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A Proofs of upper bounds

A.1 Plug-in estimator

Proof of 1st bound in Theorem 2.1. 1◦. Bias: We have using the triangle inequality,∣∣∣E F̂γ − Fγ∣∣∣ =

∣∣∣∣∣E F̂γ −
K∑
k=1

pγk

∣∣∣∣∣ ≤
K∑
k=1

∣∣∣E F̂γ(k)− pγk
∣∣∣ .

Hence, it suffices to upper bound the kth bias component |E F̂γ(k)− pγk | for all k ∈ [K] and γ 6= 1
(the case γ = 1 being trivial). We separate the analysis in two different ranges of values of pk. Define
K≥τ = {k ∈ [K] : pk ≥ τ}, and K<τ = [K] \ K≥τ . By Lemma B.5 we have∑

k∈K<τ

∣∣∣E F̂γ(k)− pγk
∣∣∣ ≤ C |K<τ |

(α2n)γ/2

for a constant C depending only on γ. Lemma B.7 ensures that∑
k∈K≥τ

∣∣∣E F̂γ(k)− pγk
∣∣∣ ≤ C ′( |K≥τ |

(α2n)γ/2
+ 1{γ≥2}

‖p≥τ‖γ−2γ−2

α2n

)
for a constant C ′ depending only on γ. Gathering the above inequalities, we have∣∣∣E F̂γ − Fγ∣∣∣ ≤ (C + C ′)

(
K

(α2n)γ/2
+ 1{γ≥2}

‖p≥τ‖γ−2γ−2

α2n

)
. (14)

2◦. Variance: By Lemma B.4 , we have Cov
(
F̂γ(k), F̂γ(k′)

)
≤ 0 for any k 6= k′ ∈ [K]. Hence

Var

(
K∑
k=1

F̂γ(k)

)
≤

K∑
k=1

Var
(
F̂γ(k)

)
. (15)

As in the proof of the bias bound above, we separate our analysis in two different ranges of values of
pk. For small pk, we use Lemma B.5 to get∑

k∈K<τ

Var
(
F̂γ(k)

)
≤ C̃ |K<τ |

(α2n)γ
,
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where C̃ is a constant depending only on γ. For large pk, we deduce from Lemma B.8 that∑
k∈K≥τ

Var
(
F̂γ(k)

)
≤ C̃ ′

(
|K≥τ |
(α2n)γ

+ 1{γ≥1}
‖p≥τ‖2γ−22γ−2

α2n

)

for a constant C̃ ′ depending only on γ. Then, plugging these bounds into (15), we have

Var

(
K∑
k=1

F̂γ(k)

)
≤ (C̃ + C̃ ′)

(
K

(α2n)γ
+ 1{γ≥1}

‖p≥τ‖2γ−22γ−2

α2n

)
. (16)

The proof of the of 1st bound in Theorem 2.1 is complete. �

Proof of 2nd bound in Theorem 2.1. We only need to control the second and third terms of the 1st

bound in Theorem 2.1. The squared root of the second term is bounded from above by∑K
k=1 p

γ−2
k 1{pk>τ}

α2n
≤

K∑
k=1

pγ−1k√
α2n

p−1k 1{pk>τ}√
α2n

≤
K∑
k=1

pγ−1k c−1√
α2n

=
‖p‖γ−1γ−1c

−1
√
α2n

.

Since (pk)k are probabilities, we have pγ−1k ≤ pk for γ ≥ 2 and we can further bound the last display
by ‖p‖γ−1γ−1 ≤

∑K
k=1 pk = 1 for γ ≥ 2. Hence, the second term is bounded by 1γ≥2(α2n)−1.

Let us bound the third term. Since
∑
k pk = 1, the number of the significant pk ≥ τ is necessarily

smaller than τ−1 = c−1
√
α2n, and thus smaller than K∧τ−1 := K ∧

√
α2n. Then, when γ ∈

(1, 3/2), we use the concavity to have ‖p≥τ‖2γ−22γ−2 ≤ K
3−2γ
∧τ−1 for all p ∈ PK . When γ ≥ 3/2 we have

‖p≥τ‖2γ−22γ−2 ≤ 1. Therefore, the third term is uniformly bounded over the class PK by

1{γ≥1}
‖p≥τ‖2γ−22γ−2

α2n
≤ 1{γ≥1}

1 ∨K3−2γ
∧τ−1

α2n
.

This concludes the proof of the 2nd bound in Theorem 2.1. �

A.2 Thresholded plug-in estimator (proof of Theorem 2.3)

Case γ ∈ (0, 1): Let us check the first bound of Theorem 2.3. We use the concavity of the power

function pγ to have Fγ ≤ K(
∑K
k=1 pk/K)γ = K1−γ . Then, the quadratic risk of the trivial

estimator 0 is bounded by K2(1−γ). On the other hand, the quadratic risk of the plug-in F̂γ is
bounded by K2/(α2n)γ (Theorem 2.1). Therefore, the quadratic risk of the thresholded estimator
F γ := 1K≤τ−1 F̂γ satisfies the first bound of Theorem 2.3.

Case γ > 1: Recall that τ̂ �
√

log(Kn)/(α2n). We will prove the next bound on the risk of F γ ,

E
[
(F γ − Fγ)2

]
.γ (Kτ̂γ ∧ τ̂γ−1)2 +

(K ∧ τ̂−1)3−2γ ∨ 1

α2n
. (17)

Before that, we check that (17) implies the second inequality of Theorem 2.3.

(i) Assume that K ≥ τ̂−1, then the RHS of (17) becomes

τ̂2(γ−1) +
τ̂2γ−3 ∨ 1

α2n
.

(log(Kn))
γ−1

(α2n)γ−1
+

(log(Kn))
γ−(3/2)

(α2n)γ−(1/2)
+

1

α2n
.

(log(Kn))
γ−1

(α2n)γ−1
+

1

α2n
,

where the last inequality follows from the bound

(log(Kn))
γ−(3/2)

(α2n)γ−(1/2)
≤ (log(Kn))

γ−1

(α2n)γ−1
,

which is equivalent to α2n log(Kn) ≥ 1. Hence, (17) is upper bounded by the smallest term of the
second inequality of Theorem 2.3.
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(ii) Assume that K ≤ τ̂−1, then the RHS of (17) becomes

K2τ̂2γ +
K3−2γ ∨ 1

α2n
.
K2 (log(Kn))

γ

(α2n)γ
+

1 ∨K3−2γ

α2n
,

which is the smallest term of the second inequality of Theorem 2.3. Hence, we have proved that the
second inequality of Theorem 2.3 follows from (17).

Proof of (17). We have the deterministic bound
|F γ − Fγ | ≤ F γ + Fγ ≤ K(2γ + 1) .

Introduce the following event

A =
{
∃k ∈ [K] :

(
ẑ
(1)
k < τ̂ and pk ≥ 3τ̂ /2

)
or
(
ẑ
(1)
k ≥ τ̂ and pk < τ̂/2

)}
and denote the complementary event by Ac. We have

E
[
(F γ − Fγ)2

]
≤ E

[
1Ac(F γ − Fγ)2

]
+ P(A) (K(2γ + 1))

2
. (18)

Let us bound the second term of the RHS of (18) by showing that P(A) ≤ 6/(K2n). By assumption
in the theorem, we have n ≥ 2 log(K). This ensures that n ≥ log(Kn1/3), which allows us to use
Lemma B.3 which gives P

(
|ẑ(1)k − pk| > τ̂/2

)
≤ 6/(K3n). Hence, for pk ≥ 3τ̂ /2, we have

P
(
ẑ
(1)
k < τ̂

)
≤ 6

K3n
,

and for pk < τ̂/2,

P
(
ẑ
(1)
k ≥ τ̂

)
≤ 6

K3n
.

We then use the union bound over k ∈ [K] to get P(A) ≤ 6/(K2n). The second term of the RHS of
(18) is therefore bounded by 6(2γ + 1)2/n.

We now control the first term of the RHS of (18). For any real a > 0 , we note K<a = {k ∈
[K] : pk < a} and K̂<a = {k ∈ [K] : ẑ

(1)
k < a}, with their respective complementary sets

K≥a = [K]\K<a and K̂≥a = [K]\ K̂<a. Splitting the sum over the k in K̂<τ̂ and K̂≥τ̂ respectively,
we get

1Ac(F γ − Fγ)2 ≤ 21Ac
(
‖(pk)k∈K̂<τ̂ ‖

γ
γ

)2
+ 21Ac

( ∑
k∈K̂≥τ̂

F γ(k)− Fγ(k)
)2

.

Since K̂<τ̂ ⊂ K<3τ̂/2 on the event Ac, we can bound the first term by

1Ac‖(pk)k∈K̂<τ̂ ‖
γ
γ ≤ ‖(pk)k∈K<3τ̂/2

‖γγ ≤ K(3τ̂ /2)γ ∧ (3τ̂ /2)γ−1

for any γ > 1 and p ∈ PK . For the second term, we will use the independence between the data
samples z(1) := (z

(1)
1 , . . . , z

(1)
n ) and z(2) := (z

(2)
1 , . . . , z

(2)
n ). In particular, the set K̂≥τ̂ and the event

Ac are deterministic conditionally to z(1), so that

E

1Ac( ∑
k∈K̂≥τ̂

F γ(k)− Fγ(k)
)2∣∣∣z(1)

 = 1Ac E

( ∑
k∈K̂≥τ̂

F γ(k)− Fγ(k)
)2∣∣∣z(1)


≤ 1AcC

(
|K̂≥τ̂ |2

(α2n)γ
+
|K̂≥τ̂ |3−2γ ∨ 1

α2n

)
where the last line is similar to the 2nd bound in Theorem 2.1 with K replaced by |K̂≥τ̂ |, and where
C is some constant depending only on γ. We can further bound the last display by noting that
K̂≥τ̂ ⊂ K≥τ̂/2 on the event Ac, and |K≥τ̂/2| ≤ K ∧ (τ̂ /2)−1. Going back to (18), we then have for
all p ∈ PK ,

E
[
(F γ − Fγ)2

]
.γ (Kτ̂γ ∧ τ̂γ−1)2 +

(K ∧ τ̂−1)2

(α2n)γ
+

(K ∧ τ̂−1)3−2γ ∨ 1

α2n
+

1

n

.γ (Kτ̂γ ∧ τ̂γ−1)2 +
(K ∧ τ̂−1)3−2γ ∨ 1

α2n
.

The proof of (17) is complete. �
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A.3 Interactive privacy mechanism

Proof of 1st bound in Theorem 2.4. 1◦. Bias: We decompose the expected value of F̃γ :

E F̃γ =
1

n

n∑
i=1

EE
[
z
(2)
i |z

(1), z(2)
]

=
1

n

n∑
i=1

EE
[
F̂

(1)
γ−1(x

(2)
i )|z(1), x(2)

]
=

K∑
k=1

pk EE
[
F̂

(1)
γ−1(k)|z(1)

]
=

K∑
k=1

pk E
[
F̂

(1)
γ−1(k)

]
(19)

so that, for any γ > 1, γ 6= 2 (the case γ = 2 being trivial), we have∣∣∣∣∣E F̃γ −
K∑
k=1

pγk

∣∣∣∣∣ ≤
K∑
k=1

pk

∣∣∣E F̂ (1)
γ−1(k)− pγ−1k

∣∣∣
≤ C

(
1

(α2n)(γ−1)/2
+ 1{γ≥3}

‖p≥τ‖γ−2γ−2

α2n

)
(20)

using Lemma B.5 and B.7 and
∑
k pk = 1, where C is a constant depending only on γ.

2◦. Variance: By the law of total variance we have

Var
(
F̃γ

)
= E

[
Var
(
F̃γ |z(1)

)]
+ Var

(
E
[
F̃γ |z(1)

])
. (21)

We control the first term in the RHS of (21):

Var
(
F̃γ |z(1)

)
=

1

n
Var
(
z
(2)
1 |z(1)

)
≤ 1

n
E
[(
z
(2)
1

)2
|z(1)

]
=

22γ−1

n

(
eα + 1

eα − 1

)2

≤ 22γ+1

α2n

where we used ( e
α+1
eα−1 )2 = (1 + 1

eα−1 )2 ≤ (1 + 1
α )2 ≤ 4

α2 . For the second term in the RHS of (21),
we have using (19)

Var
(
E
[
F̃γ |Z(1)

])
= Var

(
K∑
k=1

pkF̂
(1)
γ−1(k)

)
≤

K∑
k=1

p2kVar
(
F̂

(1)
γ−1(k)

)
where the inequality can be deduced from Lemma B.4. Then, by Lemma B.5 and B.8,

K∑
k=1

p2kVar
(
F̂

(1)
γ−1(k)

)
≤ C̃

(
‖p‖22

(α2n)γ−1
+ 1{γ≥2}

‖p≥τ‖2γ−22γ−2

α2n

)
for a constant C̃ depending only γ. The proof of the 1st bound in Theorem 2.4 is complete. �

Proof of 2nd bound in Theorem 2.4. The desired bound follows from the 1st bound of Theorem 2.4
and the fact that 1{γ≥3}‖p≥τ‖γ−2γ−2 ≤ 1 and 1{γ≥2}‖p≥τ‖2γ−22γ−2 ≤ ‖p‖22 ≤ 1 for all p ∈ PK . �

B Main lemmas for upper bounds

We use the notations x̂k = 1
n

∑n
i=1 1{xi=k} and ŵk = 1

n

∑n
i=1 wik, so that ẑk = x̂k + σ

α ŵk. We
consider α ∈ (0,∞) in this Appendix B, unlike in the main section of the paper where we assumed
that α ∈ (0, 1) and α2n ≥ 1.

B.1 Concentration of ẑk

We control the concentration of ẑk in the next lemma.
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Lemma B.1. For any α ∈ (0,∞) and any r > 0, we have

E [|ẑk − pk|r] ≤
CBL,r

((α2 ∧ 1)n)r/2
,

E [|ẑk|r] ≤
2rCBL,r

((α2 ∧ 1)n)r/2
+ 2rprk ,

where CBL,r is a constant depending only on r. Besides,

P(ẑk <
pk
2

) ≤ 3 exp

[
− n

128

(
(α ∧ 1)pk

σ

)2
]
.

Proof of Lemma B.1. By (35) in Lemma C.1 and (37) in Lemma C.2, we have for any r > 0,

E [|ẑk − pk|r] ≤ 2r E [|x̂k − pk|r] + 2r E
[(σ|ŵk|

α

)r]
≤ 2rCB,r

nr/2
+

(2σ)rCL,r
(α2n)r/2

≤ 2r (CB,r + σrCL,r)

((α2 ∧ 1)n)r/2

where CB,r and CL,r are constants that only depend on r. Then, denoting CBL,r =
2r (CB,r + σrCL,r), we have

E [|ẑk|r] = E [|ẑk − pk + pk|r] ≤ 2r E [|ẑk − pk|r] + 2rprk

≤ 2rCBL,r
((α2 ∧ 1)n)r/2

+ 2rprk .

Finally, by (32) in Lemma C.1 and (36) in Lemma C.2, we have

P(ẑk <
pk
2

) ≤ P(x̂k <
3pk
4

) + P(
σŵk
α

< −pk
4

) ≤ e−( 1
4 )

2 npk
2 + e−

n
8 (αpk4σ )

2

+ e−
n
4 (αpk4σ )

≤ 3 e−
n

128σ2
((α∧1)pk)2 .

The proof of Lemma B.1 is complete. �

Recall that F̂γ(k) =
(
T[0,2][ẑk]

)γ
. We bound the difference between the expectations of T[0,2][ẑk]

and ẑk in the next lemma.

Lemma B.2. We have for any α ∈ (0,∞),∣∣E [T[0,2][ẑk]
]
− pk

∣∣ ≤ 2p−1k
(α2 ∧ 1)n

(
σ2CL,2 +

16γ

e

)
.

Proof of Lemma B.2. Recall that ẑk = x̂k + σ
α ŵk, and define εk by T[0,2] [ẑk] = x̂k + εk. Then

E
[
T[0,2] [ẑk]

]
− pk = E [εk] and it suffices to bound |E [εk] |. Introducing the event A = {|σα ŵk| <

x̂k} and the complementary event Ac, we note first that A ⊆ {ẑk ∈ [0, 2]} and thus εk = σ
α ŵk on A.

We have

|E [εk] | ≤ |E [εk1A] |+ |E [εk1Ac ] | = |E
[σ
α
ŵk1A

]
|+ |E [εk1Ac ] |

= |EE
[σ
α
ŵk1A

∣∣∣x̂k] |+ |E [εk1Ac ] |

= |E [εk1Ac ] |
since ŵk is a centered and symmetric random variable that is independent of x̂k. Using the event
B = {2pk ≥ x̂k ≥ pk/2} and the complementary event Bc, we have

|E [εk1Ac ] | ≤ E [|εk|1Ac∩B ] |+ E [|εk|1Ac∩Bc ] ≤ E
[
|εk|1{ σα |ŵk|≥ 1

2pk}

]
+ 2E [1Bc ]

≤ E
[σ
α
|ŵk|1{ σα |ŵk|≥ 1

2pk}

]
+ 4e−

1
8npk

= 2p−1k

(
E
[pk

2
|σ
α
ŵk|1{ σα |ŵk|≥ 1

2pk}

]
+ 2pke

− 1
8npk

)
≤ 2p−1k

(
E
[
|σ
α
ŵk|2

]
+ 2pke

− 1
8npk

)
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where we invoked (32-33) from Lemma C.1 in the second line. Then, by (37) from Lemma C.2,

|E [εk1Ac ] | ≤ 2p−1k

(
σ2CL,2
α2n

+ 2pke
−npk/8

)
≤ 2p−1k

(
σ2CL,2
α2n

+
16γ

en

)
where we used xe−cnx ≤ γ

cen for any x ∈ [0, 1] and any c > 0. This concludes the proof of
Lemma B.2. �

Lemma B.3. For any α ∈ (0,∞), and integers K,n satisfying n ≥ log(Kn1/3), we have

P

(
|ẑk − pk| > 96σ

√
log(Kn1/3)

(α2 ∧ 1)n

)
≤ 6

K3n
.

Proof of Lemma B.3. Denoting δ = c1σ
√

log(Kn1/3)
(α2∧1)n with c1 ≥ 1 a numerical constant to be set

later, we get from (34) in Lemma C.1 and (36) in Lemma C.2 that

P(|ẑk − pk| > δ) ≤ P(|x̂k − pk| >
δ

2
) + P(

σ|ŵk|
α

>
δ

2
) ≤ 2

(
e−

nδ2

2 + e−
n(αδ/σ)2

32 + e−
n(αδ/σ)

8

)
≤ 6 e−

c1 log(Kn1/3)
32

which is upper bounded by 6/(K3n) for c1 = 96. Lemma B.3 is proved. �

Lemma B.4. We have Cov
(
F̂γ(k), F̂γ(k′)

)
≤ 0 for any k, k′ ∈ [K], k 6= k′, and any γ > 0.

Proof of Lemma B.4. We first state the definition of the negative association property.

Definition (See [5]) Random variables u1, . . . , uK are said to be negatively associated (NA) if for
every pair of disjoint subsets A1, A2 of {1, . . . ,K}, and any component-wise increasing functions
f1, f2,

Cov
(
f1(ui, i ∈ A1), f2(uj , j ∈ A2)

)
≤ 0 . (22)

By corollary 5 of Jiao et al. [4], random variables that are drawn from a multinomial distribution,
are NA. Hence, the random variables X̂ = (x̂1, . . . , x̂K) are NA since (x̂1, . . . , x̂K) follows a
multinomial distribution ∼ M(n; (pk)k∈[K]). Besides, the Ŵ = (ŵk)k∈[K] are NA, as any set of
independent random variables are NA [5]. Then, we get that (X̂, Ŵ ) = (x̂1, . . . , x̂K , ŵ1, . . . , ŵK)
are NA since a standard closure property of NA is that the union of two independent sets of NA
random variables is NA [5]. We can therefore use the definition (22) of NA random variables to have

Cov
(
fk(X̂, Ŵ ), fk′(X̂, Ŵ )

)
≤ 0 , ∀k, k′ ∈ [K], k 6= k′

for fk[(x̂1, . . . , x̂K , ŵ1, . . . , ŵK)] =
[
T[0,2](x̂k + σŵk/α)

]γ
, which are component-wise increasing

functions. The proof of Lemma B.4 is complete. �

B.2 Bias and Variance on small values of pk

Lemma B.5. Let γ, α ∈ (0,∞) and k ∈ [K] and c > 1 be any numerical constant. If pk ≤
c/
√

(α2 ∧ 1)n, then ∣∣∣E F̂γ(k)− pγk
∣∣∣ ≤ C

((α2 ∧ 1)n)γ/2
,

Var
(
F̂γ(k)

)
≤ C ′

((α2 ∧ 1)n)γ
,

where C,C ′ are constants depending only on γ and c.
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Proof of Lemma B.5. Recall that F̂γ(k) =
(
T[0,2] [ẑk]

)γ
. We have for any s = 1, 2,

E
[
(F̂γ(k))s

]
= E

[(
T[0,2] [ẑk]

)sγ] ≤ E [|ẑk|sγ ] ≤ 2sγCBL,sγ
((α2 ∧ 1)n)sγ/2

+ 2sγpsγk

using Lemma B.1. Then, we take s = 1 to obtain the first bound announced in the lemma:∣∣∣E [F̂γ(k)
]
− pγk

∣∣∣ ≤ E
[
F̂γ(k)

]
+ pγk ≤

2γCBL,γ
((α2 ∧ 1)n)γ/2

+ (2γ + 1)pγk

≤ 2γCBL,γ + (2γ + 1)cγ

((α2 ∧ 1)n)γ/2

since pk ≤ c/
√

(α2 ∧ 1)n. We finally take s = 2 to get the second bound of the lemma:

Var
(
F̂γ(k)

)
≤ E

[
F̂γ(k)2

]
≤ 22γCBL,2γ + 22γc2γ

((α2 ∧ 1)n)γ
.

Lemma B.5 is proved. �

B.3 Bias and Variance on large values of pk

Lemma B.6. For any γ, α ∈ (0,∞) and k ∈ [K] with pk ∈ (0, 1], we have∣∣∣E [F̂γ(k)s
]
− psγk

∣∣∣ ≤ C (psγk e− n
128σ2

((α∧1)pk)2 +
1{sγ≥2}

((α2 ∧ 1)n)sγ/2
+

psγ−2k

(α2 ∧ 1)n

)
, ∀s = 1, 2,

where C is a constant depending only on γ.

The proof of Lemma B.6 is inspired by the variance bound [4, Lemma 28] as it is based on Taylor’s
formula with the second derivatives of xγ and x2γ . However, the result in [4] holds for γ ∈ (0, 1) in
the case of direct observations (no privacy), whereas Lemma B.6 holds for any γ > 0 in the case of
sanitized observations (privacy). We postpone the (relatively long) proof to the end of section B.3.

Lemma B.7. Let γ, α ∈ (0,∞) and k ∈ [K] and c > 0 be any numerical constant. If pk ≥
c/
√

(α2 ∧ 1)n, then∣∣∣E [F̂γ(k)s
]
− psγk

∣∣∣ ≤ C ( 1

((α2 ∧ 1)n)sγ/2
+ 1{sγ≥2}

psγ−2k

(α2 ∧ 1)n

)
, ∀s = 1, 2,

where C is a constant depending only on γ and c.

Proof of Lemma B.7. We invoke Lemma B.6. We bound the first error term

psγk e
− n

128σ2
((α∧1)pk)2 ≤

(
64σ2sγ

(α2 ∧ 1)en

)sγ/2
where we used xsγe−cnx

2 ≤
(
sγ

2cen

)sγ/2
for x ∈ [0, 1] and any c > 0. The third error term of Lemma

B.6 satisfies, for sγ ∈ (0, 2)

1{sγ∈(0,2)}
psγ−2k

(α2 ∧ 1)n
≤

(
c√

(α2∧1)n

)sγ−2
(α2 ∧ 1)n

≤ csγ−2

((α2 ∧ 1)n)sγ/2
(23)

since pk ≥ c/
√

(α2 ∧ 1)n. The proof of Lemma B.7 is complete. �

Lemma B.8. Under the assumptions of Lemma B.7, we have

Var
(
F̂γ(k)

)
≤ C

(
1

((α2 ∧ 1)n)γ
+ 1{γ≥1}

p2γ−2k

(α2 ∧ 1)n

)
for a constant C depending only on γ (and c).
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Proof of Lemma B.8. We have, similarly to [4],

Var
(
F̂γ(k)

)
= E

[
F̂γ(k)2

]
−
(
E F̂γ(k)

)2
= E

[
F̂γ(k)2

]
− p2γk + p2γk −

(
E F̂γ(k)

)2
≤
∣∣∣E [F̂γ(k)2

]
− p2γk

∣∣∣+

∣∣∣∣p2γk − (E F̂γ(k)− pγk + pγk

)2∣∣∣∣
≤
∣∣∣E [F̂γ(k)2

]
− p2γk

∣∣∣+
∣∣∣E F̂γ(k)− pγk

∣∣∣2 + 2pγk

∣∣∣E F̂γ(k)− pγk
∣∣∣ . (24)

Using Lemma B.7 to bound the two first terms of (24), and Lemma B.6 for the last term, we get

Var
(
F̂γ(k)

)
≤ C

(
1

((α2 ∧ 1)n)γ
+ 1{γ≥1}

p2γ−2k

(α2 ∧ 1)n

+
1

((α2 ∧ 1)n)γ
+ 1{γ≥2}

p
2(γ−2)
k

((α2 ∧ 1)n)2
(25)

+ 2p2γk e
− n

128σ2
((α∧1)pk)2 +

2pγk1{γ≥2}

((α2 ∧ 1)n)γ/2
+

2p2γ−2k

(α2 ∧ 1)n

)
.

We bound the fifth term of (25):

2p2γk e
− n

128σ2
((α∧1)pk)2 ≤ 2

(
128σ2γ

(α2 ∧ 1)en

)γ
using x2γe−c

′nx2 ≤
(

γ
c′en

)γ
for any x ∈ [0, 1] and any c′ > 0. Hence, the first, third and fifth terms

of (25) are of the order of ((α2 ∧ 1)n)−γ at most. We now bound the fourth term of (25) using
pk ≥ c/

√
α2 ∧ 1)n :

p
2(γ−2)
k

((α2 ∧ 1)n)2
=

p2γ−2k p−2k
((α2 ∧ 1)n)2

≤
p2γ−2k

c2(α2 ∧ 1)n

and similarly the sixth term of (25):

2pγk1{γ≥2}

((α2 ∧ 1)n)1+(γ/2)−1 ≤
2pγk(pk/c)

γ−2
1{γ≥2}

(α2 ∧ 1)n
=

2p2γ−2k 1{γ≥2}

cγ−2(α2 ∧ 1)n
.

Hence, we have the desired bound for the second, fourth and sixth terms of (25). Finally, for the last
term of (25) we have

p2γ−2k

(α2 ∧ 1)n
=
p2γ−2k 1{γ∈(0,1)}

(α2 ∧ 1)n
+
p2γ−2k 1{γ≥1}

(α2 ∧ 1)n
≤ 2c2γ−2

((α2 ∧ 1)n)γ
+
p2γ−2k 1{γ≥1}

(α2 ∧ 1)n

using (23) for s = 2. This concludes the proof of of Lemma B.8. �

Proof of Lemma B.6. Denoting fs(x) = xsγ for s = 1, 2, and Y = T[0,2] [ẑk], we have by Taylor’s
formula,

fs(Y ) = fs(pk) + f ′s(pk)(Y − pk) +R(Y, pk) (26)
where the remainder is defined by

R(Y, pk) =

∫ Y

pk

(Y − w)f ′′s (w)dw =
1

2
f ′′s (wY )(Y − pk)2 (27)

where wY lies between Y and pk. We get

|E fs(Y )− fs(pk)| ≤ |ER(Y, pk)|+ |E f ′s(pk)(Y − pk)| . (28)

Thus, to prove the lemma, it suffices to bound the remainder |ER(Y, pk)| and the first order term
|E f ′s(pk)(Y − pk)|. We control the latter using Lemma B.2,

|E f ′s(pk)(Y − pk)| = sγpsγ−1k |E(Y − pk)| ≤ 2sγpsγ−2

(α2 ∧ 1)n

(
σ2CL,2 +

16γ

e

)
.
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For the remainder, we use the decomposition

|ER(Y, pk)| ≤ E [|R(Y, pk)|1(Y < pk/2)] + E [|R(Y, pk)|1(Y ≥ pk/2)] (29)

and we bound separately the two terms of the RHS.

1◦. First term in the RHS of (29).

E [|R(Y, pk)|1(Y < pk/2)] ≤ sup
y≤pk/2

|R(y, pk)|E [1(Y < pk/2)]

= sup
y≤pk/2

|R(y, pk)|E [1(ẑk < pk/2)]

≤ sup
y≤pk/2

|R(y, pk)| 3 e−
n

128σ2
((α∧1)pk)2

using Lemma B.1. We control R(y, pk) for any y ∈ [0, pk/2],

|R(y, pk)| ≤
∫ pk

y

(w − y)|f ′′s (w)|dw ≤
∫ pk

y

(w − y)sγ|sγ − 1|wsγ−2dw

≤ sγ|sγ − 1|
∫ pk

y

wsγ−1dw ≤ sγ|sγ − 1|
∫ pk

0

wsγ−1dw = |sγ − 1|psγk .

We gather the last two displays to get

E [|R(Y, pk)|1(Y < pk/2)] ≤ |sγ − 1|psγk 3 e−
n

128σ2
((α∧1)pk)2 .

2◦. Second term in the RHS of (29). We separate our analysis in two different ranges of values of γ.

2◦.1. Case sγ ∈ (0, 2): Starting from (27) we have

E [|R(Y, pk)|1(Y ≥ pk/2)] =
sγ|sγ − 1|

2
E
[
wsγ−2Y (Y − pk)21(Y ≥ pk/2)

]
(30)

≤ sγ|sγ − 1|
2

(pk
2

)sγ−2 E [(Y − pk)2
]

≤ sγ|sγ − 1|21−sγpsγ−2k

CBL,2
(α2 ∧ 1)n

where we used E
[
(Y − pk)2

]
≤ E

[
(ẑk − pk)2

]
and Lemma B.1.

2◦.2. Case sγ ≥ 2: A plug of wsγ−2Y ≤ psγ−2k + Y sγ−2 into (30) gives

E [|R(Y, pk)|1(Y ≥ pk/2)] ≤ sγ|sγ − 1|
2

E
[
(psγ−2k + Y sγ−2)(Y − pk)21(Y ≥ pk/2)

]
. (31)

We bound the first part of (31) as in (30),

E
[
psγ−2k (Y − pk)21(Y ≥ pk/2)

]
≤ psγ−2k

CBL,2
((α2 ∧ 1)n)

.

For the second part of (31), we get from Cauchy-Schwarz that

E
[
Y sγ−2(Y − pk)21(Y ≥ 2pk)

]
≤ E

[
Y 2(sγ−2)

]1/2
E
[
(Y − pk)4

]1/2
≤

(
22(sγ−2)CBL,2(sγ−2)

((α2 ∧ 1)n)sγ−2
+ 22(sγ−2)p

2(sγ−2)
k

)1/2(
CBL,4

((α2 ∧ 1)n)2

)1/2

≤

(
2sγ−2

√
CBL,2(sγ−2)

((α2 ∧ 1)n)(sγ−2)/2
+ 2sγ−2psγ−2k

) √
CBL,4

(α2 ∧ 1)n

where in the second inequality we used E
[
Y 2r

]
≤ E

[
ẑ2rk
]

and E
[
(Y − pk)2r

]
≤ E

[
(ẑk − pk)2r

]
for any r > 0 and Lemma B.1; in the third inequality we used

√
a+ b ≤

√
a+
√
b for any a, b > 0.

A plug of the last two displays into (31) concludes the case sγ ≥ 2.

Going back to (29), we have bounded the remainder ER(Y, pk). Lemma B.6 is proved. �
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C Auxiliary lemmas for upper bounds

Lemma C.1. Let p ∈ (0, 1], and x1, . . . , xn
iid∼ B(p) be independent Bernoulli random variables

with parameter p. Then, the mean x̂ = 1
n

∑n
i=1 xi satisfies, for any δ > 0 ,

P (x̂ ≤ (1− δ)p) ≤ e−
δ2np

2 , (32)

P (x̂ ≥ (1 + δ)p) ≤ e−
δ2np
2+δ , (33)

and
P(|x̂− p| ≥ δ) ≤ 2e−2δ

2n . (34)
We also have, for any r > 0,

E [|x̂− p|r] ≤ CB,r
nr/2

(35)

where CB,r is a constant depending only on r.

Proof of Lemma C.1. The concentration inequalities (32-33) are one form of Chernoff bounds. The
control (34) is Hoeffding’s inequality applied to i.i.d Bernoulli random variables. Finally, for (35),
see [8] or adapt the proof of Lemma C.2 below. �

Lemma C.2. Let w1, . . . , wn
iid∼ L(1) be independent Laplace random variables with parameter 1.

Denoting the mean by ŵ = 1
n

∑n
i=1 wi , we have

P(ŵ > t) ∨ P(ŵ < −t) ≤ exp

[
−n

2
(
t2

4
∧ t

2
)

]
≤ exp

[
−n

8
t2
]

+ exp
[
−n

4
t
]
. (36)

Besides, for any real r > 0, there exists a constant CL,r ≥ 1, depending only on r, such that

E (|ŵ|r) ≤ CL,r
nr/2

. (37)

Proof of Lemma C.2. A random variable x is said to be sub-exponential with parameter λ, denoted
x ∼ subE(λ), if Ex = 0 and its moment generating function satisfies

E[esx] ≤ eλ
2s2/2, ∀ |s| < 1

λ
.

Let x1, . . . , xn be independent random variables such that xi ∼ subE(λ). Bernstein’s inequality [8]
entails that, for any t > 0, the mean x̂ = 1

n

∑n
i=1 xi satisfies

P(x̂ > t) ∨ P(x̂ < −t) ≤ exp

[
−n

2
(
t2

λ2
∧ t

λ
)

]
. (38)

Then, for any real r > 0 we have

E |x̂| =
∫ ∞
0

P(|x̂|r > t)dt =

∫ ∞
0

P(|x̂| > t1/r)dt ≤
∫ ∞
0

2e−
nt2/r

2λ2 dt+

∫ ∞
0

2e−
nt1/r

2λ dt

so that, using u = nt2/r

2λ2 and v = nt1/r

2λ ,

E |x̂| ≤
(

2λ2

n

)r/2
r

∫ ∞
0

e−uu(r/2)−1du + 2

(
2λ

n

)r
r

∫ ∞
0

e−vvr−1dv

=

(
2λ2

n

)r/2
rΓ(r/2) + 2

(
2λ

n

)r
rΓ(r)

≤ 2r+2λrr [Γ(r/2) + Γ(r)]
1

nr/2
. (39)
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Let w ∼ L(1) be a random variable of Laplace distribution with parameter 1. Observe that P(|w| >
t) = e−t for t ≥ 0, and

E[esw] ≤ e2s
2

, if |s| < 1

2
.

Hence, w is sub-exponential with parameter 2, i.e. w ∼ subE(2). We can take λ = 2 in (38-39) to
conclude the proof of Lemma C.2, choosing CL,r = 22r+2r [Γ(r/2) + Γ(r)]. �

D Proofs of lower bounds

Proof of Proposition 2.2. Recall that ẑk = 1
n

∑n
i=1 zik, where zik = 1{xi=k} + σ

α · wik, with
E zik = pk and Var(zik) = pk(1 − pk) + 2σ2

α2 . Note that τ̃ := σ√
α2n

lies in [0, 2], and that

Var(zik) ≥ (
√
nτ̃)2. By the central limit theorem,

√
n ẑk−pk√

Var(zik)
has an asymptotic standard normal

distribution, so we have P(
√
n ẑk−pk√

Var(zik)
≥ 1) ≥ c1 for some numerical constant c1 > 0 and n large

enough. We write ẑk =
√
n ẑk−pk√

Var(zik)
·
√

Var(zik)√
n

+ pk ≥
√

Var(zik)√
n

with probability larger than c1,

thus leading to

E
[(
T[0,2](ẑk)

)γ]−pγk ≥ c1
(
T[0,2]

(√Var(zik)√
n

))γ
−pγk = c1τ̃

γ−pγk ≥
c1τ̃

γ

2
, as n→∞

for all pk ≤
(
c1
2

)1/γ
τ̃ . Denoting by K≤(c1/2)1/γ τ̃ the number of such pk satisfying the latter

inequality, we get∑
k∈K≤(c1/2)

1/γ τ̃

E
[(
T[0,2](ẑk)

)γ]− pγk ≥ c1τ̃
γ |K≤(c1/2)1/γ τ̃ |

2
, as n→∞ . (40)

Hence, the lower bound announced in Proposition 2.2 holds in particular for any p = (p1, . . . , pK) ∈
PK such that |K≤(c1/2)1/γ τ̃ | = K. However, this last equality entails that K satisfies the following
restriction K &γ (τ̃)−1 &γ

√
α2n since

∑K
k=0 pk = 1. We remove this restriction in the sequel.

Let C > 0 be some constant that will be set later, and that only depends on γ. If K ≤
C
(

1 ∨ (α2n)
γ
2−

1
2

)
, then the lower bound of Proposition 2.2 follows directly from Theorem 2.6. We

can therefore assume that
K ≥ C

(
1 ∨ (α2n)

γ
2−

1
2

)
. (41)

Let p = (p1, . . . , pK) ∈ PK such that pj ≤
(
c1
2

)1/γ
τ̃ for all j ∈ [K − 1] , and pK ∈ [0, 1] so that∑K

k=1 pk = 1. By Lemma B.5 and B.7, the bias of estimation of pK is bounded by∣∣E [(T[0,2](ẑK)
)γ]− pγK∣∣ ≤ C ′( 1

(α2n)γ/2
+ 1{γ≥2}

1

α2n

)
,

where C ′ is a constant depending only on γ. Combining with (40), we get
K∑
k=1

E
(
T[0,2](ẑk)

)γ − pγk ≥ c1τ̃
γ(K − 1)

2
− C ′

(α2n)γ/2
− 1{γ≥2}

C ′

α2n

≥ c1K

4(α2n)γ/2
− C ′

(α2n)γ/2
− 1{γ≥2}

C ′

α2n
.

Hence, it suffices to choose a large enough constant C in (41) to have
K∑
k=1

E
(
T[0,2](ẑk)

)γ − pγk ≥ C ′′K

(α2n)γ/2

for some constant C ′′ depending only on γ. We have proved the desired lower bound under the
assumption (41). The proof of Proposition 2.2 is complete. �
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Proof of Theorem 2.6. Fix γ > 0, γ 6= 1. Let τ̃ := C̃√
α2n

for a constant C̃ ∈ (0, 1) that will be set
later, and which only depends on γ. Let us start with the case K = 2. Define two probability vectors
p = (p1, p2) = (1− τ̃ , τ̃) and q = (q1, q2) = (1− τ̃ /2, τ̃ /2). Then for a small enough constant C̃,
we have

∆ := |Fγ(p)− Fγ(q)| = |(1− τ̃)γ − (1− τ̃ /2)γ + τ̃γ − (τ̃ /2)γ |

=

∣∣∣∣−γτ̃2 +O(τ̃2) + τ̃γ(1− 1

2γ
)

∣∣∣∣
where we used (1− x)γ = 1− γx+O(x2) for any real x ∈ (0, C̃). If γ ∈ (0, 1), we can choose C̃
small enough to have

∆ = τ̃γ
∣∣∣∣−γτ̃1−γ2

+O(τ̃2−γ) + (1− 1

2γ
)

∣∣∣∣ ≥ Cτ̃γ
for some constant C depending only on γ. Similarly, if γ > 1, we have

∆ = τ̃

∣∣∣∣−γ2 +O(τ̃) + τ̃γ−1(1− 1

2γ
)

∣∣∣∣ ≥ Cτ̃ .

For any α-LDP mechanism Q, denote by Qp and Qq the measures corresponding to the channel
Q applied to the probability vectors p and q. Corollary 3 of [3] ensures that the Kullback-Leibler
divergence between Qp and Qq is bounded by

Dkl(Qp,Qq) ≤ 4(eα − 1)2n (dTV (p, q))
2
,

i.e. by n times the square of the total variation distance between p and q, up to a constant depending
on α. Then we have

Dkl(Qp,Qq) ≤ 4(eα − 1)2n

(
2∑
k=1

|pk − qk|

)2

≤ 4(eα − 1)2nτ̃2 ≤ 36C̃2 (42)

where the last inequality follows from ex − 1 ≤ 3x for any x ∈ [0, 1].

For any vector θ = (θ1, θ2), θi ≥ 0, we denote the functional at θ by Fγ(θ) =
∑2
k=1 θ

γ
k . We use a

standard lower bound method based on two hypotheses, see e.g. Theorem 2.1 and 2.2 in [7], to get
for any estimator F̂ ,

sup
θ∈{p,q}

Pθ
(
|F̂ − Fγ(θ)| ≥ ∆

2

)
≥

1−
√
Dkl(Qp,Qq)/2

2
.

Then we deduce from (42) that

sup
θ∈{p,q}

Pθ
(
|F̂ − Fγ(θ)| ≥ ∆

2

)
≥ 1− 3

√
2C̃

2
≥ 1

4
,

choosing C̃ ≤ 1/(6
√

2). We have proved the desired lower bound in the case K = 2.

We can actually prove the same lower bound for any integer K ≥ 2, with the following slight
modification in the proof written above. Choose pk, qk, k ≥ 3 such that pk = qk and pk ≤ C̃/(4Kn).
Then change the p1 and q1 above accordingly (to have probability vectors). This affects neither the
order of the separation ∆, nor the bound on the KL-divergence between the measures Qp and Qq.
This concludes the proof of Theorem 2.6. �

Proof of Theorem 2.7. If K < 4, then the lower bounds are a direct consequence of Theorem 2.6.
We assume therefore that K ≥ 4. For the ease of exposition, we also assume that K is even (the case
of an odd K being similar). Let K̃ be a positive even integer in [K]. Let p = (p1, . . . , pK) be any
probability vector such that two consecutive coordinates are equal p2k−1 = p2k for k ∈ [K̃/2], and
the remaining coordinates satisfy pk = pk′ for all k, k′ ≥ K̃ + 1. Similarly, let δ = (δ1, . . . , δK) be
a vector of perturbations such that, two consecutive perturbations are equal δ2k−1 = δ2k, k ∈ [K̃/2],
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and the others are equal to zero: δk = 0 , ∀ k ≥ K̃ + 1. Each perturbation is smaller than (half
of) the corresponding probability: 0 ≤ δk ≤ pk/2, k ∈ [K̃]. Given any k ∈ [K/2] and any vector
q = (q1, . . . , qK), define the operator Tk(q) = (0, . . . , 0, q2k−1,−q2k, 0, . . . , 0). We are now ready
to introduce the following collection of vectors p(ν), ν ∈ V{−1, 1}K̃/2:

p(ν) = p+

K̃/2∑
k=1

νkTk(δ)

= (p1, p2, p3, p4, . . . , pK−1, pK) + (ν1δ1,−ν1δ2, . . . , νK̃/2δK̃−1,−νK̃/2δK̃ , 0, . . . , 0)

= (p2, p2, p4, p4, . . . , pK̃ , pK̃ , pK , . . . , pK) + (ν1δ2,−ν1δ2, . . . , νK̃/2δK̃ ,−νK̃/2δK̃ , 0, . . . , 0) .

Observe that each p(ν), ν ∈ V{−1, 1}K̃/2, is a vector of probability. We bound from below the
difference between Fγ(p(ν)) and Fγ(p) in the next lemma, whose proof is postponed at the end of
the section.

Lemma D.1. For any γ ∈ (0, 2), γ 6= 1, and any ν ∈ V{−1, 1}K̃/2, we have

|Fγ(p(ν))− Fγ(p)| ≥ C
K̃/2∑
k=1

pγ−22k δ22k =: R

for a constant C > 0 depending only on γ.

We will show that it is hard to know if the data come from p or a uniform mixture of the p(ν), ν ∈ V .
We do so by using Theorem A.1 of [6], with the notations of [6]. For any fixed α-LDP interactive
mechanism Q, we write Qn := (Qp)n ∈ conv

(
QP(n)
≤Fγ(p)

)
and Q

n
:= 2−K̃/2

∑
ν∈V(Qp(ν))n ∈

conv
(
QP(n)
≥Fγ(p)+R

)
. With the notations of [6] and standard relations between probability metrics,

we have that the upper affinity satisfies

η
(n)
A (Q,R) ≥ π(Qn, Q

n
) = 1− dTV (Qn, Q

n
) ≥ 1−

√
Dkl(Qn, Q

n
)/2 . (43)

We can bound the KL-divergence Dkl(Q
n, Q

n
) as in the proof of Theorem 4.2 in [2], and have

Dkl(Q
n, Q

n
) ≤ n(e2α − e−2α)2

4
‖δ‖22 .

Hence, it suffices to choose a δ satisfying the condition

‖δ‖22 ≤
2

n(e2α − e−2α)2
, (44)

to have η(n)A (Q,R) ≥ 1
2 . Denoting ∆

(n)
A (Q, η) := sup{∆ ≥ 0 : η

(n)
A (Q,∆) > η} as in [6], we will

get for any η ∈ (0, 1/2),

∆
(n)
A (Q, η) ≥ R

where R is defined in Lemma D.1 above. It will then follow from Theorem A.1 of [6] that

inf
Q

inf
F̂

sup
p∈P

E
[
(F̂ − Fγ(p))2

]
≥
(
R

2

)2
η

2
,

for any η ∈ (0, 1/2). Taking η = 1/4 we will have

inf
Q

inf
F̂

sup
p∈P

E
[
(F̂ − Fγ(p))2

]
≥ C2

32

K̃/2∑
k=1

pγ−22k δ22k

2

.

To choose a δ fulfilling (44), we consider two cases according to the values of K.
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1◦. In the case where K < n(e2α − e−2α)2, we choose K̃ = K, and take δk = (4
√
Kn(e2α −

e−2α))−1, k ∈ [K]. We take pk = 2δk, k ∈ [K − 2], and the remaining pK−1, pK ≥ 2δk so that p
is a vector of probability (i.e.

∑
k pk = 1). This gives

inf
Q

inf
F̂

sup
p∈P

E
[
(F̂ − Fγ(p))2

]
≥ C2

32

(
2γ−2 [(K/2)− 1]

(4
√
Kn(e2α − e−2α))γ

)2

≥ C22−2γ

8192

K2−γ

((e2α − e−2α)2n)γ
,

where we used (K/2) − 1 ≥ K/4 with K ≥ 4. This corresponds to the right term of both lower
bounds announced in Theorem 2.7.

2◦. In the case where K ≥ n(e2α − e−2α)2, we separate our analysis in two ranges of values of γ.
If γ ∈ (0, 1), we take K̃ = K, and δk = (2K)−1 and pk = 2δk for all k ∈ [K]. This leads to

inf
Q

inf
F̂

sup
p∈P

E
[
(F̂ − Fγ(p))2

]
≥ C2

32

(
2γ−2(K/2)

(2K)γ

)2

≥ C2

2048
K2(1−γ) ,

which matches the first term of the lower bound for γ ∈ (0, 1) in the theorem.
If γ ∈ (1, 2), let K̃ be the smallest even integer satisfying K̃ ≥ n(e2α − e−2α)2 and K̃ ≥ 4. We set
δk = (8

√
K̃n(e2α − e−2α))−1 for k ∈ [K̃]. We choose pk = 2δk for k ∈ [K̃ − 2], and pk ≥ 2δk

for k ≥ K̃ − 1 such that p is a vector of probability. Then

inf
Q

inf
F̂

sup
p∈P

E
[
(F̂ − Fγ(p))2

]
≥ C2

32

 2γ−2
[
(K̃/2)− 1

]
(8
√
K̃n(e2α − e−2α))γ

2

≥ C24−2γ

8192

K̃2−γ

((e2α − e−2α)2n)γ

≥ C24−2γ

8192
((e2α − e−2α)2n)2(1−γ) ,

which corresponds to the first term of the lower bound for γ ∈ (1, 2) in the theorem.

The proof of Theorem 2.7 is complete. �

Proof of Lemma D.1. We have

Fγ(p(ν))− Fγ(p) =

K̃/2∑
k=1

[
(p2k + νkδ2k)γ + (p2k − νkδ2k)γ − 2pγ2k

]
(45)

Denoting f(x) = xγ and using Taylor’s formula, we have for any real Y > 0,

f(Y ) = f(p2k) + f ′(p2k)(Y − p2k) + f ′′(wY )
(Y − p2k)2

2

where wY lies between Y and p2k. We take Y = p2k + νkδ2k and Ỹ = p2k − νkδ2k to get

f(Y ) + f(Ỹ )− 2pγ2k = f ′′(wY )
(Y − p2k)2

2
+ f ′′(wỸ )

(Y − p2k)2

2

= γ(γ − 1)(wγ−2Y + wγ−2
Ỹ

)
δ22k
2

(46)

Since wY ∨ wỸ ≤ p2k + δ2k with 0 ≤ δ2k ≤ p2k/2, and γ ∈ (0, 2), we have

wγ−2Y ∧ wγ−2
Ỹ
≥ (p2k + δ2k)γ−2 ≥ (2p2k)γ−2 .

Hence, for γ ∈ (1, 2) ,

f(Y ) + f(Ỹ )− 2pγ2k ≥ γ(γ − 1)(2p2k)γ−2δ22k

which leads to the desired lower bound of (45). For γ ∈ (0, 1), we deduce from (46) that all terms of
the sum (45) are non-positive and satisfy

f(Y ) + f(Ỹ )− 2pγ2k ≤ γ(γ − 1)(2p2k)γ−2δ22k .

So, the absolute value of the sum (45) can be lower bounded as announced in the lemma. �
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