
Under review as a conference paper at ICLR 2022

APPENDIX A PROOFS

Theorem 1. Let pψ(z) and qφ,ψ(z|x) represent the respective pushforward distributions of N (0, I)
and qφ(y|x) induced by the mapping gψ : Y 7→ Z . The following holds for all measurable gψ:

DKL (qφ,ψ(z|x) ‖ pψ(z)) ≤ DKL (qφ(y|x) ‖ N (y; 0, I)) . (3)
If gψ is also an invertible function then the above becomes an equality and LY equals the standard
ELBO on the space of Z as follows

LY(x, θ, φ, ψ) = Eqφ,ψ(z|x)[log pθ(x|z)]−DKL (qφ,ψ(z|x) ‖ pψ(z)) . (4)

Proof. We first prove the inequality from Eq. (3), then we show that Eq. (3) is actually an equality
when gψ is invertible, and finally we prove that the reconstruction term is unchanged by gψ .

Let us denote by F and G the sigma-algebras of respectively Y and Z , and we have by construction
a measurable map gψ : (Y,F) → (Z,G). We can actually define the measurable space (Z,G)
as the image of (Y,F) by gψ, then gψ is automatically both surjective and measurable.2 We also
assume that there exists a measure on Y , which we denote ξ, and denote with ν the corresponding
pushforward measure by gψ on Z . We further have ν(A) = ξ(g−1ψ (A)) for any A ∈ G.3

We start by proving Eq. (3), where the Kullback-Leibler (KL) divergence between the two push-
forward measures4 qφ,ψ , qφ ◦ g−1ψ and pψ , p ◦ g−1ψ is upper bounded by DKL (qφ(y|x) ‖ p(y)),
where here we have p(y) = N (y; 0, I) but we will use p as a convenient shorthand. At a high-level,
we essentially have that Eq. (3) follows directly the data processing inequality (Sason, 2019) with a
deterministic kernel z = gψ(y). Nonetheless, we develop in what follows a proof which addition-
ally gives sufficient conditions for when this inequality becomes non-strict. We can assume that
DKL (qφ(y|x) ‖ N (y; 0, I)) is finite, as otherwise the result is trivially true, which in turn implies
qφ � p.5 For any A ∈ G, we have that if pψ(A) = p ◦ g−1ψ (A) = p(g−1ψ (A)) = 0 then this
implies qφ(g−1ψ (A)) = qφ ◦ g−1ψ (A) = qφ,ψ(A) = 0. As such, we have that qφ,ψ � pψ and so the
DKL (qφ,ψ(z|x) ‖ pψ(z)) is also defined.

Our next significant step is to show that

Ep(y)
[
qφ
p

∣∣∣ σ(gψ)

]
=
qφ ◦ g−1ψ
p ◦ g−1ψ

◦ gψ, (A.1)

where σ(gψ) denotes the sigma-algebra generated by the function gψ. To do this, let h : (Z,G)→
(R+,B(R+)) be a measurable function s.t. Ep(y)

[
qφ
p

∣∣∣ σ(gψ)
]

= h ◦ gψ. To show this, we will
demonstrate that they lead to equivalent measures when integrated over any arbitrary set A ∈ G:∫

Z
1A

qφ ◦ g−1ψ
p ◦ g−1ψ

p ◦ g−1ψ dν =

∫
Z
1A qφ ◦ g−1ψ dν =

∫
Z
1A d(qφ ◦ g−1ψ )

(a)
=

∫
Y

(1A ◦ gψ) dqφ =

∫
Y

(1A ◦ gψ) qφ dξ

(b)
=

∫
Y

(1A ◦ gψ)
qφ
p
p dξ

(c)
=

∫
Y

(1A ◦ gψ) Ep(y)
[
qφ
p

∣∣∣ σ(gψ)

]
p dξ

(d)
=

∫
Y

(1A ◦ gψ) (h ◦ gψ) p dξ =

∫
Y

(1A ◦ gψ) (h ◦ gψ) dp

(e)
=

∫
Z
1A h d(p ◦ g−1ψ ) =

∫
Z
1A h (p ◦ g−1ψ ) dν,

2We recall that gψ is said to be measurable if and only if for any A ∈ G, g−1
ψ (A) ∈ F .

3The notation g−1
ψ (A) does not imply that gψ is invertible, but denotes the preimage of A which is defined

as g−1
ψ (A) = {y ∈ Y | gψ(y) ∈ A}.
4We denote the pushforward of a probability measure χ along a map g by χ ◦ g−1.
5We denote the absolute continuity of measures with�, where µ is said to be absolutely continuous w.r.t. ν,

i.e. µ� ν, if for any measurable set A, ν(A) = 0 implies µ(A) = 0.

15



Under review as a conference paper at ICLR 2022

where we have leveraged the definition of pushforward measures in (a & e); the absolute continuity
of qφ w.r.t. p in (b); the conditional expectation definition in (c); and the definition of h in (d). By
equating terms, we have that qφ ◦ g−1ψ /p ◦ g−1ψ = h, almost-surely with respect to qφ ◦ g−1ψ and thus
that Eq. (A.1) is verified.

Let us define f : x 7→ x log(x), which is strictly convex on [0,∞) (as it can be prolonged with
f(0) = 0). We have the following

DKL (qφ,ψ(z|x) ‖ pψ(z))
(a)
=

∫
Z

log

(
qφ,ψ
pψ

)
qφ,ψ dν

(b)
=

∫
Z

log

(
qφ,ψ
pψ

)
qφ,ψ
pψ

pψ dν

(c)
=

∫
Z
f

(
qφ,ψ
pψ

)
pψ dν =

∫
Z
f

(
qφ,ψ
pψ

)
d(p ◦ g−1ψ )

(d)
=

∫
Y
f

(
qφ,ψ
pψ
◦ gψ

)
dp =

∫
Y
f

(
qφ ◦ g−1ψ
p ◦ g−1ψ

◦ gψ

)
p dξ

(e)
=

∫
Y
f

(
Ep(y)

[
qφ
p

∣∣∣ σ(gψ)

])
p dξ

(f)

≤
∫
Y
Ep(y)

[
f

(
qφ
p

) ∣∣∣ σ(gψ)

]
p dξ

(g)
=

∫
Y
f

(
qφ
p

)
p dξ

(h)
=

∫
Y

log

(
qφ
p

)
qφ
p
p dξ

(i)
= Eqφ(y|x)

[
log

(
qφ(y|x)

p(y)

)]
(j)
= DKL (qφ(y|x) ‖ p(y)) ,

where we leveraged the definition of the KL divergence in (a & j); the absolute continuity of qφ w.r.t.
p in (b & i); the definition of f in (c & h); the definition of the pushforward measure in (d); Eq. (A.1)
in (e); the conditional Jensen inequality in (f) and the law of total expectation in (g). Note that this
proof not only holds for the KL divergence, but for any f-divergences as they are defined as in (b)
with f convex.

To prove Eq. (4), we now need to show that line (f) above becomes an equality when gψ is invertible.

As f is strictly convex, this happens if and only if qφp = Ep(y)
[
qφ
p

∣∣∣ σ(gψ)
]
. A sufficient condition

for this to be true is for qφ
p to be measurable w.r.t. σ(gψ) which is satisfied when gψ : Y 7→ Z is

invertible as σ(gψ) ⊇ F , as required. We have thus shown that the KL divergences are equal when
using an invertible gψ .

For the reconstruction term, we instead have

Eqφ(y|x)[log pθ(x|gψ(y))] =

∫
Y

log pθ(x|gψ(y))qφ(y|x)dξ

=

∫
Z

log pθ(x|z)qφ,ψ(z|x)dν

= Eqφ,ψ(z|x)[log pθ(x|z)].

Eq. (4) now follows from the fact that both the reconstruction and KL terms are equal.

16



Under review as a conference paper at ICLR 2022

APPENDIX B HIERARCHICAL REPRESENTATIONS

Figure B.1: Graphical model for hierar-
chical InteL-VAE

The isotropic Gaussian prior in standard VAEs as-
sumes that representations are independent across dimen-
sions (Kumar et al., 2018). However, this assumption is
often unrealistic (Belghazi et al., 2018; Mathieu et al.,
2019b). For example, in Fashion-MNIST, high-level fea-
tures such as object category, may affect low-level features
such as shape or height. Separately extracting such global
and local information can be beneficial for visualization
and data manipulation (Zhao et al., 2017). To try and cap-
ture this, we introduce an inductive bias that is tailored to
model and learn hierarchical features. We note here that
our aim is not to try and provide a state-of-the-art hierarchi-
cal VAE approach, as a wide variety of highly–customized
and powerful approaches are already well–established, but
to show how easily the InteL-VAE framework can be used
to induce hierarchical representations in a simple, lightweight, manner.

Mapping design Following existing ideas from hierarchical VAEs (Sønderby et al., 2016; Zhao
et al., 2017), we propose a hierarchical mapping gψ . As shown in Fig. B.1, the intermediary Gaussian
variable y is first split into a set of N layers [y0, y1, ..., yN ]. The mapping z = gψ(y) is then
recursively defined as zi = NNi(zi−1, yi), where NNi is a neural network combining information
from higher-level feature zi−1 and new information from yi. As a result, we get a hierarchical
encoding z = [z0, z1, ..., zN ], where high-level features influence low-level ones but not vice-versa.
This gψ thus endows InteL-VAEs with hierarchical representations.

(a)

(b)

(c)

(d)

(e)

Figure B.2: Manipulating representations of
a hierarchical InteL-VAE. The features are
split into 5 levels, with each of (a) [highest]
to (e) [lowest] corresponding to an example
feature from each. We see that high-level
features control more complex properties,
such as class label or topological structure,
while low-level features control simpler de-
tails, (e.g. (d) controls collar shape).

Experiments While conventional hierarchical
VAEs, e.g. (Sønderby et al., 2016; Zhao et al.,
2017; Vahdat & Kautz, 2020), use hierarchies to
try and improve generation quality, our usage is
explicitly from the representation perspective, with
our experiments set up accordingly. Fig. B.2 shows
some hierarchical features learned by InteL-VAE
on Fashion-MNIST. We observe that high-level
information such as categories have indeed been
learned in the top-level features, while low-level
features control more detailed aspects.

To provide more quantitative investigation, we also
consider the CelebA dataset (Liu et al., 2015) and
investigate performance on downstream tasks, com-
paring to vanilla-VAEs with different latent dimen-
sions. For this, we train a linear classifier to predict
all 40 binary labels from the learned features for each
method. In order to eliminate the effect of latent di-
mensions, we compare InteL-VAE (with fixed latent
dimension 128) and vanilla VAE with different latent
dimensions (1, 2, 4, 8, 16, 32, 64, 128). We show ex-
periment results on some labels as well as the average
accuracy on all labels in Table B.1 and Fig. B.3. We
first find that the optimal latent dimension increases
with the number of data points for the vanilla-VAEs, but is always worse than the InteL-VAE. Notably,
the accuracy with InteL-VAE is quite robust, even as the number of data points gets dramatically low,
indicating high data efficiency. To the best of our knowledge, this is the first result showing that a
hierarchical inductive bias in VAE is beneficial to feature quality.

Related work Hierarchical VAEs (Vahdat & Kautz, 2020; Ranganath et al., 2016; Sønderby et al.,
2016; Klushyn et al.; Zhao et al., 2017) seek to improve the fit and generation quality of VAEs by
recursively correcting the generative distributions. However, they require careful design of neural

17



Under review as a conference paper at ICLR 2022

Model Latent dim Data size

50 100 500 1000 5000 10000

VAE 8 0.791 0.799 0.814 0.815 0.819 0.819
16 0.788 0.801 0.820 0.824 0.829 0.831
32 0.769 0.795 0.825 0.832 0.842 0.846
64 0.767 0.794 0.826 0.832 0.849 0.855
128 0.722 0.765 0.817 0.825 0.830 0.852

InteL-VAE 64 0.817 0.824 0.841 0.846 0.854 0.857

Table B.1: Average accuracy in predicting all 40 binary labels of CelebA. Overall best accuracy is
shown in bold and best results of vanilla-VAEs are underlined for comparison. Each experiment is
repeated 10 times and differences are significant at the 5% level for data size ≤ 1000.

layers, and the hierarchical KL divergence makes training deep hierarchical VAEs unstable (Vahdat &
Kautz, 2020). In comparison, InteL-VAE with hierarchical mappings is extremely easy to implement
without causing any computational instabilities, while its aims also differ noticeably: our approach
successfully learns hierarchical representations—something that is rarely mentioned in prior works.

18



Under review as a conference paper at ICLR 2022

0.80

0.85

0.90

#D
at

a 
= 

50

5_o_Clock_Shadow

0.82

0.84

0.86

0.88

0.90

#D
at

a 
= 

10
0

0.86

0.88

0.90

#D
at

a 
= 

20
0

0.88

0.89

0.90

0.91

#D
at

a 
= 

50
0

0.89

0.90

0.91

#D
at

a 
= 

10
00

0.89

0.90

0.91

#D
at

a 
= 

20
00

0.89

0.90

0.91

#D
at

a 
= 

50
00

1 2 4 8 16 32 64 128
Latent Dimension

0.890

0.895

0.900

0.905

0.910

#D
at

a 
= 

10
00

0

0.525

0.550

0.575

0.600

0.625
Attractive

0.525

0.550

0.575

0.600

0.625

0.650

0.55

0.60

0.65

0.55

0.60

0.65

0.55

0.60

0.65

0.55

0.60

0.65

0.70

0.55

0.60

0.65

0.70

1 2 4 8 16 32 64 128
Latent Dimension

0.55

0.60

0.65

0.70

0.85

0.90

0.95

Bald

0.92

0.94

0.96

0.98

0.960

0.965

0.970

0.975

0.980

0.974

0.976

0.978

0.980

0.974

0.976

0.978

0.980

0.976

0.977

0.978

0.979

0.980

0.981

0.976

0.977

0.978

0.979

0.980

0.981

1 2 4 8 16 32 64 128
Latent Dimension

0.976

0.978

0.980

0.70

0.75

0.80

0.85
Bangs

0.76

0.78

0.80

0.82

0.84

0.80

0.82

0.84

0.86

0.85

0.86

0.87

0.88

0.89

0.85

0.86

0.87

0.88

0.89

0.85

0.86

0.87

0.88

0.89

0.90

0.86

0.88

0.90

1 2 4 8 16 32 64 128
Latent Dimension

0.86

0.88

0.90

0.625

0.650

0.675

0.700

0.725
Black_Hair

0.64

0.66

0.68

0.70

0.72

0.68

0.70

0.72

0.74

0.72

0.74

0.76

0.73

0.74

0.75

0.76

0.77

0.78

0.74

0.76

0.78

0.74

0.76

0.78

0.80

1 2 4 8 16 32 64 128
Latent Dimension

0.74

0.76

0.78

0.80

0.70

0.75

0.80

0.85

Blond_Hair

0.78
0.80
0.82
0.84
0.86
0.88

0.82

0.84

0.86

0.88

0.85

0.86

0.87

0.88

0.89

0.87

0.88

0.89

0.87

0.88

0.89

0.90

0.87

0.88

0.89

0.90

0.91

1 2 4 8 16 32 64 128
Latent Dimension

0.87

0.88

0.89

0.90

0.91

0.92

Figure B.3: InteL-VAE’s performance of attribute prediction on CelebA dataset. Each column shows
results on the same feature with different data sizes and each column shows results on different
features. In each graph, test accuracy of vanilla-VAE with different latent dimensions are shown
in blue line. And results of InteL-VAE with hierarchical prior are shown in red. We find that our
method (red line) achieves comparable or even better results compared with vanilla-VAE with all
latent dimensions.

19



Under review as a conference paper at ICLR 2022

APPENDIX C FULL METHOD AND EXPERIMENT DETAILS

In this section, we first provide complete details of the mapping designs used for our different InteL-
VAE realizations along with some additional experiments. We then provide other general information
about datasets, network structures, and experiment settings to facilitate results reproduction.

C.1 MULTIPLE-CONNECTIVITY

Mapping design As described in the main text, when using the inductive bias of a single hole, we
use the following gψ to map a Gaussian distribution approximately to a circular distribution,

g1(y) =
y

||y||2 + ε
. (C.1)

As a result, pψ(z) = gψ(p(y)) is approximately the uniform distribution on S1.

To introduce an additional hole, we simply glue two points on S1 together to make more holes. For
example

g2(y) = Concat
(
g1(y)[:,1], g1(y)[:,2]

√
(4/3− (1− |g1(y)[:,1]|)2)− 1√

3

)
, (C.2)

which first map y to approximately S1, and then glues (0, 1) and (0,−1) together to create new holes.
(see Fig. C.1 for an illustration.) Furthermore, we can continue to glue points together to achieve a
higher number of holes h, and thus more complex connectivity.

1 0 1
1

0

1

(a) Circular prior with h = 1

1 0 1
1

0

1

(b) Glue point pair
1 0 1

1

0

1

(c) Implied prior with h = 2

Figure C.1: An illustration of the glue function in multiply-connected mappings.

C.2 MULTI-MODALITY

Mapping design For simplicity’s sake let us temporarily assume that the dimension of Y is 2. Our
approach is based on splitting the original space into K equally sized sectors, where K is the number
of clusters we wish to create, as shown in Fig. C.2b. For any point y, we can get its component (sector)
index ci(y) as well as its distance from the sector boundary dis(y). By further defining the radius
direction for the k-th sector (cf Fig. C.2c) as

∆(k) =

(
cos

(
2π

K

(
k +

1

2

))
, sin

(
2π

K

(
k +

1

2

)))
∀k ∈ {1, . . . ,K},

we can in turn define g(y) as:

g(y) = y + c1dis(y)c2∆(ci(y)), (C.3)

where c1 and c2 are constants, which are set to 5 and 0.2 in our experiments. We can see that although
g has very different function on different sectors, it is still continuous on the whole plane if we extend
g s.t. g(y) = y on sector boundaries, which is desirable for gradient-based training.

When dimension of Y is greater than 2, we have more diverse choice for g. When K is decomposable,
i.e., K =

∏
iKi, we can separately cut the plane expanded by Y2i and Y2i+1 into Ki sectors by the

Eq. (C.3). As a result, Y is split into K =
∏
i ki clusters. When K = 2, we find that g only changes

the 1-st dimension of Y , so it can be applied to cases where latent dimension is 1.

20



Under review as a conference paper at ICLR 2022

(a) Original Distribution (b) Split into K sectors (c) Move sectors away
from origin

Figure C.2: Illustration of clustered mapping. The circle represents a density isoline of Gaussian
distribution. Note that not all points in the sector are moved equally: points close to the bound-
aries between sectors are moved less, with points on the boundary themselves not moved at all as
per Eq. (C.3).

(a) Real distribution (b) VAE (c) Vamp-VAE (d) InteL-VAE

Figure C.3: Extension of Fig. 4 showing Vamp-VAE baseline and additional circular target distribution
(top row, uses the same single hole gψ as the second and third rows).

Learnable proportions We can also make the mapping more flexible by learning rather than
assigning the cluster proportions. To do so, we keep a learnable value ui for each cluster and set the
angle of the i-th sector as 2πSoftmax(u)i. Things are simpler for the 1-dimensional case where we
can uniformly translate y by a learnable bias b before splitting the space from the origin.

21



Under review as a conference paper at ICLR 2022

C.3 SPARSITY

Sparsity regularizer Our sparsity regularizer term, Lsp, is used to encourage our dimensionality
selector network (DS) to produce sparse mappings. It is defined using a mini-batch of samples
{yi}Mi=1 drawn during training and is given by

Lsp = E

[
1

M

M∑
i=1

(H (DS(yi)))−H

(
1

M

M∑
i=1

DS(yi)

)]
, (C.4)

where H(v) = −
∑
i log (vi/‖v‖1) is normalized entropy of an non-negative vector v, and the

expectation is taken over the process of drawing a mini-batch of datapoints {xi}Mi=1 and then
independently drawing an intermediary latent for each, yi ∼ qφ(y|x = xi). During training, the first
term decreases the number of activated dimensions for each sample, while the second term prevents
the samples from all using the same set of activated dimensions, which would cause the model to
degenerate to a vanilla VAE with a lower latent dimensionality. The sparsity-regularized training
objective now becomes

LY(θ, φ, ψ, γ) = LY(θ, φ, ψ) + γ Lsp, (C.5)

where γ is a hyper-parameter controlling the degree of sparsity enforced (with higher γ corresponding
to more sparsity).

We note that Lsp alone is not expected to induce sparsity without also using the carefully constructed
gψ of the suggested InteL-VAE. We confirm this empirically by performing an ablation study on
MNIST where we apply this regularization directly to a vanilla VAE. We find that even when using
very large values of γ > 30.0 we can only slightly increase the sparsity score (0.230 → 0.235).
Moreover, unlikely for the InteL-VAE, this substantially deteriorates generation quality, with the FID
score raising to more than 80.0 at the same time.

Sparse metric We use the Hoyer extrinsic metric (Hurley & Rickard, 2009) to measure the sparsity
of representations. For a representation z ∈ RD,

Hoyer(z) =

√
D − ||ẑ||1/||ẑ||2√

D − 1
. (C.6)

Here, following Mathieu et al. (2019b), we crucially first normalized each dimension d of z to have
standard deviation 1, ẑd = zd/σd, to ensure that we only measure sparsity that varies between data
points (as is desired), rather than any tendency to uniformly ‘switch off’ certain latent dimensions
(which is tangential to our aims). In other words, this normalization is necessary to avoid giving
high scores to representations whose length scales vary between dimensions, but which are not really
sparse.

By averaging Hoyer(z) over all representations, we can get the sparse score of a method. For the
sparsest case, where each representation has a single activated dimension, the sparse score is 1. And
when the representations get denser, ||ẑ||2 get smaller compared with ||ẑ||1, leading to smaller sparse
scores.

Reproduction of Sparse-VAE We tried two different code bases for Sparse-VAE (Tonolini et al.,
2020). The official code base6 gives higher sparse scores for MNIST and FashionMNIST (though still
lower than InteL-VAE), but is very unstable during training, with runs regularly failing after diverging
and producing NaNs. This issue gets even more severe on CelebA which issues occurring after only
a few training steps, undermining our ability to train anything meaningful at all. To account for this,
we switched to the code base7 from De la Fuente & Aduviri (2019) that looked to replicate the results
of the original paper. We report the results from this code base because it solves the instability issue
and achieves reasonable results on CelebA. Interestingly, though its generation quality is good on
MNIST and Fashion-MNIST, it fails to achieve a sparse score significantly higher than vanilla-VAE.
As the original paper does not provide any quantitative evaluation of the achieved sparsity, it is
difficult to know if this behavior is expected. We note though that the qualitative results shown in the
paper appear to be substantially less sparse than those we show for the InteL-VAE, cf their Figure 5

6https://github.com/ftonolini45/Variational_Sparse_Coding
7https://github.com/Alfo5123/Variational-Sparse-Coding

22

https://github.com/ftonolini45/Variational_Sparse_Coding
https://github.com/Alfo5123/Variational-Sparse-Coding


Under review as a conference paper at ICLR 2022

Parameters Synthetic MNIST Fashion-MNIST MNIST-01 CelebA

Dataset sizes Unlimited 55k/5k/10k 55k/5k/10k 10k/1k/2k 163k/20k/20k
Input space R2 Binary 28x28 Binary 28x28 Binary 28x28 RGB 64x64x3
Encoder net MLP CNN CNN CNN CNN
Decoder net MLP CNN CNN CNN CNN
Latent dimension 2-10 50 50 1-10 1-128
Batch size 10-500 100 100 100 100
Optimizer Adam Adam Adam Adam Adam
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3

Table C.1: Hyperparameters used for different experiments.

Encoder

Input 64 x 64 x 3
4x4 conv. 64 stride 2 & BN & LReLU
4x4 conv. 128 stride 2 & BN & LReLU
4x4 conv. 256 stride 2 & BN & LReLU
Dense (dim)

Decoder

Input dim
Dense (8x8x256) & BN & ReLU
4x4 upconv. 256 stride 2 & BN & ReLU
4x4 upconv. 128 stride 2 & BN & ReLU
4x4 upconv. 3 stride 2

Table C.2: Encoder and Decoder structures for CelebA, where dim is the latent dimension.

compared to the top row of our Fig. 6. In particular, their representation seems to mostly ‘switch off’
some latents entirely, rather than having diversity between datapoints that is needed to score well
under the Hoyer metric.

C.4 ADDITIONAL EXPERIMENT DETAILS

Datasets Both synthetic and real datasets are used in this paper. All synthetic datasets (sphere,
square, star, and mixture of Gaussian) are generated by generators provided in our codes. For real
datasets, We load MNIST, Fashion-MNIST, and CelebA directly from Tensorflow (Abadi et al., 2015),
and we resize images from CelebA to 64x64 following Hou et al. (2017). For experiments with a
specified number of training samples, we randomly select a subset of the training data. We use the
same random seed for each model in the same experiment and different random seeds when repeating
experiments.

Model structure For low-dimensional data, the encoder and decoder are both simple multilayer
perceptrons with 3 hidden layers (10-10-10) and ReLU (Glorot et al., 2011) activation. For MNIST
and Fashion-MNIST, we use the same encoder and decoder as Mathieu et al. (2019b). For CelebA,
the structure of convolutional networks are shown in Table C.2.

Experiment settings Other hyperparameters are shown in Table C.1. All experiments are run on a
GTX-1080-Ti GPU.

23


