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This Supplementary Material contains the proofs of the results in [1]] and is consistent in notation
with the main paper.

A Proofs of upper bounds

A.1 Plug-in estimator
Proof of 1% bound in Theorem 2.1. 1°. Bias: We have using the triangle inequality,

K
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Hence, it suffices to upper bound the &™ bias component | E F., (k) — p)| for all k € [K] and v # 1

(the case v = 1 being trivial). We separate the analysis in two different ranges of values of pj. Define
K>r ={ke[K]: pr > 7}, and K<, = [K]\ K>,. By Lemma [B.5|we have
7 |IC<7'|
> ERm-p| e
/2
KeR (an)”

for a constant C' depending only on . Lemma [B.7]ensures that

E:‘EF(M— < —Kﬁﬂ—+1 Mfﬂlﬁ

¥ Pl = (a2n)1/2 (=27 2,
kE’CZT

for a constant C’ depending only on ~. Gathering the above inequalities, we have

[E£, - F,

K Ip=7)1725
<(C+0C) ((042”)7/2 tlgen——a — |- (14)
2°. Variance: By Lemma, we have Cov(ﬁﬁ, (k), F,Y(k’)) < 0forany k # k' € [K]. Hence
K K
WH(E:Fﬂ@)fEE:VH(FﬂkD . (15)
k=1 k=1

As in the proof of the bias bound above, we separate our analysis in two different ranges of values of
pr. For small py,, we use Lemma[B.5]to get

Z Var (ﬁl,(k)) < 5(52:)7 ,

ke~
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where C is a constant depending only on ~. For large p, we deduce from Lemmathat

. Ko >r 27:2
Z Var (F( )) <Cl<| = | +1{W>1}7”p ”27 2)

e (a?n)Y 2n

for a constant C’ depending only on 7. Then, plugging these bounds into (13)), we have

K =7 115722
The proof of the of 1% bound in Theorem 2.1 is complete. ]

Proof of 2"¢ bound in Theorem 2.1. We only need to control the second and third terms of the 1%
bound in Theorem 2.1. The squared root of the second term is bounded from above by

_ K -1 _ 1
pkll{Pk>T} < pz et _ ”sz et

Zﬁ Vorn & Varn | vam

Since (py )i are probabilities, we have pz_l < pg, for v > 2 and we can further bound the last display
1

Zk 1 Pk ]]'{Pk>7'}

by ||p||:*yj < Zle pr = 1 for v > 2. Hence, the second term is bounded by 1.,>2(a?n)~

Let us bound the third term. Since ), pr, = 1, the number of the significant p;, > 7 is necessarily

smaller than 7=! = ¢~ 'va2n, and thus smaller than K,-: := K A va2n. Then, when v €
(1,3/2), we use the concavity to have Hp>7||§z 5 < K37 forall p € Pr. When~y > 3/2 we have

AT—1
lp=7 ”3:{/—3 < 1. Therefore, the third term is uniformly bounded over the class Pg by

Lo Py  IVELH
=7 2, = 2T 2,
This concludes the proof of the 2" bound in Theorem 2.1. ]

A.2 Thresholded plug-in estimator (proof of Theorem 2.3)

Case v € (0,1): Let us check the first bound of Theorem 2.3. We use the concavity of the power

function p” to have F, < K (Zle pr/K)Y = K'77. Then, the quadratic risk of the trivial
estimator 0 is bounded by K2(!1=7)_ On the other hand, the quadratic risk of the plug-in F’y is
bounded by K2 / (a®n)Y (Theorem 2.1). Therefore, the quadratic risk of the thresholded estimator
F =lg<r F satisfies the first bound of Theorem 2.3.

Case v > 1: Recall that 7 < \/log(Kn)/(a?n). We will prove the next bound on the risk of FA,,

(KA1 v

4 [(Fv o Fw)ﬂ 57 (K77 A 717_1)2 + a2n

(17)
Before that, we check that (I7) implies the second inequality of Theorem 2.3.
(i) Assume that K > 7=, then the RHS of becomes

oy, TIPVL (log(Bn) T (log(n) 1 (log(Km) 1

a’n S (a2n)7—1 (a2n)v—(1/2) a?n ™ (a2n)rt an

where the last inequality follows from the bound

(log(Kn))" "% _ (log(Kn))"™"
(aQn)V*(l/Q) = (a2n)’y—1 ’

which is equivalent to a?n log(Kn) > 1. Hence, is upper bounded by the smallest term of the
second inequality of Theorem 2.3.



(ii) Assume that K < 771, then the RHS of (T7) becomes
K3 2vv1 K2 (log(Kn))" 1v K327
a2n S (a2n)Y a?n ’
which is the smallest term of the second inequality of Theorem 2.3. Hence, we have proved that the
second inequality of Theorem 2.3 follows from (17).

K27A_2'y

Proof of (T7). We have the deterministic bound
|Fy—F,|<F,+F,<K(2" +1) .
Introduce the following event
A= {Hk c K] : (2}? < #and py > 3%/2) or (z](j) > 7 and py < %/2)}

and denote the complementary event by A°. We have

E [(Fv o Fw)z] <E [HAC(F“/ - F’Y)Q} +P(A) (K (27 + 1))2 : (18)
Let us bound the second term of the RHS of (I8) by showing that P(A) < 6/(K?n). By assumption
in the theorem, we have n > 2log(K). This ensures that n > log(Kn1/3), which allows us to use

Lemmawhich gives P (\2,&” — pi| > %/2) < 6/(K3n). Hence, for p;, > 37/2, we have
(1) - 6
P (zk < T) < o

P(z,ﬁl)z%)gi .

6/(K?n). The second term of the RHS of

and for pp < 7/2,

We then use the union bound over k € [K] to get P(A) <
(T8) is therefore bounded by 6(27 + 1)%/n.

We now control the first term of the RHS of (I8). For any real a > 0, we note K., = {k €

K] : pp < a}and Ko, = {k € [ ]: ,(Cl) < a}, with their respective complementary sets
Ksq = [K]\K<q and K>, = [K] \ K<q. Splitting the sum over the & in K and IC>T respectively,
we get

_ 2 _ 2
Lae(Fy — F))? < 2140 (||(pk)ke,€<+||g) v 21Ac( S FL (k) - Fw(k)> .
kel€2+

Since K+ C K3z /2 on the event A°, we can bound the first term by
Lacll(pr) e, 17 < I @r)ker o o] < K(37/2)7 A (37/2)7
for any v > 1 and p € Pg. For the second term, we will use the independence between the data

samples z(1) := (zil), o z,(Ll)) and z(2) .= (zf) z7(L )) In particular, the set K>+ and the event
A¢ are deterministic conditionally to z(l), so that

E ﬂAc( ST F( ) ( W] =1, E ( Z Fv(k:)—Fv(k;))z‘z(l)

keK >+ kekss
K22 | KszP 27V 1
< ]]_ CC — —
=4 ((0(271)'y * a’n

where the last line is similar to the 2" bound in Theorem 2.1 with K replaced by |l€2+ |, and where
C is some constant depending only on 7. We can further bound the last display by noting that
Kss C K> /2 onthe event A, and |5z /5| < K A (7/2)7. Going back to (T8), we then have for
all p e Pk,

= KA 1?2 (KA7 )2 vl 1
_ 2] < Ay A 2712 ( —
E[(F, — )] S (K7 A+ 4 5050 - + -
e KA1 v1
<y (K#T A1) 4 ( a2)n .
The proof of (I7) is complete. O



A.3 Interactive privacy mechanism

Proof of 1% bound in Theorem 2.4. 1°. Bias: We decompose the expected value of FVW :

~ I .
EF, - E EE [21(2)|z(1),z(2)} = E EE {Fv(l,)l(mf)ﬂz(l)m@)}
i=1 i=1

K K
=Y nEE [F,gl_)l(kﬂz(l)} =Y nE [Fgljl(k)} (19)
k=1

k=1

so that, for any v > 1, v # 2 (the case v = 2 being trivial), we have

K
EFy =) n
k=1

K
<Y e [EED (k) - |
k=1

cof b, (20)
- (azn)(V*Um {r=3} a’n
using Lemma[B.5|and[B.7)and ), pj = 1, where C'is a constant depending only on .
2°. Variance: By the law of total variance we have
Var (F, ) =E [Var (|20 | + var (E[]20]) Q1)

We control the first term in the RHS of Z1)):

Var (ﬁﬂz(l)) = %Var (2§2)|z(1)) < %E {(z@)g |z(1)]

2v—1 a 2 2y+1
2 <e +1) <2

e —1 o?n

n

where we used (513)? = (1 + —+5)% < (1 + 1)? < 4. For the second term in the RHS of 1),

we have using (I9)

ar F |ZD]) = Var 3 2 2var ( £,
Var (B [71200]) = v (;M_<k>>gzpkv (#9,®)

where the inequality can be deduced from Lemma|B.4] Then, by Lemma|[B.5]and[B.8]

K o (5 ~(_lIpli3 P75
;kaaf(Fwﬂk)) §C<W+1{vz2} 2n >

for a constant C depending only ~y. The proof of the 1% bound in Theorem 2.4 is complete. |

Proof of 2" bound in Theorem 2.4. The desired bound follows from the 1% bound of Theorem 2.4
and the fact that 155 [p=7 1725 < 1and 1,50y [p=713725 < [[p|3 < 1forall p € Pk O

B Main lemmas for upper bounds

We use the notations &, = £ 37 | T, gy and @y, = £ 37wy, so that 2, = & + Zdy,. We
consider « € (0, 00) in this Appendix [B} unlike in the main section of the paper where we assumed
that o € (0,1) and a®n > 1.

B.1 Concentration of Z

We control the concentration of Z; in the next lemma.



Lemma B.1. Forany o € (0,00) and any r > 0, we have
Car,r
(@2 A1)n)r/2 7
2"Cgr,r
(@ A L))"
where Cgy, » is a constant depending only on r. Besides,

2
P(2x < p?k) < 3 exp [_n<(a/\1)pk> ]

E (|2 —pxl] <

E 2] < +2'py

128 o

Proof of Lemma [B.1} By (35) in Lemma|C.1]and (37) in Lemma|[C.2] we have for any r > 0,
Bl - pul) < 2 Bl — ]+ 278 [ ()] < e, Bo O
2" (OB,T + UTCLJ”)
((a? AL)n)r/2
where Cp, and Cp, are constants that only depend on r. Then, denoting Cpgy
2" (Cpy+0"CL ), we have

Ef|2|"] = E[|2x — pr + pi|"] < 2" E (|2 — pel"] + 27D},

2"CBrL.r .
< - T2 21" T .
= (@ TP
Finally, by (32) in Lemma|[C.I]and (36) in Lemma|C.2] we have
3 0 2n n (o 2 n [ A
P(a < 59) S P(ax < 5 + (T < =55 < e (3755 4 o8 (5) 4 oo (5)

< 3e ez ((@Apr)?

The proof of Lemma [B:T]is complete. O

Recall that ., (k) = (Ti0,2) [ék])'y. We bound the difference between the expectations of Tjg 5)[2%]
and Z;, in the next lemma.

Lemma B.2. We have for any o € (0, 00),

5 2p,;1 2 16
|E [T[0,2] [Zku *pk’ < m <CT CL’Q —+ 7

Proof of Lemma Recall that 2, = &, + 21y, and define e, by Tl 2 [2x] = @k + €. Then
E [Tpo,2) [2&]] — pr = E [ex] and it suffices to bound | E [e;] |. Introducing the event A = {|Z 4| <
21} and the complementary event A°, we note first that A C {2; € [0, 2]} and thus €}, = Z1, on A.
We have

g .
|Ele]| < |E[erba] |+ |ElexLac]| = |E [ZnLa] |+ E [erLac] |

g . .
= |EE [awkﬂA‘l‘k} ‘ + |E[€k]lAc] |
= |Elexlac]|

since Wy, is a centered and symmetric random variable that is independent of &;. Using the event
B = {2pi, > &y, > pi/2} and the complementary event B¢, we have

IE [exLac] | < E[lex|Lacns] | +E [lex|Lacape] < E [|ek\1{%|wk|2%pk}} 2R [Lp]

o, . L
<E {E‘wk|1{g|wk|2%pk}} + 4e~ 8"Pk

_ Pk, 0 . —Lnpk
=2p; ! (E {3 Ewku{gmuz%pk}] + 2pre” s p")

< 29" (B [|Znf?] + 2ppe )



where we invoked (32}33) from Lemma|[C.I]in the second line. Then, by (37) from Lemma|C.2]

°C , 2C 16
|E[exlac]| < 2p;1 <U 2L’2 + 2pke—npk/8> < 2pl;1 (UQL’2 + 7)
a?n o?n en

where we used ze~"* < —L for any € [0,1] and any ¢ > 0. This concludes the proof of

cen

Lemma O

Lemma B.3. For any o € (0,00), and integers K, n satisfying n > log(Kn'/?), we have

1og(Kn1/3)> __6

P |2k — > 96 .
(Zk Pl 7 (2A1)n | — K3n

Proof of Lemma Denoting § = cy0 % with ¢; > 1 a numerical constant to be set
later, we get from (34) in Lemma|[C.I|and in Lemma[C.2]that

“ " 1) 0|’uA)k‘ 1) _ né? _ n(ad/a)? _ n(ad/o)
IP’(|zk.fpk|>6)§P(|xkfpk\>§)+P(7>5)§2 e 2 e 2 +e B
«

cq log(Knl/3)

< 6e” 32

which is upper bounded by 6/(K3n) for ¢; = 96. Lemmais proved. O

Lemma B.4. We have Cov(ﬁw(k), Fv(k’)) < Oforanyk,k' € [K), k # k', and any v > 0.

Proof of Lemma[B.4] We first state the definition of the negative association property.

Definition (See [5]) Random variables u1, ..., ux are said to be negatively associated (NA) if for
every pair of disjoint subsets A, A of {1,..., K}, and any component-wise increasing functions
fl ) f2 >

Cov(fi(uii € Ar), fa(uj,j € Az)) <0 . (22)

By corollary 5 of Jiao et al. [4], random variables that are drawn from a multinomial distribution,
are NA. Hence, the random variables X = (&y,...,4x) are NA since (#1,...,%) follows a
multinomial distribution ~ M (n; (pr)re[k]). Besides, the W = (r)ke[x) are NA, as any set of
independent random variables are NA [5]. Then, we get that (X7 W) = (Z1,...,TK,W1,...,WK)

are NA since a standard closure property of NA is that the union of two independent sets of NA
random variables is NA [5]. We can therefore use the definition (22)) of NA random variables to have

Cov(fi(X, W), frr(X,W)) <0, VK € [K],k# ¥
for fr[(#1,..., 8,01, ..., 0K)] = [Tjo,2(&r + obr/a)]”, which are component-wise increasing
functions. The proof of Lemma [B.4]is complete. O

B.2 Bias and Variance on small values of p;,

Lemma B.5. Let v, € (0,00) and k € [K] and ¢ > 1 be any numerical constant. If p;, <
c/+/ (a2 A 1)n, then
- C
EE(K) - p]| € -
’ ") =P S GE A e
, C’
Var (B,(k)) < ——
ar( 'y( )) — ((ag/\l)n)v )

where C, C" are constants depending only on vy and c.



Proof of Lemma Recall that 7, (k) = (Tlo,21 [44]) - We have for any s = 1,2,
2S’YCBL,5'Y
(a2 A 1)n)sv/2
using Lemma[B.1] Then, we take s = 1 to obtain the first bound announced in the lemma:

N A~ 27Cgr,
_ 0] < v _ 2 UBLy
2'YCBL,~, + (27 + 1)0'y
- ((a2 A1)n)/2
since pr. < ¢/+/(a? A 1)n. We finally take s = 2 to get the second bound of the lemma:

vir (7,00) < £ [ 0] < Z- 0ot

Lemma [B.3]is proved. O

E[(7(0)°] = E[(Toa [5]) 7] < BlJ5/] < 2y

+ (27 + 1)p]

B.3 Bias and Variance on large values of py

Lemma B.6. Forany v, a € (0,00) and k € [K] with pi, € (0, 1], we have

__n _ 1 sy>2} ps’y—2
< O | p¥7e 1282 ((anl)pg)? {s7> k Vs=1,2,
= (pk e T@am T a0 T

‘E [F'y(k)s] *Pi’y

where C'is a constant depending only on .

The proof of LemmaB.6]is inspired by the variance bound [4, Lemma 28] as it is based on Taylor’s
formula with the second derivatives of 27 and 2%7. However, the result in [4] holds for v € (0,1) in
the case of direct observations (no privacy), whereas Lemma [B.6|holds for any v > 0 in the case of
sanitized observations (privacy). We postpone the (relatively long) proof to the end of section[B.3]

Lemma B.7. Let v,a € (0,00) and k € [K| and ¢ > 0 be any numerical constant. If p; >

e/+/ (a2 A 1)n, then

‘E {Fv(k)s} - P?

1 ps’*/72
<COf—-— 1 o R Vs=1,2
= (((aQAl)n)SW/2+ {S'y>2}(o¢2/\1)n>7 TS

where C'is a constant depending only on vy and c.

Proof of Lemma [B.7l We invoke Lemma[B.6l We bound the first error term

57/2
ple e enim® o (B0Per
' ~ (a2 A1)en

where we used 257e~ne” < (szn)m/ forz € [0,1] and any ¢ > 0. The third error term of Lemma

[B.g]satisfies, for sy € (0,2)

syY—2
e ()
Py (a2Al)n I
1;, < < 23
0D (@2 A = (@@Aln (a2 Al)n)=1/2 (23)
since pi, > ¢/+/(a? A 1)n. The proof of Lemmais complete. O

Lemma B.8. Under the assumptions of Lemma|B.7] we have

ar (A1) < c(m . ﬂ{v»}(ﬁi’l;n)

for a constant C' depending only on v (and c).



Proof of Lemma[B.8] We have, similarly to [4],

. . R . X 2
Var (Fﬁk)) —E {Fy(k:)ﬂ - (EFW(k)) —E [F (k) } 7 4+ p2 (E Fv(k))
. 2
< ‘E [Fw(k)ﬂ —pi”‘ +p ( +pk) ‘
< ’IE [By0?7] - pi”’ + ‘IE B (k) - pZ’ + 20 |E £, (k) —pZ‘ . 24)
Using Lemma[B.7]to bound the two first terms of (24), and Lemma [B.6|for the last term, we get
N 1 p2772
Var (F (k) ) < C| 75—+ +1 ——
ar( 7 )) - (((a2 A1)n)Y T hazy (a2 A 1)n
1 i("/_z)
— +1 — 25
T @@ anny T2 (a2 ATy )
2y—2
—|—2p e~ 12857 ((@nl)py)? + 2pz]1{722} 2]7 T
(@2 A1)n)7/2 (a2 A1)n

We bound the fifth term of (23)):

12802y \”
92 s ((@Apr)? <2
pk S (a2 Al)en

using 227e —c'na’ < ( n) for any = € [0, 1] and any ¢’ > 0. Hence, the first, third and fifth terms
of ([23) are of the order of ((a® A 1)n)~" at most. We now bound the fourth term of (23) using

pr > c¢/y/a2A1l)n:

pi(’v—2) _ piv 2pk 2 B piv 2
((2A1)n)?2 ((e2A1)n)2 ~— 2(a®? Al)n
and similarly the sixth term of (23)):
22y 20 0k/0) Pz 25 Ly
(@2 A)n)tt(v/2)-1 = (a2 A1)n A 2(a2 A 1)n

Hence, we have the desired bound for the second, fourth and sixth terms of @ Finally, for the last
term of (25) we have

Py ey | P ey 207 p) ey
(a2 A 1)n (a2 A1)n (@2Al)n ~— ((@®2Al)n)Y (a2 A1)n
using (23) for s = 2. This concludes the proof of of Lemma|B.8] O

Proof of Lemma- Denoting f,(x) = °7 for s = 1,2, and Y = T}g o) [2x], we have by Taylor’s

formula,
fs(Y) = falpi) + Fipr)(Y — pi) + R(Y, pr) (26)
where the remainder is defined by

Y 1
RO = [V = w)fw)du = 3 7)Y = p)? e

Pk

where wy lies between Y and pi. We get

|E f(Y) = fs(pr)| < IERY, pi)| + | E fi(pr) (Y — pr)] - (28)

Thus, to prove the lemma, it suffices to bound the remainder | E R(Y, py)| and the first order term
|E f4(pr)(Y — pi)|. We control the latter using Lemma[B.2]

sy—1 259p™ % ([ 167
|E fi(pr)(Y — pk)|—5’VpA/ |]E(Y_pk)|§m Crao+—



For the remainder, we use the decomposition

B R(Y, pr)| < E[[R(Y, pi)[1(Y < pr/2)] + E [|R(Y, pi)|1(Y > py/2)] (29)
and we bound separately the two terms of the RHS.
1°. First term in the RHS of (29).

E[[R(Y,pe)|L(Y < px/2)] < <SUP/2|R(y7pk)\ E[1(Y < px/2)]

= sup |R(y,pr)|E[L(2x < pr/2)]

y<pi/2

< sup |R(y,pp)|3e meoz (@ADpe)’
y<pi/2

using Lemma B.1] We control R(y, py,) for any y € [0, py./2],

Ry, pr)| < /

Y

Pk Pk
< sv|sy — 1] / w ' dw < sy|sy — 1|/ W dw = |sy — 1|py .
Y 0

Pk

Pk
=yl wldu < [ =yl - o2
Y

We gather the last two displays to get
E[R(Y,pi)[L(Y < pi/2)] < |sy = 1lp;” 3¢~ mez (cnDm”

2°. Second term in the RHS of (29). We separate our analysis in two different ranges of values of ~.
2°.1. Case sy € (0,2): Starting from we have

BIRYpY 2 pe/2)] = LR [0 20 - g1y 2 2] G0

2
—1 Sy —
< U Py [y

5 C
—sy sv—2 CBL2
< slsy = 1R e

where we used E [(Y — py)?] < E [(2 — px)?] and Lemma

2°.2. Case sy > 2: Aplugof w > < p¥? ™% + Y*1=2 into (30) gives

w E [(p;H +YIT)(Y - pi) LY > pk/2)} - 3D

We bound the first part of (3T) as in (30),

E[IRY, pr)[L(Y = px/2)] <

- —2 Cgpre
E[S'VQYf 20(y > 2}<5’*27’ :
P (Y —pp) LY =2 pi/2)| <y @2 A )m)
For the second part of (1)), we get from Cauchy-Schwarz that
-2 2 2(sy—2)] 2 411/2
E [y 2(Y = pp)?1(Y 2 2p1)] SE[Y27-2] TE[(Y - py)Y]

(@2 A 1)n)=7—2 a2 A1)

< <25'Y—2 OBL,2(5772) +23,y_2 5'72> \/CBLA

. 1/2
2%(s7 2)CBL,2(5772) 2(sy—2), 2(s7—2) CBra 12
< +2 j 7(( E

(02 A 1)yn)=1-2)/2 P a2 A )n

where in the second inequality we used E [Y2T] <E [2,%’”] and E [(Y - pk)z’"] <E [(ék - pk)%]
for any r > 0 and Lemma in the third inequality we used v/a + b < v/a + /b for any a, b > 0.
A plug of the last two displays into (3T)) concludes the case sy > 2.

Going back to (29), we have bounded the remainder E R(Y, py). Lemma is proved. g



C Auxiliary lemmas for upper bounds

Lemma C.1. Let p € (0,1)], and x1, ..., %, i B(p) be independent Bernoulli random variables
with parameter p. Then, the mean & = % S, ; satisfies, for any § > 0,

52np

P(3<(1-0)p) <e 3, (32)
2np

P (3> (1+0)p) <e T | (33)

and )
P(|z —p| > 0) <2 2 | (34)

We also have, for any r > 0,

. m_ Cbyr

Eflé-pf]< 23 (35)

where Cp , is a constant depending only on 7.

Proof of Lemma@ The concentration inequalities (32}j33)) are one form of Chernoff bounds. The
control (34) is Hoeffding’s inequality applied to i.i.d Bernoulli random variables. Finally, for @)
see [8] or adapt the proof of Lemma [C.2]below.

Lemma C.2. Let wq,...,w “,j L(1) be independent Laplace random variables with parameter 1.

Denoting the mean by w = % Z:LZI w; , we have

P(w > t) VP < —t) < exp [—n(tQ A t)}

2°4 2
< ex [ffﬂ ¥ ex [—ﬁt] (36)
= exp 3 p 4 .
Besides, for any real v > 0, there exists a constant Cp, , > 1, depending only on r, such that
r C'L r
0 < —
E (o) < b2 @)

Proof of Lemma[C.2} A random variable x is said to be sub-exponential with parameter A, denoted
x ~ subE(A), if Ex = 0 and its moment generating function satisfies

1
E[e’”] < X5°/2 v|s| < <.

A
Let x1,...,x, be independent random variables such that z:; ~ subE(\). Bernstein’s inequality [8]]
entails that, for any ¢ > 0, the mean & = % Yoi, x; satisfies
P( > t) VP(E < —t) < n Lt (38)
T < — e ——(= A= .
=GP MY

Then, for any real » > 0 we have

5% %) oo a2/ %) wil/T
E|§:|:/ ]P’(|ai~|7’>t)dt=/ P(3| >t1/r)dt§/ 26" dt+/ 2= it
0 0 0 0

ntl/r
2X

2A2\"/? e . 2A\" [
E|z| < ( ) r/ e Dy + 2(> r/ e " tdy
n 0 n 0
2)2\"/? 23\
=|— I'(r/2 21 — T
(Z) o+ 2(2) o)

< 92\ [D(r/2) + T(r)] # .

. 2/r
so that, using u = % and v =

(39)
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Let w ~ L(1) be a random variable of Laplace distribution with parameter 1. Observe that P(Jw| >
t)=e tfort >0, and
1
E[es”] < e, if |s| < 5
Hence, w is sub-exponential with parameter 2, i.e. w ~ subE(2). We can take A = 2 in (38}{39) to
conclude the proof of Lemma choosing Cp, . = 22727 [[(r/2) + I'(r)]. O

D Proofs of lower bounds

Proof of Proposition 2.2. Recall that 2, = 2 37" | 2, where i = L{y,—} + £ - wig, with
Ezix = pr and Var(z) = pr(l — pi) + 2(%2 Note that 7 := \/ZTn lies in [0, 2], and that
Var(z;;) > (y/n7)%. By the central limit theorem, \/ﬁﬂ has an asymptotic standard normal

v/ Var(z;k)

distribution, so we have P(\/ﬁj% > 1) > ¢; for some numerical constant ¢; > 0 and n large
ar(z;

enough. We write 2, = /n Varzn) Jn o TPk > f with probability larger than c;,

thus leading to

5
. Var(z; - v
E [(T[O,Q] (Zk))v] —pl > (T[O,Q] (W)) —pl =7 —pl > ar

7. Denoting by K (., /2)1/+7 the number of such pj satisfying the latter

as n — oo

for all pp < (%)1/7

inequality, we get

1k .
Z E [(Tio,2(2x)) "] — 0} > il 3(261/2)1/ | ) as n—oo . (40)

<(ep/2)V/ 77

kek
Hence, the lower bound announced in Proposition 2.2 holds in particular for any p = (p1,...,pk) €
Pr such that |[K< (., j2)1/~7| = K. However, this last equality entails that K satisfies the following
restriction K >, (7)~! =, Va?n since Zk o Pk = 1. We remove this restriction in the sequel.
Let C > 0 be some constant that will be set later, and that only depends on ~. If K <

C ( 1V (a?n)2- %) , then the lower bound of Proposition 2.2 follows directly from Theorem 2.6. We

can therefore assume that
1
K>C (1 v (oﬂn)%—a) . 41)

Letp = (p1,...,pk) € Pk such thatp; < (%) MTforallj € [K — 1], and pg € [0, 1] so that
K )
> 1 Pr = 1. By Lemma and the bias of estimation of px is bounded by

. 1 1
|E [(To2 ()] = Pk | < €' (W + 1{722}0271) )

where C” is a constant depending only on ~. Combining with ([@0), we get

aFK-1)  C c
ZE (Toa ()" —pl 2 =5~ (o ~ Loza gz,
ClK C/ Cl

= 4(a2n)/2 (a2 /2 1{722}ﬁ

Hence, it suffices to choose a large enough constant C' in (1)) to have

C'"K
-
Z]E [0,2] Zk kaW

for some constant C” depending only on y. We have proved the desired lower bound under the
assumption (T)). The proof of Proposition 2.2 is complete. O
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Proof of Theorem 2.6. Fix v > 0,7 # 1. Let 7 := Szn for a constant C' € (0, 1) that will be set
later, and which only depends on ~y. Let us start with the case K = 2. Define two probability vectors

p=(p1,p2) = (1—7,7)and ¢ = (q1,q2) = (1 — 7/2,7/2). Then for a small enough constant C,
we have

A= |Fy(p) - B = (1=7)" = (1 =7/2)" + 77 = (7/2)"]
1

_ﬁ =2 =Y(1 —
2+O(T>+T(1 27)

where we used (1 — )" = 1 — yx + O(x?) for any real z € (0,C). If v € (0, 1), we can choose C
small enough to have

Y71 1

A =7 +O0(F ) + (1 - )‘ > CFY

2 27

for some constant C' depending only on . Similarly, if v > 1, we have

A=7

’7 ~ ~y—1 1 ~
—5—1—0(7)—&-7” (1_27)‘ >C7 .

For any a-LDP mechanism @, denote by Qp and ()q the measures corresponding to the channel
@ applied to the probability vectors p and g. Corollary 3 of [3] ensures that the Kullback-Leibler
divergence between (Jp and (Qq is bounded by

Di(Qp, Qq) < 4(e” —1)*n (drv(p,q))® |

i.e. by n times the square of the total variation distance between p and ¢, up to a constant depending
on a. Then we have

2 2
Dri(Qp, Qq) < 4(e” —1)°n (Z lpr — Qk|> < 4(e” — 1)*n7? < 3602 42)
k=1

where the last inequality follows from e® — 1 < 3z for any x € [0, 1].

For any vector 6 = (61, 02), 6; > 0, we denote the functional at 6 by F, (¢) = Zi:l ). We use a
standard lower bound method based on two hypotheses, see e.g. Theorem 2.1 and 2.2 in [[7]], to get
for any estimator F’,

sup Py (FF7(9)| > 2) > 1= DkléQp,QQ)/Q .
oe{p.qa}

Then we deduce from (42) that

. A 1-3v2C _ 1
sup P <|F—Fv(9)>2>>2 =
0e{p,q}

choosing C' < 1 /(64/2). We have proved the desired lower bound in the case K = 2.

We can actually prove the same lower bound for any integer K > 2, with the following slight
modification in the proof written above. Choose py., qx, k > 3 such that p,, = i and p, < C/(4Kn).
Then change the p; and g; above accordingly (to have probability vectors). This affects neither the
order of the separation A, nor the bound on the KL-divergence between the measures Qp and (q.
This concludes the proof of Theorem 2.6. (]

Proof of Theorem 2.7. If K < 4, then the lower bounds are a direct consequence of Theorem 2.6.
We assume therefore that K > 4. For the ease of exposition, we also assume that K is even (the case

of an odd K being similar). Let K be a positive even integer in [K]. Let p = (p1,...,px) be any
probability vector such that two consecutive coordinates are equal pog_1 = po, for k € [f( /2], and
the remaining coordinates satisfy p, = pj for all k, k' > K + 1. Similarly, let § = (64, ..., dx) be
a vector of perturbations such that, two consecutive perturbations are equal do_1 = doi, k € [f( /2],
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and the others are equal to zero: 0, =0,V k > K + 1.~ Each perturbation is smaller than (half
of) the corresponding probability: 0 < 0, < pi/2, k € [K]. Given any k € [K /2] and any vector
q=(q1,...,qx), define the operator T} (q) = (O ,0,G2k—1, — 2k, 0, ..., 0). We are now ready
to introduce the following collection of vectors p(*), v € V{1 1}K /2
K/2
p(”) =p+ Z l/ka(é)
k=1
= (p17p27p37p47 cee 7pK—1;pK) + (V1517 71/1527 RN} Vf{/g(sf{_la 7”}2/25]%5 07 CERE 0)
= (p27p27p47p47 - PEIPESPK - - - apK) + (V1527 _V1627 EEE} Vf(/Qdf{v _Vf(/26f(70a s 70) .

Observe that each p("), v e V{-1, 1}1~< /2 is a vector of probability. We bound from below the
difference between F, (p*)) and F,(p) in the next lemma, whose proof is postponed at the end of
the section.

Lemma D.1. Forany~ € (0,2), v # 1, and any v € V{—1, I}R/Q, we have
K/2
|FW(P(U)) p)| >Czp2k252k— R
k=1
for a constant C' > 0 depending only on +.

We will show that it is hard to know if the data come from p or a uniform mixture of the p*), v € V.
We do so by using Theorem A.1 of [6], with the notations of [[6]. For any fixed a-LDP interactive

mechanism Q, we write Q" := (Qp)" € conv (QP<F (p)) and Q" = 2~ K/2 > ev(@p)r

conv (QP(:I; (p)+R) With the notations of [[6] and standard relations between probability metrics,
we have that the upper affinity satisfies

n

(Q,R) > 7(Q", Q") =1 —drv(Q", Q") > 1 —\/Du(Q,Q")/2 . (43)

We can bound the KL-divergence Dy (Q™, Qn) as in the proof of Theorem 4.2 in [2]], and have

n(62a _ 67204)2

D (Q",Q") < f”ﬂ@ .

Hence, it suffices to choose a ¢ satisfying the condition

2

D —
||§H2 = ple2e — g—20)2 ’ (44)

to have (" (Q, R) > 1. Denoting AT (Q,n) := sup{A >0 : n{(Q, A) > 1} as in [6], we will

1

getforanyn (0,1/2 3
AV @m) =R

where R is defined in Lemma[D.T|above. It will then follow from Theorem A.1 of [6] that

N R 277
infinf sup E |(F' — F. >(=) £,

for any n € (0,1/2). Taking n = 1/4 we will have

2
o2 K/2

infinf su IE[F F }_ 52
o FpGg ( 5(p) 32 szk 2k

To choose a ¢ fulfilling (@4)), we consider two cases according to the values of K.
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1°. In the case where K < n(e*® — ¢=2*)2, we choose K = K, and take 03 = (4V/EKn(e*™ —
e 29)) 71, k € [K]. We take py, = 20y, k € [K — 2], and the remaining px 1, px > 26 so that p
is a vector of probability (i.e. >, pr = 1). This gives

- : (K- NP K
%?gigEﬁF‘“@”ﬂ>32(MJKmaa_rm»J = R192 (B e mEn)

where we used (K/2) — 1 > K/4 with K > 4. This corresponds to the right term of both lower
bounds announced in Theorem 2.7.

2°. In the case where K > n(e** — e~2%)2, we separate our analysis in two ranges of values of +.
If v € (0,1), we take K = K, and §; = (2K)~! and py, = 25, for all k € [K]. This leads to

. 2 =2 2
infinf sup B [(F — F,(p))?] > = ¢ (Q(K/?) o @ paay)

Q F pep T 32 (2K)~ 2048 ’
which matches the first term of the lower bound for v € (O 1) in the theorem.
Ify € (1, 2) let K be the smallest even 1nteger satisfying K > n(e?® — e=2%)2 and K > 4. We set

o = (8V Kn(e2™ — e2*))~! for k € [K]. We choose pj, = 25y, for k € [K — 2], and pp > 26},
fork > K — 1 such that p is a vector of probability. Then

A e [(f{/z) - 1}
infinf sup E[FfF P } >
Q F peEP ( PY( )) 32 8\/ 6204 — e~ 2a )'y
C?4~ K>
>
T 8192 ((e2* —e722)2n)Y
C?4=>
>
- 8192
which corresponds to the first term of the lower bound for v € (1, 2) in the theorem.

200 6—20()2”)2(1—7)

)

The proof of Theorem 2.7 is complete. ]

Proof of Lemma [D.1l We have
K/2
(™) = Fy(p) = Z {(pzk + Vi0ak)" + (p2r — Vidak)” — 2pgk] (45)
k=1
Denoting f(z) = x” and using Taylor’s formula, we have for any real Y > 0,
Y — por)?
FO0) = Fpm) + £ (o) (Y o) + () =22
where wy lies between Y and poi. We take Y = poi. + 15021 and Y = Pop — ViOak to get

fY) + F(V) =20, = f”(wY)w +f"(w~)@

= - D g B 6)

Since wy V wyg < pog + dox With 0 < dap < pog /2, and v € (0,2), we have
wy /\wv %> (pog + 02k)" 72 > (2por) 772 .
Hence, for v € (1,2),
FO) + F(Y) =203, > (v — 1)(2par) 7263,

which leads to the desired lower bound of {@3)). For vy € (0, 1), we deduce from (6) that all terms of
the sum (@3) are non-positive and satisfy

FOV) + F(Y) = 2p3 < (v = 1)(2p2x) %03 -
So, the absolute value of the sum (@3] can be lower bounded as announced in the lemma. g
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