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Abstract
Deep neural networks achieve state-of-the-art performance in several standard datasets across a variety of

domains. While many pre-trained models on such standard datasets are available off-the-shelf, practitioners
aiming to deploy deep learning based solutions to a specific real world application face two important challenges.
Firstly, the standard models cannot be readily used and need significant reconfiguration and downstream training
to suit the specific application. Secondly, in many critical applications involving humans, along with the model,
it is also important to provide a mechanism to explain its decisions. In this paper, we address these challenges
in the context of deploying deep models for endscopy video analysis. Our contribution is (i) a decoupled CNN-
Transformer for classifying intubation procedures, and (ii) a mechanism that explains the model’s decisions.
The CNN-Transformer performs better than the baseline off-the-shelf-model with downstream training, and our
explanations show that the CNN-Transformer model uses the right spatial and temporal features to arrive the
final classification.

1 Introduction

Machine Learning models are supposed to be all-pervasive, to an extent that they should be deployable in high-
risk domains such as self-driving cars [1], science [2] and medical-imaging [3]. To catalyze the rapid growth,
researches have constantly contributed by developing several state-of-the-art models for a variety of tasks and
data-representations. In spite of the advances, there still exits a gap between state-of-the-art models trained on
standard benchmark datasets and those that need to be deployed in practical real-word applications. Firstly, mod-
els/architectures trained on benchmark dataset need to be extensively reconfigured and fine-tuned to the specific
application settings in order to have satisfactory performance. In addition to this reconfiguration, it is highly pivotal
that the model’s decision making process is understood and trusted by humans. Especially, in high-risk domains
such as medicine and healthcare, it is crucial to not only understand the decision-making capabilities of such deep
models, but also allow humans to intervene at any stage of the pipeline to prevent such systems from making fatal
decisions.

In this paper, we aim to build a deployable and explainable model in the domain of medical imaging. In
particular, we look at the problem wherein a video of an endoscopic procedure is given and we need to classifying
whether or not the endscopic probe was intubated correctly. Our specific contributions to this problem are

• We propose a CNN-Transformer model that encodes spatial and temporal information separately. We show
via experiments that this model outperforms the baseline model.

• We use the learned attention weights of the temporal-transformer to visualise the important frames in which
a key-action took place. This action could be performed correctly or incorrectly.

• Finally, we employ a Grad-CAM approach to provide spatial explanations so as to ground the salient spatial
regions that the probe was attempting to navigate.

2 Related Work

2.1 Image Attribution Methods

One of the most straightforward approaches is identifying pixels or regions of the image input that influence the
soft-max probability of the target label in an image classification task. These salient regions are represented as
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Figure 1: Visual Explanations of Video Transformer Model, First row indicates raw attention scores. Second row
indicates the raw image frames. Third row superimposes the attention scores over the frames and the fourth row
visualizes Grad-CAM explanations.

importance maps. Currently, there are many attribution procedures that are often applied to a model with fixed
parameters to provide explanations.

Activation-Based Methods The activation maps that can be obtained from the internal layers of a convo-
lutional neural network are linearly combined to generate the importance maps. The weights with which these
activation maps are linearly combined differs across different methods. [4] proposed Grad-CAM in which the gra-
dients from the activation outputs are average-pooled to obtain the weights. In Grad-CAM++ [5], the coefficients
obtained from the second derivatives of the activation outputs are used as replacements instead of the average-
pooling procedure in Grad-CAM. The major challenge associated with these methods is that the resolution of the
intermediate maps is lower than the input image and hence the explanation is coarse-grained. When extended to
the video-domain, such as for 3D-CNNs, same explanation results will be assigned to adjacent frames.

Backpropagation-Based Methods The underlying principle in these methods is that the importance of a
pixel in determining the output is directly related to the gradient of the output with respect to that pixel. This is
because gradients reflect the sensitivity of the output with respect to a change in input. Although several methods
exist [6, 7], the resultant map generated is noisy. Despite elimination noise, methods like Integrated Gradients [8],
do not generate class-discriminative explanations as they average-out the network properties. Certain works [9, 10]
introduce a modified backpropagation method which inhibits user-friendliness/interpretability.

Perturbation-Based Methods These methods involve removing certain patches from the image input and
observing the variation of the output with different input combinations. Although the reasoning seems intuitive,
one has to traverse through all input elements and test all possible input combinations, which is computationally
heavy. A major research focus in this space has been to reduce the computational overhead and obtain an optimal
explanation. RISE [11] is a popular method which employs a sliding-window mechanism to obstruct a region of the
input image with a grey patch. LIME [12] employs a simpler interpretable surrogate model (such as a linear model)
to train on points sampled around the input example whose evaluations are used to generate explanations. Similar
to LIME, [13] utilizes a second neural-network to predict a perturbation mask. [14] improvised the optimization
process by introducing local gradients.

2.2 Video Attribution Methods

Video-representations have an additional dimension (time) than images. This means that an explainer has to look
for regions in an inflated searching space and hence there is an increase in the computational overhead. [15] and
[16] extended the gradient-based methods (like LRP) to identify the salient regions which are influential for a video-
understanding network. However, these methods do not consider the temporal relationship between image frames
and hence are not suitable. [17] and [18] adapt activation based methods for 3D CNNs to generate interpretations
over time. Further, EB-R [19] (dubbed Excitation BackProp) is a popular method that utilizes a CNN-RNN
structure to introduce time relationships. However these methods aren’t intuitive by themselves especially in the
video domain. While there are few works which focus on interpretability of video models, these approaches do not
conduct extensive experimentation.

3 Intubation Classification

In this work, we focus on a binary-classification task which classifies video actions into a correct or faulty procedure.
Specifically, we take a medical endoscopic intubation procedure, in which a probe (attached with a camera) is
navigated from the mouth through the food pipe and to the gastroesophagl junction. Videos in which the performer
correctly enters the food-pipe are considered positive-classes (label=1) and those in which the performer enters the
trachea (wind-pipe) instead of the food-pipe are considered negative-classes (label=0).
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Figure 2: (left) Our proposed architecture contains three modules - a feature extraction module followed by a
temporal transformer that operates on ϕi (combined with positional encodings) and finally a MLP classification
head that processes the output CLS token. (right) Performance improvement obtained by using a transformer for
the temporal-encoder.

4 CNN-Transformer Model

The CNN-Transformer model (Figure 2(a)) is a hierarchical model composed of three core modules, namely, a 2D
spatial encoder f(x), a temporal self-attention transformer composed of N layers, and a classification MLP head.

Spatial Backbone The spatial backbone is an embedding network that learns local spatial features for each
frame, which leaves the following Transformer module to focus on capturing the temporal interactions. This
embedding network can be any model that operates on 2D images and generates a d-dimensional vector for that
frame. We make use of a ResNet50 [20] encoder, pretrained on ImageNet [21], as our spatial backbone. For each
frame, the encoder generates a 512-dimensional feature vector which is then projected onto a 128-dimensional
feature space (the latent representation dimension used in transformers).

Temporal Encoder We make use of the vanilla self-attention transformer [22] that enforces attention mech-
anisms to capture global dependencies in a sequential data-representation. Transformers take sequences of fixed
length as input. After performing frame-level tokenization using the spatial backbone, transformers primarily model
the temporal interactions between the frames. In our work, following [22], we extend a class token to learn global
discriminative features. The frame-order information is enforced by the positional encoding step. The output state
of the [CLS] token is passed onto the MLP classification head which is made up of two linear layers with RELU
activation and dropout between them. In our model, Transformer module has 4 layers, 4 heads and 128-dimension
hidden representation.

Design Rationale Our choice of transformers for the temporal module further makes the explanation pipeline
inherently interpretable as opposed to post-hoc strategies (like attribution methods) currently available which are
often not reliable, and can be misleading [23, 24].

Novelty In computer vision, a more sought-after direction for interpreting models is to generate visual expla-
nations which represent the contribution of different segments in the input towards the final prediction. These
methods (often termed as Attribution methods) in image domains, which have recently attracted attention of many
researchers, often involve heatmap or saliency maps that localize the salient areas of the image for a model’s deci-
sion [25, 26]. Albeit being successful, significant challenges arise when these methods are leveraged for inputs from
the video-domain. A typical video-representation comprises image-frames stacked in a sequential fashion. Thus
a target object/scene in such a representation would possess a spatio-temporal trajectory, and hence a model’s
outcome should be solely dependent on this target trajectory. Therefore, directly applying image interpretation
methods in the video domain will not generate satisfactory explanations as they tend to disregard the temporal
relationships.
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Figure 3: Visual Explanations generated by our approach. Note that whenever there is negligible motion flow,
attention scores drop to zero (black frames) and hence neglects these frames for model’s decision.

5 Experiments

Dataset Along with domain-experts, we collected 96 video samples, with each sample being 8-15 seconds long
, captured at 60 frames-per-second. We use a stratified-split to generate 71 training and 25 validation samples.
Further, we fix a maximum sequence length of 100 image frames, and videos are appropriately padded with null-
frames (zero-vectors) or truncated accordingly based on its length.

Implementation Details We train the model end-to-end using the cross-entropy loss function. We randomly
crop all image frames to 224 x 224 size and apply simple augmentations like horizontal flips and random rotation.
During inference, we resize the images to 224 x 224. The experiments were conducted on a single GTX 1080 GPU
machine, in which we used a batch size of 8. We optimize the model using an Adam optimizer. The learning rate
is initialized to 1e-4 which is gradually decreasing by using a cosine annealing scheduler.

6 Results

Fig. 2(b) summarizes results obtained using different architectures. We first observe that our approach significantly
outperforms the CNN-LSTM baseline by 22% (absolute). Our CNN-Transformer model has only 11.91 M param-
eters which further improves efficiency. During inference on a video sample, we extract the self-attention weights
and compute a pairwise score to weigh the relation of each query frame with all other key tokens, which are then
used to aggregate information from the values. Scores are averaged across attention heads, and the bottom 30% of
the weights in magnitude are discarded, retaining the top 70%. Finally, the attention scores of the CLS token with
respect to all other tokens are extracted and visualized to generate explanations.

Fig. 1 represents such scores for a validation sample. In the second row, darker colors (like violet) denote frames
that have less of an impact on the model’s decision, and a frame that is lighter in colour (like yellow) contains the
essential action that can directly affect the output class. As can be seen from the figure, the model is correctly
focusing on the influential frames when the surgeon enters the food pipe (17th frame), as evidenced by the high
attention score that is observed. The fourth row of images represents Grad-CAM explanations obtained from the
spatial ResNet50 backbone. The probe’s attempted entry points are accurately grounded (spatial regions) by the
model. Fig. 3 visualizes another example of an interpretation.

7 Conclusion

Besides generating visual explanations, our paradigm can be used to unlock key-insights from the video actions. In
other words, the attention scores can be primarily used as a tool to measure the learned agent’s ability to perform
an action as close to the ideal trajectory. For example, for a surgeon with little-to-no experience in performing
endoscopy, our approach provides quantitative feedback that would help the surgeon to master the desired actions.
Our approach further demystifies the black-box abstraction which allows us to intervene at any stage of the procedure
and correct any faulty actions performed by the system. However, we have primarily conducted our experiments
in a simulated environment and an agent which is trained on a simulated-environment would find hardship in
performing actions in real-environment. In the future, given a trajectory of actions in one environment, we aim to
explore ways that can be used to estimate the trajectory in a downstream environment.
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