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A SUPPORTING DISCUSSIONS

A.1 CONCRETE EXAMPLES OF GENERIC GENERALIZATION BOUND

e when Al is “© is finite, [(-,-) is a zero-one loss, samples are i.i.d”, ¢(|O|,n,d) =

V/(log(|©]) +1og(1/3))/2n

e when Al is “samples are i.i.d”, ¢(|O|,n, )
stands for Rademacher complexity and £ =
corresponding to 6.

2R(L) + /(log1/0)/2n, where R(L)
|0 € ©}, where g is the loss function

1o

For more information or more concrete examples of the generic term, one can refer to relevant
textbooks such as (Bousquet et al., 2003).

A.2 ESTIMATION OF c(f)

The estimation of ¢(6) mainly involves two difficulties: the knowledge of f,, and the computational
cost of the search over the entire space X. The first difficulty is usually resolved with intuition
or common sense of the data or the task: in practice, we usually directly have the knowledge of
A( I x), i.e., the spuriously correlated features that fp relies on, such as texture of images. There-
fore, the estimation becomes a process to test the whether the model will switch its correct prediction
when these features are perturbed over the possible space. The second difficulty can be alleviated
due to the fact that the search can be terminated once (6, A(f, x)) is evaluated as 1. As one may be
aware of, this process of searching the entire space with perturbations allowed in a predefined scope
to test the model’s worst possible prediction for a sample x is widely known as adversarial attack
(Goodfellow et al., [2015). These techniques also usually leverage the knowledge of the model’s
gradient to accelerate the searching process.

While adversarial attack can offer a fairly accurate estimation of ¢(#), it usually requires heavy
computational efforts. As an alternative strategy, many other literature have tested the models with
some fixed perturbations of the x, or in other words, taking advantage of the fact that

0(x') —y| < max 0(x) —y| =70, A(f,x)), where Xy;.) € Xagrx- (A7)

T XA, XA %)

to test a lower bound of ¢(#). There are many works in this thread, and we only list a handful
of examples: Jo & Bengio| (2017)) leveraged Fourier transform to show that models can capture a
significant amount of texture information, later|Geirhos et al.[(2019) showed that CNNs trained with
ImageNet are also biased towards texture. With a more concrete definition of the texture, Wang
et al.|(2020) demonstrated the models can capture high-frequency signals from images, which also
links the discussion of learning through bias signals to the adversarial vulnerability issue of models
(Ilyas et al.|[2019). Similarly, these works mostly depend on a subjective choice of A( f;,, x), usually
given by the knowledge of the data or the task. Although these works did not directly assess ¢(6), 0
usually switched the prediction for sufficient samples to raise an alarm.

A.3 LEARNING ROBUST MODELS WITH MINIMUM SUPERVISION IN PRACTICE

In practice, as we do not have the knowledge of either f; or f,, (F), the strategy we use is to estimate
the model first and consider our estimated model @ as a substitute of the labeling function (either fy
or fp). Therefore, at each iteration ¢, we will use the 9 at the previous iteration to identify the active
set for the optimization of (in main manuscript).

Further, another question is that when we have 6'~1, how to identify A(é\t_l, x), as searching for
A(at_l, x) by the definition can be computationally expensive. Our practical strategy is to use the
gradient of 9t1to guide the selection of the features. Intuitively, we argue that the the features with
larger absolute values of D1(6'~1, x,y) /00!~ are the features '~ relies on.
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Finally, we consider the features with values greater than a threshold 7(p, g)} are the features that

are in A(@’l, x). The threshold hold is set as the p™ quantile of all the calculated gradients for this
sample. The algorithm is shown in Algorithm |T]

Algorithm 1: Learning Robust Models with Minimum Supervision
Result: 67

Input: 7', p, (X,Y);

initialize 6°, ¢t = 1, n;

while t < T do

for sample (x,y) do

calculate the gradient g = 9l(6*~1,x,y)/00' 1,
set the threshold 7(p, g) to be the p™ quantile of |g|;
set A(0°~1,x) = {illg:| > 7(p, &) }1:

sample x’ where X;\(G"*l,x) € Xyt %)

calculate the gradient g’ = 9l(0'~1,x/,y)/06!~1;
update the model §* = #*~! — ng’

end
end
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B PROOFS OF THEORETICAL DISCUSSIONS

B.1 LEMMA B.1 AND PROOF

Lemma B.1. With sample (x,y) and two labeling functions f1(x) = f2(x) =y, for an estimated
0 € ©, if 0(x) =y, then with A3 and A4, we have

dx (0, f1) =1 < (0, A(f2,%)) = 1 (18)

XA(fx) € Xa(sx) denotes that the features of x indexed by A(f,x) are searched in the entire
space.

Proof. If 0(x) =y and dx (0, f1) = 1, according to A4, we have dx (6, f2) = 0.

First, we consider one direction dx(6, f1) = 1 = (6, A(f2,x)) = 1 and we prove this by
contradiction.
If the conclusion does not hold, r(6, A( f2,x)) = 0, which means

max 0(x) —y|=0 (19)

XA(f2,%) EXA(f2,%)
Together with dx (0, f2) = 0, which means
max |0(z) —y| =0, (20)

ZEXZA(fy,%) TXA(f2,%)
we will have
8(x) —y| =0, 21
max [0(x) — | @b
which is §(x) = y for any x € P.
This contradicts with the premises in A4 (@ is not a constant function).

Second, we consider the other direction (0, A(f2,x)) = 1 == dx(0, f1) = 1 and we prove
this by showing its contrapositive proposition holds. (Its contrapositive proposition is dx (6, f1) =
0 = r(6,A(f2,x)) = 0, because, by definitions, 7 and d can only be evaluated as 0 or 1).

Because of A3 (A(f1,x) N A(f2,x) = 0), we have dx (0, f1) > (0, A(f2,%)), thus the contrapos-
itive proposition can be shown trivially. O

B.2 THEOREM 3.1 AND PROOF

Theorem. With Assumptions A1-A4, with probability as least 1 — §, we have
ep,(0) <ep,(0) + c(0) + (|0, n,0) (22)

where ¢(6) = - S ey, 1006) = Y176, Ay, %))

Proof.

CROEEID DI (S Ee] @3)
(xy)e(X,Y)p,
-l e = 1)) 24)

(25)
—- Y (060 = SN ) =0) S 869 = SGONa (6 fa) = 1]
(x,y)eE(X,Y)p, (x,y)e(X,Y)p,
(26)
@ -~ S 106 = £, A ), @7)

(xy)eX,Y)p,
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where the last line used Lemma [B.1}

Thus, we have

QO =0T S 100 = S0, Ay x) e8)

where
GO =1-= S (106x) = Sl (0, fa) = 0)), 9)
xy)e(X,Y)p,

which describes the correctly predicted terms that 6 functions the same as f; and all the wrongly pre-
dicted terms. Therefore, conventional generalization analysis through uniform convergence applies,
and we have

ep, (0) < €a(0) + ¢(|0], n, ) (30)
Thus, we have:

o 0) <@ O+~ 3 106) =yIr(0,Alfy %) + 610 n,8) G

n
(xy)e(X,Y)p,

O
B.3 THEOREM 3.2 AND PROOF
Theorem. With Assumptions A2-AS, and if 1 — fq € ©, we have
elf) < Do(Pu P+ Y 6(x) = ylr(6, Alfy %) (32)

" e e,
1 . .
where c(0) = -~ Y xy)ex, e, 0(x) =y]r(0, A(fp, %)) and De (P, Py) is defined as in (3).

Proof. By definition, g(x) € OAO <= g(x) = 0(x) ® §'(x) for some 0,60’ € O, together with
Lemma 2 and Lemma 3 of (Ben-David et al.,|2010), we have

Do (P, Py) :% e | Z |0(x) — 0" (x)| — Z 0(x) — 6/ (x)]| (33)
’ (xy)EX.Y)p, (xy)EX.Y)p,
=S DI TCI R A D DI /SR eS| (34)
(x,y)e(X,Y)p, (x,y)e(X,Y)p,
Y wee=v- Y =yl (39)
(x,y)e(X,Y)p, (x,y)eE(X,Y)p,
:%’ Yo 0 =y A X)) =1 = > H8(x) = ylI[r(0, A x) = 1
(xy)e(X,Y)p, (xy)e(X,Y)p,
(36)
+ Y ) =IO Af,x) =01 = Y 18(x) = Y16, A(fp, x)) = 0]
(xy)e(X,Y)p, (xy)e(X,Y)p,
(37
=%| > ) =y Afmx) — Y H8(x) = Y10, A(fp,x)))|
(x,y)e(X,Y)p, (xy)e(X,Y)p,
(38)
>c0)- Y N0x) =0, A(fp %)) (39)

(xry) G(X’Y)Pt

16



Under review as a conference paper at ICLR 2021

First line: see Lemma 2 and Lemma 3 of (Ben-David et al., 2010).
Second line: if 1 — f; € ©, and we use f, to denote 1 — f.

Fifth line is a result of using that fact that

Yo 0 =y Afx) =01= > 1[(x) = y]I[r(8, Alfp, x)) = 0]

(xy)e(X,Y)p, (xy)e(X,Y)p,

as a result of our assumptions. Now we present the details of this argument:

(40)

According to A4, if §(x) =y, dg(6, fa)d (8, f,) = 0. Since 7(0, A(fp,x)) = 0, d,(6, f,) cannot
be 0 unless 6 is a constant mapping that maps every sample to O (which will contradicts A4). Thus,

we have d (0, fq) = 0.

Therefore, we can rewrite the left-hand term following

S0 =ylr@. Alf,x) =01= > 10(x) = yll[d(0, fa) = 0]

(xy)e(X,Y)p, (xy)e(X,Y)p,
(4D
and similarly
Yo M0G) = YN0, Afpx) =01 = Y 1[0(x) = y]I[du(0, fa) = 0] (42)
xy)e(X,Y)p, xy)e(X,Y)p,
We recap the definition of d (-, -), thus d, (0, f4) = 0 means
dx (0, fa) = max 10(2) — fa(z)| =0 (43)
ZEXZA(S,0) XA g%
Therefore d,. (6, f;) = 0 implies 1(6(x) = y), and
0(z) = fa(2)| =0V 24(5,%) = XA(fax) (44)
Therefore, we can continue to rewrite the left-hand term following
Yoo N0 =yNde(0, fa)=01= Y M=)~ fa@]= D 10(x) — fa(x)]
xy)eX,Y)p, xy)EX,Y)p, xy)eX,Y)p,
45
and similarly
Yoo M0G) =yNda(O. f) =01 = > 16(z) — fa(z)] (46)
xy)EX,Y)p, (xy)e(X,Y)p,
where z denotes any z € X and Z (5, x) = XA(f4,x)-
Further, because of A5, we have
Yo @) - fa@]= Y 10(x) — fa(x)]. 47
(x,y)E(X,Y)pt (x,y)e(X,Y)p,
Thus, we showed the holds and conclude our proof.
O
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C ADDITIONAL EXPERIMENTS

C.1 THEORETICAL SUPPORTING EXPERIMENTS

Synthetic Data with Spurious Correlation We extend the setup in Figure|1|to generate the syn-
thetic dataset to test our methods. We study a binary classification problem over the data with n
samples and p features, denoted as X € R"™*P. For every training and validation sample i, we
generate feature j as following:

N(0,1) if1<j<3p/d
XD N(1,1) if 3p/4 < 5 <p, and y(%) =1, wp.p
J N(—=1,1) if3p/d<j<p,andy®D =0, wp.p’
N(0,1) if3p/d<j<p, wp.l—p

In contrast, testing data are simply sampled with xgi) ~ N(0,1).

To generate the label for training, validation, and test data, we sample two effect size vectors 51 €
RP/* and By € RP/* whose each coefficient is sampled from a Normal distribution. We then
generate two intermediate variables:

ol = x

1,2, p/451 and cé)_Xg,L,)Q,...,p/ALBQ

Then we transform these continuous intermediate variables into binary intermediate variables via
Bernoulli sampling with the outcome of the inverse logit function (g~!(-)) over current responses,
ie.,

ri” =Ber(g!(c{”)) and ry) =Ber(g ! (cl"))

Finally, the label for sample i is determined as y(*) = I(rgi) = rgi)), where | is the function that
returns 1 if the condition holds and 0 otherwise.

Intuitively, we create a dataset of p features, half of the features are generalizable across train,
validation and test datasets through a non-linear decision boundary, one-forth of the features are
independent of the label, and the remaining features are spuriously correlated features: these features
are correlated with the labels in train and validation set, but independent with the label in test dataset.
There are about cn train and validation samples have the correlated features.

=100, c=1.0

| -1

MS(p=05) MS(p~0.75) MS(p- 095
=200, c=1.0

sl

p=400, ¢

MS(p-05) MS(p-07) MS(y-093  Oracle

janilia
2 4 n
=1.0

Figure 3: Results of Synthetic Data with Spurious Correlation. Each panel represents one setting.
Five methods are reported in each panel. For each method, four bars are plotted: from left to right,
/E\PS (9), /é\pt (9), /E\PS (6) + 0(9), and /6\1)5 (9) + Dg.

Results are reported in Figure [3] where each setup we ran 3 random seeds and report the mean
and standard deviation. We train a vanilla method, minimum supervision method with different
hyperparamter p, and an oracle method that uses data augmentation to randomized the previously
known spurious features. The results show the advantage of the new method consistently, although
still not compared to the method with prior knowledge. We also calculate the ¢(6) as we perform
adversarial attacks over the spuriously correlated feature space, we also calculate Dg as defined in
(8). We compared €p_ () + ¢() and €p_ () + Do and the results suggest that clearly c(6) offers a
more accurate assessment of the target error than Dg.

18



Under review as a conference paper at ICLR 2021

C.2 REAL IMAGE CLASSIFICATION: MORE DETAILS

The main experiment setup follows the setup of (Bahng et al. |2019), and the setup can be con-
veniently replicated by the GitHub repo associated with the paper (Bahng et al., 2019). Although
results of ImageNet-C are also reporeted by (Bahng et al.| |2019), their github repo does not pro-
vide the corresponding replication scripts, so we also skip the information. Additionally, we report
another ImageNet level test set that is independently collected, and has only sketch images.

We rename the “bias” and “unbiased” in (Bahng et al., [2019)) to “standard accuracy” and “weighted
accuracy” to align the terms we use in this paper and also help to explain the results. Intuitively,
“weighted accuracy” refers to the evaluation mechanism that the test samples with unusual texture
will have more weights.

Again, following the setup in (Bahng et al.; 2019), the base network is ResNet, and we compare
with the vanilla network, and several methods that are designed to reduce the texture bias: including
StylisedIN (Geirhos et al.,|2019)), LearnedMixin (Clark et al.,2019), RUBi (Cadene et al., 2019) and
ReBias (Bahng et al.,[2019)).

Finally, to get the reported performance, our MS method uses an extra heuristic, such as we only
optimize for half of the batch, and optimize the other batch with the vanilla training (I)). Despite
this heuristic used, the main message remains: MS method, as a method that does not use the
knowledge of the spurious correlated features, can compete with the methods that use the knowledge
explicitly.
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