
Under review as a conference paper at ICLR 2023

A MATHEMATICAL DETAILS OF DIFFUSION MODELS

A.1 STOCHASTIC DPMS

In Eq. (1), we use µT (xt, t) and �t as a high-level abstraction to represent each reverse step t (T is
the total number of steps) of stochastic DPMs. In Eq. (1), we define the sampling of x as

z :=
�
xT � ✏T � · · ·� ✏2 � ✏1

�
⇠ N (0, I),

xT�1 = µT (xT , T) + �T � ✏T ,

xt�1 = µT (xt, t) + �t � ✏t, T > t > 0,

x := x0.

(12)

To be self-contained, here we provide details of µT (xt, t) and �t for DDPM (Ho et al., 2020) and
DDIM (Song et al., 2021a). Since the notations are not consistent in the two papers, we follow the
notation in each paper respectively and use different colors to distinguish different notations. Also
note that ✏✓ (xt, t) stands for the neural network learned by DDPM and its variants, which should be
distinguished from ✏t used throughout this paper.

DDPM’s µT (xt, t) and �t: We follow the notation in Ho et al. (2020).

µT (xt, t) :=
1

p
↵t

✓
xt �

�tp
1� ↵̄t

✏✓ (xt, t)

◆
, (13)

�t :=

8
>>>>><

>>>>>:

p
�tI, (option 1)s
(1� ↵̄t�1)�t

1� ↵̄t
I, (option 2)

exp

✓
v✓(xt, t)

2
log �t +

I � v✓(xt, t)

2
log

(1� ↵̄t�1)�t

1� ↵̄t

◆
. (option 3)

(14)

DDIM’s µT (xt, t) and �t: We follow the notation in Song et al. (2021a).

µT (xt, t) :=
p
↵t�1

✓
xt �

p
1� ↵t✏✓ (xt, t)p

↵t

◆
+
q
1� ↵t�1 � �2

t · ✏✓ (xt, t) , (15)

�t := �tI, where �t = ⌘
p

(1� ↵t�1) / (1� ↵t)
p

1� ↵t/↵t�1, (16)
where ⌘ is a hyper-parameter.

A.2 DETERMINISTIC DDIM

Deterministic DDIM’s µT (xt, t): Deterministic DDIM is a special case of DDIM when ⌘ = 0. For
details of other deterministic DPMs, please check the original papers.

A.3 SCORE-BASED GENERATIVE MODELING WITH SDE

Song et al. (2021b) proposed a unified view of DDPM and score matching with Langevin dynamics
(SMLD) as different stochastic differential equations (SDEs). Since the randomness in their sampling
algorithms purely come from Gaussian noise, we can incorporate their models and sampling methods
into our framework. As a demonstration, we show how to define µT (xt, t) and �t for their predictor-
only sampling with reverse diffusion samplers. Given a forward SDE:

dx = f(x, t)dt+ �(t)� dw, (17)
the reverse-time SDE is

dx = [f(x, t)� �(t)2 �rx log pt(x)]dt+ �(t)� dw̄. (18)
Suppose the forward SDE is discretized in the following form:

xt+1 = xt + ft(xt) + �t � zt, t = 0, . . . , T � 1, zt ⇠ N (0, I). (19)
Reverse diffusion samplers discretize the reserve-time SDE in a similar form:

xt�1 = xt � ft(xt) + �2
t � s✓(xt, t) + �t � ✏t, t = 1, . . . , T, ✏t ⇠ N (0, I), (20)

where s✓ is a neural network trained to match the score rx log pt(x). By comparing Eq. (12) and
Eq. (20), we have µT (xt, t) := xt � ft(xt) + �2

t � s✓(xt, t).

14

Under review as a conference paper at ICLR 2023

A.4 DDGAN

In Eq. (5), we use µT (xt, zt, t) and �t as high-level abstractions to represent each reverse step t (T
is the total number of steps) of DDGAN. The generation process is defined as

z :=
�
xT � zT � ✏T � · · ·� z2 � ✏2 � z1

�
⇠ N (0, I),

xT�1 = µT (xT , zT , T) + �T � ✏T ,

xt�1 = µT (xt, zt, t) + �t � ✏t, T > t > 1,

x := x0 = µT (x1, z1, 1).

(21)

To be self-contained, here we provide details of µT (xt, zt, t) and �t of DDGAN.

DDGAN’s µT (xt, zt, t) and �t: We follow the notation in Xiao et al. (2022) and Ho et al. (2020).

µT (xt, zt, t) :=

p
↵̄t�1�t

1� ↵̄t
G✓(xt, zt, t) +

p
↵t (1� ↵̄t�1)

1� ↵̄t
xt, (22)

�t :=

s
(1� ↵̄t�1)�t

1� ↵̄t
I, (23)

where G✓(xt, zt, t) is a conditional GAN learned by DDGAN, which should be distinguished from
the deterministic mapping G used throughout this paper.

Algorithm 2: DPM-Encoder
Input: an image x := x0, a pre-trained stochastic DPM with µT (xt, t), �t, and q(x1:T |x0)
1. Sample x1, . . . ,xT�1,xT ⇠ q(x1:T |x0)
2. z = xT

for t = T, . . . , 1 do

3. ✏t =
�
xt�1 � µT (xt, t)

�
/�t

4. z = z � ✏t

5. Output: z

B MATHEMATICAL DETAILS OF DPM-ENCODER

In this section, we provide details of our DPM-Encoder introduced in Section 3.2, which samples
z ⇠ DPMEnc(z|x, G). For each image x := x0, stochastic DPMs define a posterior distribution
over the noisy images x1:T , denoted as q(x1:T |x0) (Ho et al., 2020; Song et al., 2021a). To be
self-contained, we provide details of this posterior distribution for different diffusion models.

DDPM’s posterior q(x1:T |x0): We follow the notation in Ho et al. (2020).

q(x1:T |x0) :=
TY

t=1

q(xt|xt�1), q(xt|xt�1) := N
⇣
xt;

p
1� �txt�1,�tI

⌘
. (24)

DDIM’s posterior q(x1:T |x0): We follow the notation in Song et al. (2021a).

q(x1:T |x0) := q(xT |x0)
TY

t=2

q(xt�1|xt,x0), (25)

q(xT |x0) = N (
p
↵Tx0, (1� ↵T) I), (26)

q(xt�1|xt,x0) = N
✓
p
↵t�1x0 +

q
1� ↵t�1 � �2

t ·
xt �

p
↵tx0p

1� ↵t
,�2

t I

◆
,

where �t = ⌘
p
(1� ↵t�1) / (1� ↵t)

p
1� ↵t/↵t�1.

(27)

Based on the posterior distribution q(x1:T |x0), DPM-Encoder samples the latent code z by first
sampling noisy images x1, . . . ,xT from q(x1:T |x0) and computing the ✏t according to Eq. (1) and

15

Under review as a conference paper at ICLR 2023

Eq. (12). Formally, we define the sampling process z ⇠ DPMEnc(z|x, G) as
x1, . . . ,xT�1,xT ⇠ q(x1:T |x0), ✏t =

�
xt�1 � µT (xt, t)

�
/�t, t = T, . . . , 1,

z :=
�
xT � ✏T � · · ·� ✏2 � ✏1

�
.

(28)

DPM-Encoder guarantees perfect reconstruction. The proof is straightforward, provided as follows.
Proposition 1. (Invertibility of DPM-Encoder) For each z ⇠ DPMEnc(z|x, G) defined in Eq. (28),

we have x = x̄ := G(z), where x̄ := G(z) is defined as

x̄T�1 = µT (xT , T) + �T � ✏T ,

x̄t�1 = µT (x̄t, t) + �t � ✏t, T > t > 0,

x̄ := x̄0.

(29)

Proof. We prove x̄t = xt for all T � 1 � t � 0 by induction. The proposition holds when x̄0 = x0.
To begin with, x̄T�1 = xT�1 because

x̄T�1 = µT (xT , T) + �T � ✏T (30)
= µT (xT , T) + �T �

�
xT�1 � µT (xT , T)

�
/�T = xT�1. (31)

For T � 1 � t > 0, when x̄t = xt, we have
x̄t�1 = µT (x̄t, t) + �t � ✏t (32)

= µT (xt, t) + �t � ✏t (33)
= µT (xt, t) + �t �

�
xt�1 � µT (xt, t)

�
/�t = xt�1. (34)

C EXPERIMENTAL DETAILS OF ZERO-SHOT IMAGE-TO-IMAGE TRANSLATION

Sources of images in the 150 tuples: For the zero-shot image-to-image translation experiment, we
created a set of 150 tuples as task input, which include but are not limited to: (1) image generated by
DALL·E 2 (Ramesh et al., 2022), (2) real images from Ruiz et al. (2022), (3) real images from (Hertz
et al., 2022), (4) real images collected by the authors.

Per sample selection criterion: For each test sample, we allow each method to enumerate some
combinations of hyperparameters (detailed below). To select the best combination for each sample,
we used the directional CLIP score SD-CLIP as the criterion (higher is better).

DDIB: DDIB edits images by using a deterministic DPM conditioned on the source text t to encode
the source image, followed by decoding conditioned on the target text t̂. We used the deterministic
DDIM sampler with 100 steps. We set the classifier-free guidance of the encoding step as 1; we
enumerated the classifier-free guidance of the decoding step as {1, 1.5, 2, 3, 4, 5}.

SDEdit: SDEdit edits images by adding noise to the original image (the encoding step), followed
by denoising the noised image with a diffusion model trained on the target domain (the decoding
step). For zero-shot image-to-image translation, the decoding step of SDEdit uses the text-to-image
diffusion model conditioned on the target image t̂. Notably, SDEdit does not provide a way to take
the source text t as input. We used the DDIM sampler (⌘ = 0.1) with 100 steps. We enumerated the
classifier-free guidance of the decoding step as {1, 1.5, 2, 3, 4, 5}; we enumerated the encoding step
as {15, 20, 25, 30, 40, 50}; we ran 15 trials for each hyperparameter combination.

CycleDiffusion: For our CycleDiffusion, we used the DDIM sampler (⌘ = 0.1) with 100 steps.
We set the classifier-free guidance of the encoding process as 1; we enumerated the classifier-free
guidance of the decoding step as {1, 1.5, 2, 3, 4, 5}; we enumerated the early stopping step Tes as
{15, 20, 25, 30, 40, 50}; we ran 15 trials for each hyperparameter combination.

D RESOURCES

Our experiments used publicly available pre-trained checkpoints (except for the diffusion models
trained by us on AFHQ Cat and Wild; see Section 4). Each experiment was run on one NVIDIA RTX
A4000 (16G) / RTX A6000 (48G) / A100 (40G) GPU. We will make our code, configuration files,
and experiment commands publicly available.

16

Under review as a conference paper at ICLR 2023

E ADDITIONAL RESULTS FOR ZERO-SHOT IMAGE-TO-IMAGE TRANSLATION

Figure 7 provides a qualitative comparison for zero-shot image-to-image translation. Compared with
DDIB and SDEdit, CycleDiffusion greatly improves the faithfulness to the source image.

Figure 7: Samples for zero-shot image-to-image translation. Notations follow Figure 3. Compared
with DDIB and SDEdit, CycleDiffusion greatly improves the faithfulness to the source image.

17

Under review as a conference paper at ICLR 2023

F LOCAL EDITING DDIM’S HIGH-DIMENSIONAL LATENT CODE

Local editing of low-dimensional latent code has been shown to be useful for semantic-level image
manipulation (Shen et al., 2022). However, it is unclear whether we can perform semantic-level
image manipulation via local editing in the high-dimensional latent space diffusion models. Note that
this is different from mask-then-inpaint (Ramesh et al., 2022), edit-with-scribbles (Meng et al., 2022),
or domain adaptation (Kim et al., 2022b)). Notably, it does not need the classifier to be adapted to
noisy images as done by the classifier guidance (Dhariwal & Nichol, 2021; Liu et al., 2021).

Given an image xori, we encode it as zori, edit it as zedit = zori + n, and compute the edited image
xedit = G(zedit). To learn the vector n for a target class a, we optimize

argmin
knk2=r

Ezori⇠pz(zori), zedit=zori+n

h
��cls logP

�
a|G(zedit)

�
�cos

⌦
R(G(zedit)), R(G(zori))

↵i
, (35)

where P (·|x) is a classifier trained on CelebA (Liu et al., 2015), and R is the IR-SE50 face embedding
model (Deng et al., 2019) to preserve the identity. Empirically, we find that LDM-DDIM (⌘ = 0)
works the best for local editing, as shown in Figure 8.

Figure 8: Image manipulation by local editing of diffusion models’ latent code. The diffusion model
used here is the deterministic LDM-DDIM (⌘ = 0).

Table 5: State-of-the-art generative models used in this paper. Notations: struc., –, and � stand for
structure, no “latent codes”,2 and progressive generation, respectively.

Model name Latent prior Objective Architecture Latent struc. Resolution

Diffusion

DDPM (Ho et al., 2020) etc. – ELBO

{CNN,ViT}

– 256
DDIM (⌘ = 0) (Song et al., 2021a) Gaussian ELBO spatial 256
SN-DDPM (Bao et al., 2022) – ELBO – 64
ScoreSDE (Song et al., 2021b) – ELBO / SM – 256 / 1024
LDM (Rombach et al., 2022) etc. diffusion ELBO spatial 256
DiffAE (Preechakul et al., 2022) diffusion ELBO hybrid 256
DDGAN (Xiao et al., 2022) – hybrid – 256

2D GAN

StyleGAN2 (Karras et al., 2020)

Gaussian

GAN CNN

vector

1024
StyleGAN-XL (Sauer et al., 2022) GAN CNN 256 – 1024
StyleSwin (Zhang et al., 2022a) GAN ViT 256 / 1024
BigGAN (Brock et al., 2019) GAN CNN 256
Diffusion-GAN (Wang et al., 2022) hybrid CNN 1024

3D GAN

StyleNeRF (Gu et al., 2022)

Gaussian GAN

NeRF � CNN

vector

256 – 1024
GIRAFFE-HD (Xue et al., 2022) NeRF � CNN 1024
StyleSDF (Or-El et al., 2022) SDF � CNN 512 / 1024
EG3D (Chan et al., 2022) TriPl � CNN 512

VAE NVAE (Vahdat & Kautz, 2020) Gaussian ELBO CNN spatial 256

G ADDITIONAL RESULTS FOR PLUG-AND-PLAY GUIDANCE

Seen in Table 5 is a summary of generative models unified as deterministic mappings in this paper.
Different models have different training objectives, model architectures, and structures of “latent
code”2. Most of the listed models are included in our experiments. Table 6 and Table 7 provide a
more detailed version of the results (for some generative models) seen in Figure 5. Specifically, we
investigated different configurations of various diffusion models and GANs. In Figure 9, we provide
several image samples for ID-controlled sampling from pre-trained generative models. Consistent
with Table 4, diffusion models have better coverage of individuals than 2D/3D GANs.

18

Under review as a conference paper at ICLR 2023

Table 6: CLIP experiments of models that have different configurations. Numbers under each model
stand for the image resolution; trunc. � = 0.7 stands for the truncation trick (Karras et al., 2019)
with truncation coefficient � = 0.7. The reported metric is the CLIP score (larger is better), the same
as Figure 5. ~ and � stand for the configuration plotted in Figure 5.

Text t (Figure 5)
�

· · ·
 ~ �

· · ·
 �

Control strength �CLIP 100 300 500 700 1000 100 300 500 700 1000

LDM-DDIM (⌘ = 0)
256 (Tg = 10)~� 0.258 0.276 0.283 0.288 0.290 0.269 0.283 0.296 0.300 0.308
256 (Tg = 5) 0.257 0.280 0.283 0.285 0.287 0.269 0.283 0.292 0.298 0.304

DiffAE
256 (Tg = 10)~� 0.266 0.287 0.291 0.294 0.294 0.270 0.296 0.307 0.314 0.319
128 (Tg = 3) 0.259 0.284 0.289 0.290 0.292 0.256 0.271 0.286 0.293 0.298
128 (Tg = 3, zT only) 0.256 0.289 0.289 0.290 0.295 0.256 0.270 0.285 0.293 0.297

StyleGAN2
1024~� 0.273 0.293 0.296 0.296 0.298 0.275 0.302 0.308 0.311 0.312
1024 (trunc. � = 0.7) 0.267 0.287 0.291 0.293 0.293 0.267 0.291 0.299 0.301 0.303

StyleGAN-XL
1024~� 0.270 0.291 0.294 0.295 0.295 0.273 0.299 0.308 0.312 0.313
1024 (trunc. � = 0.7) 0.263 0.283 0.287 0.289 0.290 0.265 0.284 0.292 0.295 0.297
512 (trunc. � = 0.7) 0.263 0.282 0.286 0.288 0.289 0.263 0.284 0.293 0.296 0.300
256 (trunc. � = 0.7) 0.262 0.281 0.284 0.287 0.289 0.259 0.281 0.291 0.295 0.299

StyleSwin
1024~� 0.266 0.279 0.278 0.276 0.268 0.273 0.291 0.296 0.295 0.294
256 0.262 0.282 0.283 0.283 0.281 0.267 0.285 0.290 0.293 0.293
1024 (trunc. � = 0.7) 0.265 0.284 0.287 0.288 0.288 0.264 0.279 0.292 0.297 0.300
256 (trunc. � = 0.7) 0.259 0.278 0.281 0.275 0.273 0.261 0.276 0.281 0.284 0.281

Diffusion-GAN
1024~� 0.278 0.295 0.298 0.298 0.299 0.270 0.297 0.305 0.307 0.308
1024 (trunc. � = 0.7) 0.273 0.294 0.294 0.300 0.301 0.262 0.286 0.300 0.305 0.309

StyleNeRF
1024 0.246 0.271 0.283 0.288 0.291 0.264 0.291 0.303 0.307 0.311
256 0.234 0.240 0.247 0.252 0.259 0.260 0.275 0.291 0.298 0.303
1024 (trunc. � = 0.7) 0.243 0.266 0.277 0.283 0.287 0.260 0.280 0.291 0.296 0.300
256 (trunc. � = 0.7) 0.229 0.235 0.239 0.243 0.249 0.255 0.267 0.282 0.290 0.295

StyleSDF
1024~� 0.275 0.288 0.286 0.282 – 0.270 0.290 0.292 0.291 –
1024 (trunc. � = 0.7) 0.267 0.283 0.284 0.279 – 0.261 0.270 0.273 0.273 –

EG3D
512~� 0.277 0.292 0.294 0.295 0.294 0.272 0.298 0.305 0.307 0.310
512 (trunc. � = 0.7) 0.277 0.270 0.276 0.280 0.283 0.265 0.285 0.293 0.296 0.298

Figure 9: Image samples for the face ID experiment in Table 4.

19

Under review as a conference paper at ICLR 2023

Table 7: CLIP experiments of models that have different configurations. Numbers under each model
stand for the image resolution; trunc. � = 0.7 stands for the truncation trick (Karras et al., 2019)
with truncation coefficient � = 0.7. The reported metric is the CLIP score (larger is better), the same
as Figure 5. ~ and � stand for the configuration plotted in Figure 5.

Text t (Figure 5) ~ �

Control strength �CLIP 100 300 500 700 1000 100 300 500 700 1000

LDM-DDIM (⌘ = 0)
256 (Tg = 10)~� 0.275 0.290 0.297 0.301 0.307 0.252 0.288 0.312 0.326 0.343
256 (Tg = 5) 0.273 0.289 0.300 0.305 0.310 0.250 0.288 0.315 0.329 0.343

DiffAE
256 (Tg = 10)~� 0.275 0.290 0.297 0.303 0.307 0.250 0.287 0.308 0.320 0.328
128 (Tg = 3) 0.265 0.281 0.288 0.293 0.298 0.240 0.273 0.300 0.314 0.326
128 (Tg = 3, zT only) 0.263 0.280 0.288 0.291 0.296 0.240 0.275 0.300 0.313 0.324

StyleGAN2
1024~� 0.279 0.294 0.300 0.303 0.304 0.264 0.299 0.313 0.319 0.321
1024 (trunc. � = 0.7) 0.278 0.291 0.297 0.300 0.303 0.255 0.286 0.303 0.311 0.316

StyleGAN-XL
1024~� 0.282 0.299 0.306 0.310 0.310 0.260 0.296 0.301 0.304 0.305
1024 (trunc. � = 0.7) 0.281 0.297 0.303 0.305 0.309 0.253 0.279 0.287 0.288 0.291
512 (trunc. � = 0.7) 0.280 0.296 0.301 0.305 0.307 0.250 0.282 0.296 0.300 0.303
256 (trunc. � = 0.7) 0.275 0.290 0.297 0.299 0.303 0.251 0.283 0.295 0.300 0.304

StyleSwin
1024~ 0.276 0.282 0.284 0.281 0.278 0.251 0.263 0.258 0.255 0.247
256� 0.273 0.281 0.285 0.284 0.281 0.256 0.277 0.281 0.277 0.275
1024 (trunc. � = 0.7) 0.276 0.284 0.286 0.290 0.288 0.243 0.263 0.274 0.277 0.275
256 (trunc. � = 0.7) 0.272 0.280 0.281 0.282 0.281 0.248 0.267 0.275 0.274 0.269

Diffusion-GAN
1024~� 0.278 0.294 0.301 0.303 0.306 0.262 0.288 0.298 0.301 0.302
1024 (trunc. � = 0.7) 0.277 0.291 0.300 0.291 0.308 0.249 0.279 0.289 0.296 0.301

StyleNeRF
1024 0.268 0.277 0.282 0.285 0.287 0.238 0.252 0.262 0.272 0.281
256 0.264 0.272 0.277 0.280 0.283 0.235 0.244 0.252 0.256 0.263
1024 (trunc. � = 0.7) 0.268 0.276 0.281 0.284 0.286 0.233 0.244 0.253 0.261 0.270
256 (trunc. � = 0.7) 0.264 0.271 0.277 0.280 0.282 0.232 0.238 0.246 0.251 0.255

StyleSDF
1024~� 0.275 0.278 0.273 – – 0.253 0.259 – – –
1024 (trunc. � = 0.7) 0.273 0.279 0.275 – – 0.242 0.252 0.248 – –

EG3D
512~� 0.284 0.297 0.303 0.305 0.308 0.257 0.284 0.287 0.287 0.281
512 (trunc. � = 0.7) 0.282 0.295 0.300 0.301 0.305 0.246 0.268 0.276 0.278 0.276

H SOCIETAL IMPACT

In general, improved generative modeling makes it easier to generate fake media (e.g., DeepFakes;
Westerlund, 2019; Vaccari & Chadwick, 2020) and privacy leaks (e.g., identity-conditioned human
face synthesis, information leaks from large-scale pre-training data of text-to-image diffusion models).
Additionally, in the particular case of this paper, one could encounter biases image editing as a result
of applying CycleDiffusion to text-to-image diffusion models that reflect the natural biases in large
text-image pre-training data. On the other hand, improved generative modeling can bring benefits to
synthesis of humans and new ways of human communication in AR/VR. Moreover, we point out
that there exist many current research works and tools that can efficiently detect fake media or can
manage privacy leaks during pre-training. We encourage researchers and practitioners to consider
these risks and remedies when using the methods developed in this paper.

20

	Introduction
	Related Work
	Method
	Gaussian Latent Space for Diffusion Models
	DPM-Encoder: A Reconstructable Encoder for Diffusion Models
	CycleDiffusion: Image-to-Image Translation with DPM-Encoder
	Unified Plug-and-Play Guidance for Generative Models

	Experiments
	CycleDiffusion for Unpaired Image-to-Image Translation
	Text-to-Image Diffusion Models Can Be Zero-Shot Image-to-Image Editors
	Unified Plug-and-Play Guidance for Diffusion Models and GANs

	Conclusions and Discussion
	Mathematical Details of Diffusion Models
	Stochastic DPMs
	Deterministic DDIM
	Score-based Generative Modeling with SDE
	DDGAN

	Mathematical Details of DPM-Encoder
	Experimental Details of Zero-Shot Image-to-Image Translation
	Resources
	Additional Results for Zero-Shot Image-to-Image Translation
	Local Editing DDIM's High-Dimensional Latent Code
	Additional Results for Plug-and-Play Guidance
	Societal Impact

