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A APPENDIX / SUPPLEMENTAL MATERIAL

In this supplementary material, we first clarify the notations used in this paper and then revisit the
proposed COMPGS in Algorithms 1. The training details of COMPGS will also be provided. Besides,
we provide more numerical and visual evaluations to further validate the effectiveness of our model.
We have provided a demo video in the attachment to display more visual comparisons between
CoMPGS and other methods. We will make code public.

A.1 NOTATIONS
We compile a comprehensive list of all the notations utilized in this paper, as shown in Table 4.

Table 4: Notations.

Notation Description

L Total number of entities

%4 Complex prompt (e.g., ’an owl perches on a branch near a pinecone’)
1 Composed image generated by the 2D diffusion model

v Entity-level prompt for entity [, (I € L)

I Segmented image containing entity /, (I € L)

my Rough triangle mesh of the 3D entity [, (I € L)

0, 3D Gaussians for the entity I, (I € L)

0 Composed 3D Gaussians [

N Number of points indexed from each mesh

u Center positions of each vertex of mesh m; in R?

d Texture colors queried from each vertex of mesh m; in R3
bbox; 3D bounding box for entity [, used for optimization
bboxsta Standardized volumetric space for scaling

Center positions of each vertex in the original 3D space

Transformed center positions of entity Gaussian after scaling

Shift parameters for the center positions of the bounding box

Scale parameters for standardizing the volumetric space

Rendered image from 3D Gaussians

Gaussian Splatting rendering function

the shift parameters for volume-adaptive optimization

the scale parameters for volume-adaptive optimization

the operator computing the center coordinates of the given bounding box
New Gaussians initialized from the edited 2D image
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A.2 ALGORITHM

We provide pseudocode in Algorithm 1. Two core designs, including 3D Gaussian initialization with
2D compositionality and dynamic SDS optimization, are detailed.

A.3 ADDITIONAL TRAINING DETAILS

CoMPGS is implemented in ThreeStudio Guo et al. (2023). We use DALL-E 3 Betker et al. (2023),
LangSAM Medeiros (2024) and TripoSR Tochilkin et al. (2024) to implement the text-to-image,
text-guided segmentation, and image-to-mesh, respectively. For entity-level optimization, we adopt
MVDream Shi et al. (2023) as the 3D diffusion prior; while for composition-level optimization,
we employ stabilityai/stablediffusion-2-1-base Rombach et al. (2022b) as the 2D diffusion prior.
We set all the diffusion guidance as 50. For all Gaussian parameters, we linearly decreased the
learning rate for position y from 1073 to 10~>, for scale from 10~2 to 10~3, and for color ¢ from
1072 to 1073, respectively. Besides, we fixed the learning rate for opacity a to be 0.05, and for
rotation to be 0.001. Additionally, we use a consistent batch size of 4 for both training and test, and
a rendered resolution fixed at 1024 x 1024. Camera settings during training are set with distances
ranging from 0.8 to 1.0 relative units, a field of view between 15 and 60 degrees, and elevation
ranging up to 30 degrees. Additionally, there are no perturbations applied to camera position, center,
or orientation, maintaining a controlled imaging environment. For test, we set the resolution of
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Algorithm 1 CoOMPGS: 3D Gaussian Initialization and Dynamic SDS Optimization V, {v;}(I € L):
Input prompt and entity-level prompts.

{my}(l € L): Entity-level meshes.

0,{6,}(l € L): Composition-level Gaussian parameters and entity-level Gaussian parameters.
bbox:q: Standardized volumetric space.

L: The number of entities.

N: The number of Gaussian parameters.

T2I: Text-to-Image models.

TGS: Text-guided segmentation models.

I2M: Image-to-Mesh models.

Zoom', Zoom*: Zoom-in and Zoom-back operators in Eq. 4.

n: Learning rate.

T Total training iterations.

Stage 1: Initializing 3D Gaussians with 2D Compositionality.

I=T2I(V) > Generate well-composed Image from the given prompt
{v;} = LLM(V) > Obtain entity-level prompts via LLM
{m;} = 2M(TGS({wi},I)) > Obtain entity-level meshes
pi(t € N),ci(i e N) «~my(l € L) > Positions and colors of the 3D Gaussians.
D «+ p;i(i € N) > Distance between the nearest two positions.
Y (i€ N),a;(i € N)« D,0.1 > Covariance and opacity of the 3D Gaussians.
bbox;(l € L) < p;(i € N) > Boundary of bounding box

Stage 2: Dynamic SDS Optimization.
fort =1toT do
[ + randint(1, L) > Randomly select an integer [ from the range 1 to L
if 7 = O then )
Vo Lihs(0,x = g(0)) £ Evc [w(t) (€o(2e, V1) — €) G
> Obtain the gradients via SDS loss with 2D priors
VoLifs(0,x = g(0)) £ Ev.e [w(t) (€ (e, v, 1) — €) 5]
> Obtain the gradients via SDS loss with 3D priors
0« 0 —n(VoLshs + VoLihs)
> Update the compositional Gaussian parameters via back-propagation
else
0, ZoomT(Ql, bbox;, bboxsq)
> Dynamically zoom-in Gaussian parameters from bbox; to a standardized space bbox:q
Vélﬁggs(¢ax = g(el)) £ Et,e w(t) (é¢(ztv Ui, t) - 6) %
> Obtain the gradients via SDS loss with 3D priors
0, 0, — nVél ‘Cgl%s
> Update the compositional Gaussian parameters via back-propagation
0; + Zooml(él, bbox;, bboxsq)
> Dynamically zoom-back Gaussian parameters from the standardized space bbox:4 to bbox;

end for
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‘A dripping paintbrush stands poised above a half-finished canvas’

(A ¥
‘A fisherman is throwing the fishing rod in the sea’
'- A"‘ vy

T

DreamFusion Magic3D LatentNeRF Fantasia3D N[e ProlificDreamer VP3D CoMPGS (ours)

Figure 7: Qualitative comparisons between COMPGS and other text-to-3D models on T>Bench
(multiple objects track). COMPGS is better at generating highly-composed, high-quality 3D contents
that strictly align with the given texts. Watch the animations by clicking them (Not all PDF readers
support playing animations. Best viewed in Acrobat/Foxit Reader).

rendered image as 1024 x 1024 with specific camera distance and field of view for validation set to
3.5 units and 40 degrees, respectively. For each prompt, we train the model on an NVIDIA A100
GPU (40G) for 10,000 iterations, which takes approximately 70 minutes. We observed that training
the model for 5,000 iterations already produces high-quality content with minimal loss of texture
details. This indicates that the training duration can be shortened to around 30 minutes. However, to
achieve high-quality 3D textures, we use 10,000 iterations for training in this paper, unless otherwise
specified.
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‘A castle-shaped sandcastle’

‘A cherry red vintage lipstick tube’

~ o e |

‘A fluffy, orange cat’

‘A fuzzy pink flamingo lawn ornament’

B ¥

‘A hot air balloon in a clear sky’

A" v e

‘A paint-splattered easel T

DreamFusion Magic3D LatentNeRF Fantasia3D N[e ProlificDreamer VP3D CoMPGS (ours)

Figure 8: Qualitative comparisons between COMPGS and other text-to-3D models on T>Bench
(single object track). COMPGS is better at generating high-quality 3D assets that strictly align
with the given texts. Watch the animations by clicking them (Not all PDF readers support playing
animations. Best viewed in Acrobat/Foxit Reader).

A.4 EXTENDED EXPERIMENTS ON QUALITATIVE COMPARISONS

Qualitative Model Comparisons on Multi-objects Generation Fig. 7 showcases additional 3D
assets produced by COMPGS. The prompts are selected from T3Bench (multiple objects track).
Compared to previous methods, COMPGS not only generates multiple objects but also produces
more plausible interactions while maintaining 3D consistency among the objects. For example, in
the first row, previous methods such as DreamFusion, Magic3D, LatentNeRF, Fantasia3D, SJC,
and ProlificDreamer all fail to generate the canvas described in the given prompt. Although both
VP3D and COMPGS can generate the two entities (paintbrush and canvas), VP3D fails to maintain
3D consistency, as the back view of the canvas is not visually plausible. In this case, COMPGS
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Table 5: Quantitative comparisons with baselines on T>Bench He et al. (2023) (all three tracks).
CoMPGS is compared with feed-forward models, optimization-based models, and models specifically
designed for compositional generation.

Single Object Single Object with Surroundings Multiple Objects
Quality Alignment Average Quality Alignment Average Quality Alignment Average

LRM Hong et al. (2023)
TripoSR Tochilkin et al. (2024)

29.4 38.2 33.8 20.3 35.1 217 15.2 255 20.4
343 389 36.6 21.8 372 295 16.7 28.6 227

24.9 24.0 24.4 19.3 29.8 24.6 17.3 14.8 16.1
26.3 23.0 24.7 17.3 22.3 19.8 17.7 5.8 1.7
34.2 32.0 33.1 23.7 375 30.6 21.7 19.5 20.6
29.2 235 264 21.9 32.0 27.0 227 14.3 18.5
511 478 49.4 425 470 44.8 457 258 358
38.7 353 370 29.8 41.0 354 26.6 248 257

Set-the-Scene Cohen-Bar et al. (2023) ‘ 329 31.9 324 ‘ 30.2 458 355 ‘ 20.8 299 25.4

Method ‘

Fantasia3D C
ProlificDrear
Magic3D Lin et 2

'VP3D Chen et al. (2024¢) 49.1 315 403
CompPGS ‘ 55.1 52.5 538 542 379 46.1

successfully captures both the key entities described in the prompt and generates reasonable spatial
relationships and interactions between the two objects. This phenomenon can also be observed in
other cases, such as the key and lock in the third row, and the fisherman in the sea in the fifth row,
and so on. Besides the issue of 3D consistency, we found that COMPGS performs better in texture
alignment. For example, in the second-to-last row, other methods failed to display the combination
of chessboard, king, and queen. Specifically, VP3D did not recognize the king and queen as chess
pieces. In contrast, COMPGS generates these entity details more accurately. Overall, the comparisons
in both visual quality and textural alignment with previous methods demonstrate the effectiveness of
the proposed COMPGS.

Qualitative Model Comparisons on Single-object Generation Though COMPGS is specifically
designed for compositional generation, it can naturally handle single-object generation as well. We
present the qualitative comparisons between COMPGS and previous works in Fig. 8. It is observed
that COMPGS performs better in maintaining multi-view consistency and generating fine-grained
details of the object. For example, in the last row of Fig. 8, COMPGS is capable of generating a 3D
consistent candle holder, including detailed copper textures. In contrast, other methods either fail to
produce the corresponding shape Chen et al. (2023b), only generate rough outlines without detailed
textures Poole et al. (2022); Lin et al. (2023); Metzer et al. (2023); Wang et al. (2023a), or produce
3D patterns with discontinuities Wang et al. (2024); Chen et al. (2024c).

Qualitative Model Comparisons with Scene-generation Methods We also compare COMPGS with
closed-source models Zhou et al. (2024); Cohen-Bar et al. (2023) that generate 3D scenes. Figures
were selected from Zhou et al. (2024) and are presented in Fig. 9. The results indicate that COMPGS
excels in generating high-fidelity texture details and complex interactions. In the second row of
Fig. 9, CoMPGS produces more detailed textures for table legs and rabbit fur. Regarding interaction
generation, Set-the-Scene Cohen-Bar et al. (2023) fails to create complex spatial relationships,
as shown with the dog and the Great Pyramid in the first row. Although GALA3D can generate
reasonable spatial relationships, it fails to incorporate mutual interactions between objects. This is
because it performs compositional generation by optimizing the layout of each object individually,
neglecting other inter-interactions such as the rabbit’s mouth on the cake and the dog’s paw on the
plate. In contrast, COMPGS generates higher-fidelity textures (e.g., the table body, rabbit fur) and
more realistic interactions among objects (e.g., the dog’s paw hanging off the plate rather than just
resting on top).

Qualitative Model Comparisons with Other Compositional Generation Methods In the main
paper, we have compared COMPGS with both open-sourced compositional 3D generation baselines
(Set-the-scene and VP3D) in Table 1, and close-sourced baselines (GALA3D) in Figure 9. Results
show that the 3D assets generated by COMPGS are not only high-quality in appearance, but also
align with the given prompts more strictly. We have included qualitative comparisons with both
GraphDreamer Gao et al. (2024) and DreamGaussian Tang et al. (2023) in Fig. 10. Results show that
CoMPGS demonstrates superior performance on both generation quality and text-3d alignment.

A.5 QUANTITATIVE MODEL COMPARISONS

Tab. 5 presents the complete quantitative comparisons on all three tracks of T>Bench. The results
indicate that COMPGS achieved state-of-the-art performance in compositional generation and slightly
outperformed competitors in the single object track. For instance, in the multiple object track,
our model surpassed the second-best work Chen et al. (2024c) by 5.1 in quality and 6.4 in texture
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‘Panda in a wizard hat sitting on a Victorian-style wooden chair and looking at a Ficus in a pot’

Wi AR

Set-the-Scene Cohen-Bar et al. (2023) GALA3D Zhou et al. (2024) CoMPGS (Ours)

Figure 9: Qualitative Comparisons Between COMPGS and 3D Scene Generation Methods. We
selected the figures from Zhou et al. (2024) for these comparisons due to the unavailability of the
code. COMPGS performs better in generating object textures and complex interactions.

@

CompGS (Ours)

GraphDreamer

‘A florist is making a bouquet with fresh flowers’

B Bl

DreamGaussian CompGS (Ours)
‘A half-eaten sandwich sits next to a lukewarm thermos’

Figure 10: Extended comparisons with GraphDreamer Gao et al. (2024) and DreamGaussian Tang
et al. (2023).

alignment. In the single object track, our model also slightly outperformed the second-best work Chen
et al. (2024c¢) by 0.3 in both quality and alignment.

However, it is worth noting that our model did not achieve state-of-the-art performance in generating
single objects with surroundings. This is attributed to the text-guided segmentation model we use,
which does not effectively segment the background (e.g., ground, sky, etc.). We have explained this
in Sec. 5 and leave it for future improvement. Despite a slight decline in our texture alignment metric
in this track, our model still performed significantly better than other methods Tochilkin et al. (2024);
Hong et al. (2023); Poole et al. (2022); Wang et al. (2023a); Metzer et al. (2023); Chen et al. (2023b);
Wang et al. (2024); Lin et al. (2023); Cohen-Bar et al. (2023), except for VP3D.
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A.6 EXAMPLES IN USER STUDY

We provide examples of images and scenes used in our user study. In particular, we present concate-
nated rendering videos and ask participants to rank the eight methods shown in the video based on the
overall quality of the 3D objects and the alignment between the text and the 3D models. We average
the rank number as its ranking score for comparisons in Tab. 1.

‘An old brass key sits next to an intricate, dust-covered lock’

Figure 11: Examples used in our user study.

A.7 ROBUSTNESS

We empirically found that COMPGS demonstrates the ability to address certain deficits caused by
off-the-shelf model priors (e.g., T2I and segmentation priors). Here are some illustrative examples:
(1) If certain parts of the target objects are not correctly segmented, COMPGS can complete the
unsegmented part with correct 3D information. This is demonstrated in Fig. 7??12(left), where the
swing has not been segmented but has been generated by COMPGS correctly. This is facilitated
through the Entity-level Optimization procedure proposed in the DO strategy. (2) If the T2I models
fail to generate proper intra-object interactions, COMPGS can correct the multi-object interactions.
This is shown in Fig. 7??12(right), where the spatial relationships in the given image are incorrect
and then corrected in the text-to-3D process. This is achieved by the Composition-level Optimization
in the proposed DO strategy.

T2I Image view-1 view-2 T2I Image view-1 view-2

‘A worn-out rubber tire swing’ ‘A dripping paintbrush stands poised above a half-finished canvas’

Figure 12: CompGS demonstrates the ability to address certain deficits caused by off-the-shelf priors.

A.8 FAILURE CASES

As discussed in Sec. 5, COMPGS exhibits limitations in generating backgrounds, such as ground and
sky. This is likely due to the current text-guided segmentation model’s inability to effectively segment
these abstract concepts. When the background is not well-segmented, we lose the corresponding
2D compositionality needed for initializing 3D Gaussians. This leads to two failure cases: (1) the
absence of background in the compositional 3D scenes, as seen with the missing grass in the second
column of Fig. 13, or (2) background generation of poor visual quality, such as the vague and unclear
depiction of grass in the first column of Fig. 13. It’s crucial to note that such limitations, whilst exist,
are not the focus of this work. These shortcomings can be overcome by enhancing the capabilities of
off-the-shelf models, effectively mitigating the manifested issues.
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SCaQ ‘¢

‘a camping scene with a tent on the grassland and bench near a campfire’ ‘a butterfly is flying towards a flower in the grass’

# 41

‘A gardener is watering plants with a hose’ ‘A fuzzy pink flamingo lawn ornament on the water’

Figure 13: Failure Cases of COMPGS in background generation When text-guided segmentation
mode fails to segment the backgrounds, COMPGS may generate background with poor visual quality
or fails to generate background.

A.9 3D EDITING EXAMPLES

CoMPGS offers a user-friendly approach to progressively conduct 3D editing for compositional 3D
generation. More visual examples are presented in Fig. ???14. For instance, given a compositional
prompt such as ‘A puppy lying on the iron plate on the top of the Great Pyramid, with a pharaoh
nearby’, we divide the generation process into four stages. Initially, we generate ‘the Great Pyramid’
on the left, then progressively add ‘the plate’, ‘the puppy’, and ‘the pharaoh’ to complete the 3D
scene. Notably, both the interactions and texture details can be well-produced during the editing
pipeline of COMPGS.

Overall prompt: ‘an owl perches on a branch near a pinecone, with a rat below the branch’

+ arar b@/ow the branch
Overall prompt: ‘A puppy lying on the iron plate on the top of Great Pyramid, with a pharaoh nearby’

R iﬁ%

the Great Pyramid = an iron plate a puppy + with a pharaoh nearby

+ perches on a branch +  wnear a pinecone

Figure 14: More examples of 3D Editing. COMPGS provides a user-friendly way to progressively
edit on 3D scenes for compositional generation.
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