.34 | 66.41 | 64.63 | 62.90 | 62.92
SpectralClustering [7] 97.70 | 97.34 | 96.42 | 96.81 | 68.32 | 67.16 | 66.90 | 66.34 | 66.44 | 64.09 | 62.78 | 63.05
Bi K-means [9] 97.44 | 97.13 | 96.16 | 96.51 | 69.31 | 67.92 | 67.98 | 66.47 | 66.58 | 63.15 | 62.04 | 61.80
BIRCH [12] 97.17 | 96.80 | 95.69 | 96.02 | 69.70 | 69.31 | 68.46 | 66.47 | 66.79 | 64.03 | 63.12 | 63.05
OPTICS [1] 97.14 | 96.89 | 95.08 | 95.70 | 68.71 | 67.45 | 67.72 | 67.15 | 66.82 | 64.01 | 63.35 | 63.24
MeanShift [3] 97.29 | 96.91 | 95.68 | 96.16 | 68.91 | 67.93 | 97.75 | 66.27 | 66.88 | 64.03 | 63.12 | 63.05
K-means [5] 97.72 | 97.40 | 96.44 | 96.83 | 69.90 | 69.92 | 68.97 | 68.87 | 67.20 | 64.03 | 62.64 | 62.84

Table 1: Classification results of our proposed baseline MVPDR with various grouping techniques. Our baseline demonstrates
strong robustness across different grouping techniques and achieves the best overall performance with K-means.

4 FALIURE CASE ANALYSIS

We investigate the failure cases of our proposed MVPDR where
images are misclassified. Figure 3 illustrates some representative
failure cases. Failure case 1 in Figure 3 (Left) illustrates that mild
symptoms of cucumber powdery mildew may not be prominent
enough to clearly distinguish it from healthy cucumber leaf, result-
ing in misclassification. Different diseases with similar character-
istic presentations can also raise difficulties for classification, see
failure case 2 in Figure 3 (Middle). In addition, according to Figure
3 (Right), for citrus canker that can occur on leaves and fruit, we
observe that all images of diseased fruit are correctly identified
while some diseased leaves are misclassified.

5 CONFUSION MATRIXES OF MVPDR AND
DHBP

To get further insights from the classification results, we generate
confusion matrixes based on the results of MVPDR on PlantVil-
lage, PlantDoc and PlantWild. According to the results in Figure 4,
PlantWild is more challenging than other datasets for classification
tasks. In addition, we also produce confusion matrixes for the sec-
ond best-performing competing method DHBP [10], as shown in
Figure 5. Comparing Figure 4 and Figure 5, it can be observed that

DHBP has superiority on PlantVillage while MVDPR shows better
performance on PlantDoc and PlantWild datasets.

6 MVPDR WITH DIFFERENT GROUPING
TECHNIQUES

We explore the influence of different grouping techniques in our
baseline MVPDR. We utilize K-means [5], Bi K-means [9], MeanShift
[3], BIRCH [12], Agglomerative Clustering [11], Spectral Clustering
[7] and OPTICS [1] for visual prototype construction, then evaluate
the classification performance.

Specifically, for partition-based clustering methods such as K-
means and Spectral Clustering that need to know how many clusters
the data should be divided into, we follow the main experiment
setups and specify the number of clusters to 16. In contrast, hi-
erarchical clustering and density-based clustering methods such
as MeanShift and OPTICS do not need to specify the number of
clusters beforehand, as these methods can automatically determine
the number of clusters based on data point densities or distances.
According to the results in Table 1, MVPDR is robust across differ-
ent grouping techniques. By leveraging K-Means, MVPDR achieves
the highest accuracy on PlantWild and the best overall performance
on all three datasets.
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Failure case 2

| Ground Truth:

§ Cucumber
3 | powdery mildew
i

Misclassified as:

The symptoms of this plant disease are
mild and do not dominate the image,
leading to its misclassification into the

healthy class. in misclassification.

Ground Truth:
Corn northern
leaf blight

—

Misclassified as:

The two diseases both cause elongated
lesions with similar appearances (i.e., small
inter-class discrepancy), therefore resulting
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Failure case 3
7 L

Ground Truth:
Citrus canker

Misclassified as:

Cucumber leaf Corn gray leaf spot l Coffee leaf rust
Correctly
identified

The disease can occur on leaves and fruit, (i.e., in intra-
class variance). Images of diseased fruits are all
identified correctly, while diseased leaves may be
misclassified.

Figure 3: Illustrations of some representative failure cases of our proposed baseline.
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(c) Plantwild

Figure 4: Confusion matrix results of MVPDR on PlantVillage, PlantDoc and PlantWild. The value in each grid represents a
percentage. It illustrates that PlantWild is more challenging than other datasets for classification tasks.
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Figure 5: Confusion matrix results of DHBP [10] on PlantVillage, PlantDoc and PlantWild. The value in each grid represents a

percentage.
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581 Class name ‘ #Images | Class name ‘ #Images | Class name ‘ #Images 639
o 1.apple black rot ‘ 173 | 31.citrus canker ‘ 535 | 61.maple tar spot ‘ 139 o
583 641
54 2.apple leaf ‘ 444 | 32.citrus greening disease ‘ 237 | 62.peach leaf ‘ 157 642
585 3.apple mosaic virus ‘ 181 | 33.coffee leaf ‘ 138 | 63.peach leaf curl ‘ 235 643
o8 4.apple rust ‘ 308 | 34.coffee leaf rust ‘ 190 | 64.plum leaf ‘ 325 o
587 645
538 5.apple scab ‘ 292 | 35.corn gray leaf spot ‘ 216 | 65.plum pocket disease ‘ 76 646
589 6.banana leaf ‘ 243 | 36.corn leaf ‘ 156 | 66.potato early blight ‘ 227 647
0 7.banana panama disease 216 37.corn northern leaf blight 224 67.potato late blight 240 o
591 P & P & 649
592 8.basil downy mildew ‘ 86 | 38.corn rust ‘ 237 | 68.potato leaf ‘ 249 650
593 9.basil leaf ‘ 589 | 39.corn smut ‘ 293 | 69.raspberry leaf ‘ 180 651
594 652
s 10.bean halo blight ‘ 115 | 40.cucumber angular leaf spot ‘ 251 | 70.rice blast ‘ 148 oo
596 11.bean leaf ‘ 258 | 41.cucumber bacterial wilt ‘ 143 | 71.rice leaf ‘ 252 654
597 12.bean mosaic virus ‘ 125 | 42.cucumber leaf ‘ 348 | 72.rice sheath blight ‘ 250 e
598 656
w00 13.bean rust ‘ 165 | 43.cucumber powdery mildew ‘ 236 | 73.soybean leaf ‘ 242 .
600 14.bell pepper leaf ‘ 240 | 44.eggplant cercospora leaf spot ‘ 88 | 74.squash leaf ‘ 410 658
601 15.bell pepper bacteria leaf spot ‘ 117 | 45.eggplant leaf ‘ 240 | 75.squash powdery mildew ‘ 281 659
602 660
o3 16.blueberry leaf ‘ 281 | 46.garlic leaf ‘ 228 | 76.strawberry anthracnose ‘ 98 ot
604 17.blueberry rust ‘ 117 | 47.garlic leaf blight ‘ 147 | 77.strawberry leaf ‘ 199 662
605 18.broccoli downy mildew ‘ 65 | 48.garlic rust ‘ 160 | 78.strawberry leaf scorch ‘ 76 663
606 664
o0 19.broccoli leaf ‘ 269 | 49.ginger leaf ‘ 177 | 79.tobacco leaf ‘ 71 wos
608 20.cabbage alternaria leaf spot ‘ 128 | 50.ginger leaf spot ‘ 87 | 80.tobacco mosaic virus ‘ 91 666
609 21.cabbage leaf | 464 | 51.ginger sheath blight | 87 | 81.tomato bacterial leaf spot | 280 667
610 668
o 22.carrot cavity spot ‘ 74 | 52.grape black rot ‘ 229 | 82.tomato early blight ‘ 346 o0
612 23.cauliflower alternaria leaf spot ‘ 98 | 53.grape downy mildew ‘ 395 | 83.tomato late blight ‘ 295 670
o13 24.cauliflower leaf | 195 | 54.grape leaf | 201 | 84.tomato leaf | 226 o7
614 672
o5 25.celery anthracnose ‘ 44 | 55.grape leaf spot ‘ 106 | 85.tomato leaf mold ‘ 239 73
616 26.celery early blight ‘ 55 | 56.grapevine leafroll disease ‘ 138 | 86.tomato mosaic virus ‘ 189 674
617 27.celery leaf ‘ 212 | 57 lettuce downy mildew ‘ 118 | 87.tomato septoria leaf spot ‘ 220 675
618 676
61 28.cherry leaf ‘ 286 | 58.lettuce leaf ‘ 244 | 88.tomato yellow leaf curl virus ‘ 171 o
620 29.cherry leaf spot ‘ 230 | 59.lettuce mosaic virus ‘ 100 | 89.zucchini yellow mosaic virus ‘ 181 678
621 30.cherry powdery mildew ‘ 114 | 60.maple leaf ‘ 316 | Total ‘ 18542 679
622 680
s Table 2: The number of images in each class of PlantWild. Our PlantWild dataset contains a significantly larger number of .
52;1 classes compared to PlantVillage and PlantDoc. o
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